[1] WENG H, YU R, HU X, et al. Quantum anomalous hall effect and related topological electronic states[J]. Advances in Physics, 2015, 64(3): 227-282.
[2] KATO Y, MYERS R, GOSSARD A, et al. Observation of the spin hall effect in semiconductors[J]. Science, 2004, 306(5703): 1910-1913.
[3] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of the fine-Structure constant based on quantized hall resistance[J]. Physical Review Letters, 1980, 45(6): 494-497.
[4] PAALANEN M A, TSUI D C, GOSSARD A C. Quantized hall effect at low temperatures[J]. Physical Review B, 1982, 25(8): 5566-5569.
[5] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous hall effect[J]. Reviews of Modern Physics, 2010, 82(2): 1539-1592.
[6] KARPLUS R, LUTTINGER J M. Hall effect in ferromagnetics[J]. Physical Review, 1954, 95(5): 1154-1160.
[7] SMIT J. The spontaneous hall effect in ferromagnetics I[J]. Physica, 1955, 21(6): 877-887.
[8] BERGER L. Side-jump mechanism for the hall effect of ferromagnets[J]. Physical Review B, 1970, 2(11): 4559-4566.
[9] YAO Y, KLEINMAN L, MACDONALD A H, et al. First principles calculation of anomalous hall conductivity in ferromagnetic bcc Fe[J]. Physical Review Letters, 2004, 92(3): 037204.
[10] FANG Z, NAGAOSA N, TAKAHASHI K, et al. The anomalous hall effect and magnetic monopoles in momentum space[J]. Science, 2003, 302(5642): 92-95.
[11] JUNGWIRTH T, NIU Q, MACDONALD A H. Anomalous hall effect in ferromagnetic semiconductors[J]. Physical Review Letters, 2002, 88(20): 207208.
[12] ONODA M, NAGAOSA N. Topological nature of anomalous hall effect in ferromagnets[J]. Journal of the Physical Society of Japan, 2002, 71(1): 19-22.
[13] HALDANE F D M. Model for a quantum hall effect without Landau Levels: Condensed-matter realization of the ”Parity Anomaly”[J]. Physical Review Letters, 1988, 61(18): 2015-2018.
[14] LIU C X, QI X L, DAI X, et al. Quantum anomalous hall effect in Hg1−𝑦Mn𝑦Te quantum wells[J]. Physical Review Letters, 2008, 101(14): 146802.
[15] YU R, ZHANG W, ZHANG H J, et al. Quantized anomalous hall effect in magnetic topological insulators[J]. Science, 2010, 329(5987): 61-64.
[16] CHANG C Z, ZHANG J, FENG X, et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator[J]. Science, 2013, 340(6129): 167-170.
[17] KANE C L, MELE E J. 𝑍2 topological order and the quantum spin hall effect[J]. Physical Review Letters, 2005, 95(14): 146802.
[18] BERNEVIG B A, ZHANG S C. Quantum spin hall effect[J]. Physical Review Letters, 2006, 96(10): 106802.
[19] KöNIG M, WIEDMANN S, BRüNE C, et al. Quantum spin hall insulator state in HgTe quantum wells[J]. Science, 2007, 318(5851): 766-770.
[20] FU L, KANE C L, MELE E J. Topological insulators in three dimensions[J]. Physical Review Letters, 2007, 98(10): 106803.
[21] MOORE J E, BALENTS L. Topological invariants of time-reversal-invariant band structures[J]. Physical Review B, 2007, 75(12): 121306.
[22] ROY R. Topological phases and the quantum spin hall effect in three dimensions[J]. Physical Review B, 2009, 79(19): 195322.
[23] HSIEH D, QIAN D, WRAY L, et al. A topological Dirac insulator in a quantum spin hall phase[J]. Nature, 2008, 452(7190): 970-974.
[24] ZHANG H, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.
[25] OTROKOV M M, KLIMOVSKIKH I I, BENTMANN H, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576(7787): 416-422.
[26] ZHANG D, SHI M, ZHU T, et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect[J]. Physical Review Letters, 2019, 122(20): 206401.
[27] LI J, LI Y, DU S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials[J]. Science Advances, 2019, 5(6): eaaw5685.
[28] OTROKOV M M, RUSINOV I P, BLANCO-REY M, et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films[J]. Physical Review Letters, 2019, 122(10): 107202.
[29] WENG H, DAI X, FANG Z. Topological semimetals predicted from first-principles calculations[J]. Journal of Physics: Condensed Matter, 2016, 28(30): 303001.
[30] WANG Z, SUN Y, CHEN X Q, et al. Dirac semimetal and topological phase transitions in 𝐴3Bi(𝐴 = Na, K, Rb)[J]. Physical Review B, 2012, 85(19): 195320.
[31] WANG Z, WENG H, WU Q, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2[J]. Physical Review B, 2013, 88(12): 125427.
[32] YOUNG S M, ZAHEER S, TEO J C Y, et al. Dirac semimetal in three dimensions[J]. Physical Review Letters, 2012, 108(14): 140405.
[33] YANG B J, NAGAOSA N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology[J]. Nature Communications, 2014, 5(1): 4898.
[34] JIN Y J, ZHENG B B, XIAO X L, et al. Two-dimensional Dirac semimetals without inversion symmetry[J]. Physical Review Letters, 2020, 125(11): 116402.
[35] NIELSEN H, NINOMIYA M. Absence of neutrinos on a lattice: (I). Proof by homotopy theory[J]. Nuclear Physics B, 1981, 185(1): 20-40.
[36] NIELSEN H, NINOMIYA M. Absence of neutrinos on a lattice: (II). Intuitive topological proof[J]. Nuclear Physics B, 1981, 193(1): 173-194.
[37] WAN X, TURNER A M, VISHWANATH A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[J]. Physical Review B, 2011, 83(20): 205101.
[38] XU G, WENG H, WANG Z, et al. Chern semimetal and the quantized anomalous hall effect in HgCr2Se4[J]. Physical Review Letters, 2011, 107(18): 186806.
[39] XIA B W, JIN Y J, ZHAO J Z, et al. Robust twin pairs of Weyl fermions in ferromagnetic oxides[J]. Physical Review Letters, 2019, 122(5): 057205.
[40] XU Q, LIU E, SHI W, et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2[J]. Physical Review B, 2018, 97(23): 235416.
[41] WANG Q, XU Y, LOU R, et al. Large intrinsic anomalous hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions[J]. Nature Communications, 2018, 9(1): 3681.
[42] LIU E, SUN Y, KUMAR N, et al. Giant anomalous hall effect in a ferromagnetic kagome-lattice semimetal[J]. Nature Physics, 2018, 14(11): 1125-1131.
[43] WENG H, FANG C, FANG Z, et al. Weyl semimetal phase in noncentrosymmetric transition-Metal monophosphides[J]. Physical Review X, 2015, 5(1): 011029.
[44] HUANG S M, XU S Y, BELOPOLSKI I, et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class[J]. Nature Communications, 2015, 6(1): 7373.
[45] LV B Q, WENG H M, FU B B, et al. Experimental discovery of Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031013.
[46] XU S Y, BELOPOLSKI I, ALIDOUST N, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs[J]. Science, 2015, 349(6248): 613-617.
[47] LV B Q, XU N, WENG H M, et al. Observation of Weyl nodes in TaAs[J]. Nature Physics, 2015, 11(9): 724-727.
[48] HUANG X, ZHAO L, LONG Y, et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031023.
[49] SOLUYANOV A A, GRESCH D, WANG Z, et al. Type-II Weyl semimetals[J]. Nature, 2015, 527(7579): 495-498.
[50] DENG K, WAN G, DENG P, et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2[J]. Nature Physics, 2016, 12(12): 1105-1110.
[51] SUN Y, WU S C, ALI M N, et al. Prediction of Weyl semimetal in orthorhombic MoTe2[J]. Physical Review B, 2015, 92(16): 161107.
[52] WANG Z, GRESCH D, SOLUYANOV A A, et al. MoTe2: A type-II Weyl topological metal[J]. Physical Review Letters, 2016, 117(5): 056805.
[53] WU Y, MOU D, JO N H, et al. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2[J]. Physical Review B, 2016, 94(12): 121113.
[54] BELOPOLSKI I, SANCHEZ D S, ISHIDA Y, et al. Discovery of a new type of topological Weyl fermion semimetal state in Mo𝑥W1−𝑥Te2[J]. Nature Communications, 2016, 7(1): 13643.
[55] LI X P, FU B, MA D S, et al. Double Dirac nodal line semimetal with a torus surface state[J]. Physical Review B, 2021, 103(16): L161109.
[56] WANG R Y, CHEN Z J, HUANG Z Q, et al. Classification and materials realization of topologically robust nodal ring phonons[J]. Physical Review Materials, 2021, 5(8): 084202.
[57] BIAN G, CHANG T R, SANKAR R, et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2[J]. Nature Communications, 2016, 7(1): 10556.
[58] DU Y, BO X, WANG D, et al. Emergence of topological nodal lines and type-II Weyl nodes in the strong spin-orbit coupling system InNb𝑋2 (𝑋 = S,Se)[J]. Physical Review B, 2017, 96(23): 235152.
[59] ZHANG Z, WEI Q, CHENG Y, et al. Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice[J]. Physical Review Letters, 2017, 118(8): 084303.
[60] HE H, QIU C, YE L, et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal[J]. Nature, 2018, 560(7716): 61-64.
[61] ZHANG Z, TIAN Y, CHENG Y, et al. Experimental verification of acoustic pseudospin multipoles in a symmetry-broken snowflakelike topological insulator[J]. Physical Review B, 2017, 96(24): 241306.
[62] ZHANG T, SONG Z, ALEXANDRADINATA A, et al. Double-Weyl phonons in transition-Metal monosilicides[J]. Physical Review Letters, 2018, 120(1): 016401.
[63] MIAO H, ZHANG T T, WANG L, et al. Observation of double Weyl cphonons in parity-breaking FeSi[J]. Physical Review Letters, 2018, 121(3): 035302.
[64] WANG R, XIA B W, CHEN Z J, et al. Symmetry-protected topological triangular Weyl complex[J]. Physical Review Letters, 2020, 124(10): 105303.
[65] CHEN Z J, WANG R, XIA B W, et al. Three-dimensional Dirac phonons with inversion symmetry[J]. Physical Review Letters, 2021, 126(18): 185301.
[66] ZHENG B, ZHAN F, WU X, et al. Hourglass phonons jointly protected by symmorphic and nonsymmorphic symmetries[J]. Physical Review B, 2021, 104(6): L060301.
[67] LI J, XIE Q, ULLAH S, et al. Coexistent three-component and two-component Weyl phonons in TiS, ZrSe, and HfTe[J]. Physical Review B, 2018, 97(5): 054305.
[68] ZHANG T T, MIAO H, WANG Q, et al. Phononic helical nodal lines with 𝒫𝒯 protection in MoB2[J]. Physical Review Letters, 2019, 123(24): 245302.
[69] LIU Q B, WANG Z, FU H H. Charge-four Weyl phonons[J]. Physical Review B, 2021, 103(16): L161303.
[70] FU L, KANE C L. Time reversal polarization and a 𝑍2 adiabatic spin pump[J]. Physical Review B, 2006, 74(19): 195312.
[71] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln[J]. Annalen der Physik, 1927, 389(20): 457-484.
[72] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
[73] RAJAGOPAL A K, CALLAWAY J. Inhomogeneous electron gas[J]. Physical Review B, 1973, 7(5): 1912-1919.
[74] HARTREE D. The wave mechanics of an atom with a non-Coulomb central field Part I :theory and methods[J]. Proceedings of the Cambridge Philosophical Society, 1928, 24: 89-110.
[75] FOCK V. Approximation method for the solution of the quantum mechanical multibody problems[J]. Zeitschrift Fur Physik, 1930, 61(1-2): 126-148.
[76] KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B, 1993, 48(17): 13115-13118.
[77] KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
[78] TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Physical Review B, 2008, 78(13): 134106.
[79] BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562.
[80] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials[J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502.
[81] MARZARI N, VANDERBILT D. Maximally localized generalized Wannier functions for composite energy bands[J]. Physical Review B, 1997, 56(20): 12847-12865.
[82] SOUZA I, MARZARI N, VANDERBILT D. Maximally localized Wannier functions for entangled energy bands[J]. Physical Review B, 2001, 65(3): 035109.
[83] MARZARI N, MOSTOFI A A, YATES J R, et al. Maximally localized Wannier functions: Theory and applications[J]. Reviews of Modern Physics, 2012, 84(4): 1419-1475.
[84] MOSTOFI A A, YATES J R, LEE Y S, et al. Wannier90: A tool for obtaining maximallylocalised Wannier functions[J]. Computer Physics Communications, 2008, 178(9): 685-699.
[85] SANCHO M P L, SANCHO J M L, SANCHO J M L, et al. Highly convergent schemes for the calculation of bulk and surface Green functions[J]. Journal of Physics F: Metal Physics, 1985, 15(4): 851-858.
[86] HASAN M Z, KANE C L. Colloquium: Topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.
[87] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057-1110.
[88] ARMITAGE N P, MELE E J, VISHWANATH A. Weyl and Dirac semimetals in threedimensional solids[J]. Reviews of Modern Physics, 2018, 90(1): 015001.
[89] WENG H, FANG C, FANG Z, et al. Weyl semimetal phase in noncentrosymmetric transitionmetal monophosphides[J]. Physical Review X, 2015, 5(1): 011029.
[90] WANG H, RUAN J, ZHANG H. Non-Hermitian nodal-line semimetals with an anomalous bulk-boundary correspondence[J]. Physical Review B, 2019, 99(7): 075130.
[91] YU Z M, WU W, SHENG X L, et al. Quadratic and cubic nodal lines stabilized by crystalline symmetry[J]. Physical Review B, 2019, 99(12): 121106.
[92] BIAN G, CHANG T R, ZHENG H, et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2[J]. Physical Review B, 2016, 93(12): 121113.
[93] FANG C, CHEN Y, KEE H Y, et al. Topological nodal line semimetals with and without spinorbital coupling[J]. Physical Review B, 2015, 92(8): 081201.
[94] HIRAYAMA M, OKUGAWA R, MIYAKE T, et al. Topological Dirac nodal lines and surface charges in fcc alkaline earth metals[J]. Nature Communications, 2017, 8(1): 14022.
[95] YAN Z, BI R, SHEN H, et al. Nodal-link semimetals[J]. Physical Review B, 2017, 96(4): 041103.
[96] HUH Y, MOON E G, KIM Y B. Long-range Coulomb interaction in nodal-ring semimetals[J]. Physical Review B, 2016, 93(3): 035138.
[97] DENG W, LU J, LI F, et al. Nodal rings and drumhead surface states in phononic crystals[J]. Nature Communications, 2019, 10(1): 1769.
[98] ZHONG C, CHEN Y, XIE Y, et al. Towards three-dimensional Weyl-surface semimetals in graphene networks[J]. Nanoscale, 2016, 8(13): 7232-7239.
[99] WU W, LIU Y, LI S, et al. Nodal surface semimetals: Theory and material realization[J]. Physical Review B, 2018, 97(11): 115125.
[100] LIANG Q F, ZHOU J, YU R, et al. Node-surface and node-line fermions from nonsymmorphic lattice symmetries[J]. Physical Review B, 2016, 93(8): 085427.
[101] ZHANG S B, ZHOU J. Quantum oscillations in acoustic phonons in Weyl semimetals[J]. Physical Review B, 2020, 101(8): 085202.
[102] WANG P, LU L, BERTOLDI K. Topological phononic crystals with one-way elastic edge waves[J]. Physical Review Letters, 2015, 115(10): 104302.
[103] XIE Q, LI J, ULLAH S, et al. Phononic Weyl points and one-way topologically protected nontrivial phononic surface arc states in noncentrosymmetric WC-type materials[J]. Physical Review B, 2019, 99(17): 174306.
[104] LIU Y, XU Y, ZHANG S C, et al. Model for topological phononics and phonon diode[J]. Physical Review B, 2017, 96(6): 064106.
[105] JIN Y J, CHEN Z J, XIA B W, et al. Ideal intersecting nodal-ring phonons in bcc C8[J]. Physical Review B, 2018, 98(22): 220103.
[106] SÜSSTRUNK R, HUBER S D. Observation of phononic helical edge states in a mechanical topological insulator[J]. Science, 2015, 349(6243): 47-50.
[107] LIU F, DENG H Y, WAKABAYASHI K. Topological photonic crystals with zero Berry curvature[J]. Physical Review B, 2018, 97(3): 035442.
[108] STENULL O, KANE C L, LUBENSKY T C. Topological phonons and Weyl lines in three dimensions[J]. Physical Review Letters, 2016, 117(6): 068001.
[109] LIU Y, XU Y, DUAN W. Berry phase and topological effects of phonons[J]. National Science Review, 2018, 5(3): 314-316.
[110] SÜSSTRUNK R, HUBER S D. Observation of phononic helical edge states in a mechanical topological insulator[J]. Science, 2015, 349(6243): 47-50.
[111] MOUSAVI S H, KHANIKAEV A B, WANG Z. Topologically protected elastic waves in phononic metamaterials[J]. Nature Communications, 2015, 6(1): 8682.
[112] HE C, NI X, GE H, et al. Acoustic topological insulator and robust one-way sound transport[J]. Nature Physics, 2016, 12(12): 1124-1129.
[113] PENG B, HU Y, MURAKAMI S, et al. Topological phonons in oxide perovskites controlled by light[J]. Science Advances, 2020, 6(46): eabd1618.
[114] LI J, XIE Q, LIU J, et al. Phononic Weyl nodal straight lines in MgB2[J]. Physical Review B, 2020, 101(2): 024301.
[115] DAHN J R, WAY B M, FULLER E, et al. Structure of siloxene and layered polysilane (Si6H6)[J]. Physical Review B, 1993, 48(24): 17872-17877.
[116] HE J, S. TSE J, D. KLUG D, et al. Layered polysilane: thermolysis and photoluminescence[J]. Journal of Materials Chemistry, 1998, 8(3): 705-710.
[117] DETTLAFF-WEGLIKOWSKA U, HÖNLE W, MOLASSIOTI-DOHMS A, et al. Structure and optical properties of the planar silicon compounds polysilane and Wöhler siloxene[J]. Physical Review B, 1997, 56(20): 13132-13140.
[118] RAZZETTI C, LOTTICI P, ANTONIOLI G. Structure and lattice dynamics of nonmagnetic defective A-II-B-III-2-X-IV-4 compounds and alloys[J]. Progress in Crystal Growth and Characterization, 1987, 15(1): 43-73.
[119] BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1984, 392(1802): 45-57.
[120] FU L, KANE C L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator[J]. Physical Review Letters, 2008, 100(9): 096407.
[121] SAJADI E, PALOMAKI T, FEI Z, et al. Gate-induced superconductivity in a monolayer topological insulator[J]. Science, 2018, 362(6417): 922-925.
[122] FATEMI V, WU S, CAO Y, et al. Electrically tunable low-density superconductivity in a monolayer topological insulator[J]. Science, 2018, 362(6417): 926-929.
[123] BENALCAZAR W A, BERNEVIG B A, HUGHES T L. Quantized electric multipole insulators[J]. Science, 2017, 357(6346): 61-66.
[124] SCHINDLER F, COOK A M, VERGNIORY M G, et al. Higher-order topological insulators[J]. Science Advances, 2018, 4(6): eaat0346.
[125] LIU Z K, ZHOU B, ZHANG Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi[J]. Science, 2014, 343(6173): 864-867.
[126] JIN Y J, XU Y, CHEN Z J, et al. Type-II quadratic and cubic Weyl fermions[J]. Physical Review B, 2022, 105(3): 035141.
[127] YU R, WENG H, FANG Z, et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN[J]. Physical Review Letters, 2015, 115(3): 036807.
[128] WENG H, LIANG Y, XU Q, et al. Topological node-line semimetal in three-dimensional graphene networks[J]. Physical Review B, 2015, 92(4): 045108.
[129] FANG Z, NAGAOSA N, TAKAHASHI K S, et al. The anomalous hall effect and magnetic monopoles in momentum space[J]. Science, 2003, 302(5642): 92-95.
[130] UDAGAWA M, BERGHOLTZ E J. Field-selective anomaly and chiral mode reversal in type-II Weyl materials[J]. Physical Review Letters, 2016, 117(8): 086401.
[131] GAO Z, HUA M, ZHANG H, et al. Classification of stable Dirac and Weyl semimetals with reflection and rotational symmetry[J]. Physical Review B, 2016, 93(20): 205109.
[132] VAFEK O, VISHWANATH A. Dirac fermions in solids: From high-Tc cuprates and graphene to topological insulators and Weyl semimetals[J]. Annual Review of Condensed Matter Physics, 2014, 5(1): 83-112.
[133] YU Z M, ZHANG Z, LIU G B, et al. Encyclopedia of emergent particles in three-dimensional crystals[J]. Science Bulletin, 2022, 67(4): 375-380.
[134] LIU Q B, QIAN Y, FU H H, et al. Symmetry-enforced Weyl phonons[J]. npj Computational Materials, 2020, 6(1): 95.
[135] HUANG Z, CHEN Z, ZHENG B, et al. Three-terminal Weyl complex with double surface arcs in a cubic lattice[J]. npj Computational Materials, 2020, 6(1): 87.
[136] ZHANG T, TAKAHASHI R, FANG C, et al. Twofold quadruple Weyl nodes in chiral cubic crystals[J]. Physical Review B, 2020, 102(12): 125148.
[137] JIN Y J, CHEN Z J, XIAO X L, et al. Tunable double Weyl phonons driven by chiral point group symmetry[J]. Physical Review B, 2021, 103(10): 104101.
[138] LI H, ZHANG T, SAID A, et al. Observation of a chiral wave function in the twofold-degenerate quadruple Weyl system BaPtGe[J]. Physical Review B, 2021, 103(18): 184301.
[139] CAI X, YE L, QIU C, et al. Symmetry-enforced three-dimensional Dirac phononic crystals[J]. Light: Science & Applications, 2020, 9(1): 38.
[140] LI J, WANG L, LIU J, et al. Topological phonons in graphene[J]. Physical Review B, 2020, 101(8): 081403.
[141] PARK S, HWANG Y, CHOI H C, et al. Topological acoustic triple point[J]. Nature Communications, 2021, 12(1): 6781.
[142] LIU G, JIN Y, CHEN Z, et al. Symmetry-enforced straight nodal-line phonons[J]. Physical Review B, 2021, 104(2): 024304.
[143] XIE C, YUAN H, LIU Y, et al. Three-nodal surface phonons in solid-state materials: Theory and material realization[J]. Physical Review B, 2021, 104(13): 134303.
[144] LIU Q B, WANG Z Q, FU H H. Ideal topological nodal-surface phonons in RbTeAu-family materials[J]. Physical Review B, 2021, 104(4): L041405.
[145] PTOK A, KOBIAŁKA A, STERNIK M, et al. Chiral phonons in the honeycomb sublattice of layered CoSn-like compounds[J]. Physical Review B, 2021, 104(5): 054305.
[146] HE H, QIU C, CAI X, et al. Observation of quadratic Weyl points and double-helicoid arcs[J]. Nature Communications, 2020, 11(1): 1820.
[147] WANG J, YUAN H, KUANG M, et al. Coexistence of zero-, one-, and two-dimensional degeneracy in tetragonal SnO2 phonons[J]. Physical Review B, 2021, 104(4): L041107.
[148] ZHOU F, ZHANG Z, CHEN H, et al. Hybrid-type nodal ring phonons and coexistence of higher-order quadratic nodal line phonons in an AgZr alloy[J]. Physical Review B, 2021, 104(17): 174108.
[149] LIU Q B, FU H H, WU R. Topological phononic nodal hexahedron net and nodal links in the high-pressure phase of the semiconductor CuCl[J]. Physical Review B, 2021, 104(4): 045409.
[150] SOLUYANOV A A, VANDERBILT D. Computing topological invariants without inversion symmetry[J]. Physical Review B, 2011, 83(23): 235401.
[151] YU R, QI X L, BERNEVIG A, et al. Equivalent expression of ℤ2 topological invariant for band insulators using the non-Abelian Berry connection[J]. Physical Review B, 2011, 84(7): 075119.
[152] TRINSCHEK D, JANSEN M. A new modification of Na2Zn2O3[J]. Zeitschrift für Naturforschung B, 1996, 51(7): 917-921.
[153] BURKOV A A, BALENTS L. Weyl semimetal in a topological insulator multilayer[J]. Physical Review Letters, 2011, 107(12): 127205.
[154] FANG C, GILBERT M J, DAI X, et al. Multi-Weyl topological semimetals stabilized by point group symmetry[J]. Physical Review Letters, 2012, 108(26): 266802.
[155] YUAN X, YAN Z, SONG C, et al. Chiral Landau levels in Weyl semimetal NbAs with multiple topological carriers[J]. Nature Communications, 2018, 9(1): 1854.
[156] KIM Y, WIEDER B J, KANE C L, et al. Dirac line nodes in inversion-symmetric crystals[J]. Physical Review Letters, 2015, 115(3): 036806.
[157] WANG X, ZHOU F, YANG T, et al. Symmetry-enforced ideal lanternlike phonons in the ternary nitride Li6WN4[J]. Physical Review B, 2021, 104(4): L041104.
[158] ZYUZIN A A, BURKOV A A. Topological response in Weyl semimetals and the chiral anomaly[J]. Physical Review B, 2012, 86(11): 115133.
[159] SON D T, SPIVAK B Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals[J]. Physical Review B, 2013, 88(10): 104412.
[160] LU L, WANG Z, YE D, et al. Experimental observation of Weyl points[J]. Science, 2015, 349(6248): 622-624.
[161] TAMAI A, WU Q S, CUCCHI I, et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2[J]. Physical Review X, 2016, 6(3): 031021.
[162] YU Z M, YAO Y, YANG S A. Predicted unusual magnetoresponse in type-II Weyl semimetals[J]. Physical Review Letters, 2016, 117(7): 077202.
[163] XIA B W, WANG R, CHEN Z J, et al. Symmetry-protected ideal type-II Weyl phonons in CdTe[J]. Physical Review Letters, 2019, 123(6): 065501.
[164] ZHENG B, XIA B, WANG R, et al. Ideal type-III nodal-ring phonons[J]. Physical Review B, 2020, 101(10): 100303.
[165] LI X P, DENG K, FU B, et al. Type-III Weyl semimetals: (TaSe4)2I[J]. Physical Review B, 2021, 103(8): L081402.
[166] DING G, ZHOU F, ZHANG Z, et al. Charge-two Weyl phonons with type-III dispersion[J]. Physical Review B, 2022, 105(13): 134303.
[167] TSIRKIN S S, SOUZA I, VANDERBILT D. Composite Weyl nodes stabilized by screw symmetry with and without time-reversal invariance[J]. Physical Review B, 2017, 96(4): 045102.
[168] CHANG M L, XIAO M, CHEN W J, et al. Multiple Weyl points and the sign change of their topological charges in woodpile photonic crystals[J]. Physical Review B, 2017, 95(12): 125136.
[169] CUI C, LI X P, MA D S, et al. Charge-four Weyl point: Minimum lattice model and chiralitydependent properties[J]. Physical Review B, 2021, 104(7): 075115.
[170] WANG L, JIAN S K, YAO H. Hourglass semimetals with nonsymmorphic symmetries in three dimensions[J]. Physical Review B, 2017, 96(7): 075110.
[171] FURUSAKI A. Weyl points and Dirac lines protected by multiple screw rotations[J]. Science Bulletin, 2017, 62(11): 788-794.
[172] WANG S S, LIU Y, YU Z M, et al. Hourglass Dirac chain metal in rhenium dioxide[J]. Nature Communications, 2017, 8(1): 1844.
[173] CHEN Z J, XIE Z J, JIN Y J, et al. Hybrid nodal-ring phonons with hourglass dispersion in AgAlO2[J]. Physical Review Materials, 2022, 6(3): 034202.
[174] ROSENZWEIG A, MOROSIN B. A reinvestigation of the crystal structure of LiIO3[J]. Acta Crystallographica, 1966, 20(6): 758-761.
修改评论