中文版 | English
题名

几种拓扑声子态的理论计算研究

其他题名
THEORETICAL CALCULATION OF SEVERAL TOPOLOGICAL PHONON STATES
姓名
姓名拼音
LIU Guang
学号
11930762
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
徐虎
导师单位
物理系
论文答辩日期
2023-05-27
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

拓扑材料由于其奇特的物理性质以及在无耗散功能器件上的潜在应用,受到了广泛的关注。最先受到关注的是基于量子霍尔效应的拓扑绝缘体材料,其不同于朗道对称破缺的物态分类机制掀起了凝聚态物理研究的热潮。随着拓扑理论的发展,对拓扑半金属、拓扑超导等新的拓扑物态的研究使得拓扑理论更加的完善。人们认识到这些拓扑物态的存在与时间反演对称性、粒子空穴对称性、晶体结构对称性等等息息相关,并据此建立了丰富的拓扑分类方式。根据拓扑分类和拓扑指标来搜索拓扑材料逐渐成为拓扑材料领域的一个重要方向。过去十几年里,电子拓扑材料已经得到了大量的理论证明和实验验证。而声子,作为另一种重要的元激发,对热输运和声信号等等有着重要的作用,它的拓扑声子物态和对应的拓扑声子材料的研究还处于一个比较基础的阶段。在本学位论文中,我们主要研究了声子系统中几种新奇的拓扑物态以及实际材料中的拓扑性质。具体研究内容如下:
一、根据对称分析,我们研究了230 个空间群中所有可能存在的直线型节线声子。由于极高的对称性要求,这些声子节线都被束缚在布里渊区的高对称线上。通过计算围绕节线的闭合环路的贝利相位,我们将节线分成了两种类型:具有非平庸𝜋 相位的线性色散声子节线和具有平庸的2𝜋 相位的二次色散声子节线,丰富和完善了拓扑分类。线性色散声子节线材料具有非平庸的拓扑表面态,可以作为实验观测的候选对象。二次色散声子节线是声子系统中具有最高阶色散的直线型声子节线,尽管它没有对应的拓扑表面态,但是可以通过对称破缺来实现拓扑非平庸的声子态,是研究拓扑相变的理想平台。我们的工作还给出了所有节线的动量位置和对称要求,对拓扑材料的搜索提供了重要的指导作用。
二、我们研究了高对称性点和高对称性线上charge-2 的狄拉克声子和外尔声子共存的情况,通过对称分析和筛选,我们确定了5 个候选空间群19、90、92、94和96。在这一过程中,我们还发现charge-2 的狄拉克声子不仅源于高对称点上的四维不可约表示,还可源于高对称线上两个二维不可约表示的偶然简并。不同于传统的成对存在的手性准粒子,我们发现charge-2 的狄拉克声子和两个陈数相反的外尔点共存。结合这些准粒子的动量位置,我们考虑了在投影面上可能出现的表面弧形貌。在Na2Zn2O3 的投影面上,我们发现一个charge-2 狄拉克点投影连接着两个外尔点的投影,形成极长的双表面弧,这与我们的理论预测相一致。我们的工作加深了对拓扑准粒子共存态的理解,并为实现极长的拓扑表面弧提供了一个新的思路。
三、近几年来,晶体固体中具有较高拓扑电荷的非常规外尔点越来越受到人们的广泛关注。在这些高陈数的外尔点中,陈数为±3 的三重外尔点一直没有材料的实现。我们的工作深入研究了受到六重螺旋对称性保护的三重外尔声子,在这个基础上,我们发现了受到63螺旋旋转对称性强制保护的沙漏型三重外尔声子。我们的工作证明了沙漏型三重外尔声子只存在于手性空间群173 和182。以173 号空间群的LiIO3 为例,我们深入研究了沙漏型三重外尔声子的拓扑性质,发现它在𝑘𝑧 方向具有线性的色散关系,在𝑘𝑥-𝑘𝑦 平面上具有二次色散关系。在(001) 表面上,我们发现两个沙漏型外尔声子的投影叠加在一起,连接着六个等价的单外尔声子的投影,因此,(001) 表面的六螺旋表面态是沙漏型三重外尔声子的一个重要拓扑特征。这个工作提出了一类崭新的对称性强制保护的拓扑准粒子,为三重外尔声子的实验观测提供了一个理想的平台。

其他摘要

Topological materials have attracted extensive attention due to their unique physical properties and potential applications in dissipationless functional devices. Topological insulators based on quantum Hall effect have first attracted attention, whose classification mechanism differs from the Landau symmetry-breaking theory and sparked a wave of research in condensed matter physics. With the development of topology theory, other topological states, such as topological semimetals and topological superconductivity, have come to light, leading to a more comprehensive understanding of these systems. It is recognized that the existence of these topological states of matter is related to time-reversal symmetry, particle-hole symmetry, crystal structure symmetry, etc., and a rich topological classification method has been established accordingly. Searching for topological materials based on topological classification and topological indices has become an important direction in the field of topological materials. Over the past decade, electronic topological materials have received significant theoretical and experimental verification. Phonons, as another important elementary excitation, play a crucial role in heat transport and acoustic signals, and research on their topological phonon states and corresponding topological phonon materials is still in a relatively early stage. In this thesis, we focus on studying several novel topological states in phonon systems and their topological properties in realistic materials. The specific research contents are as follows:

1. According to the symmetry analysis, we study all possible linear nodal line phonons in 230 space groups. Due to the extremely high symmetry requirements, these phonon nodal lines are bound to the high symmetry lines of the Brillouin zone. By calculating the Berry phase around the nodal lines, we have classified them into two types: the linear nodal line with a non-trivial 𝜋 phase and the quadratic nodal line phonons with a trivial 2𝜋 phase, which enriching and refining the topological classification. Linear nodal line phonon materials with nontrivial topological surface states are candidates for experimental observations. The quadratic nodal line is the straight line nodal line with the highest order dispersion in the phonon system. Although it has no corresponding topological surface state, it can realize the topologically non-trivial phonon state through symmetry breaking, which is an ideal platform for studying topological phase transitions. Our work also provides important guidance for searching for topological materials by giving the momentum positions and symmetry requirements of all the nodal lines.

2. We investigate the coexistence of charge-2 Dirac phonons and Weyl phonons at high symmetry points and high symmetry lines. Through symmetry analysis and screening, we identify five candidate space groups 19, 90, 92, 94 and 96. In the process, we also find that the charge-2 Dirac phonon originates not only from the four-dimensional irreducible representation on the high symmetry point, but also from the accidental degeneracy of two two-dimensional irreducible representations on the high symmetry line. Unlike traditional chiral quasiparticles that exist in pairs, we find that the charge-2 Dirac phonon coexists with two Weyl phonons with opposite Chern numbers. Combined with the momentum positions of these quasiparticles, we consider the possible surface Fermi arc on the projection plane. On the projection plane of Na2Zn2O3, we find that the projection of a charge-2 Dirac phonon connects the projections of two Weyl phonons, forming an extremely long double surface arc, which is consistent with theoretical predictions. Our work deepens the understanding of the coexistence of topological quasiparticles and provides a new avenue for realizing extremely long topological surface arcs.

3. In recent years, unconventional Weyl points with higher topological charges in crystalline solids have attracted more and more attention. Among these Weyl points, the triple Weyl point with a Chern number of ±3 has not been realized materially. Our work has deeply studied the triplet Weyl phonon protected by the sixfold screw rotation symmetry. Based on this, we discover the hourglass triple Weyl phonon protected by the screw rotation symmetry of 63. Our work proves that the hourglass triple Weyl phonon exists only in chiral space groups 173 and 182. Taking the LiIO3 of space group 173 as an example, we deeply study the topological properties of the hourglass triple Weyl phonon, and find that it has linear dispersion relation in the 𝑘𝑧 direction, and quadratic dispersion relation in the 𝑘𝑥-𝑘𝑦 plane. On the (001) surface, we find that the projections of two hourglass triple Weyl phonons are superimposed together, connecting the projections of six equivalent single Weyl phonons. Therefore, the six-helical surface states of the (001) surface is an important topological feature of the hourglass triple Weyl phonons. This work proposes a new class of symmetry-enforced topological quasiparticles, which provides a perfect platform for the experimental observation of triple Weyl phonons.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] WENG H, YU R, HU X, et al. Quantum anomalous hall effect and related topological electronic states[J]. Advances in Physics, 2015, 64(3): 227-282.
[2] KATO Y, MYERS R, GOSSARD A, et al. Observation of the spin hall effect in semiconductors[J]. Science, 2004, 306(5703): 1910-1913.
[3] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of the fine-Structure constant based on quantized hall resistance[J]. Physical Review Letters, 1980, 45(6): 494-497.
[4] PAALANEN M A, TSUI D C, GOSSARD A C. Quantized hall effect at low temperatures[J]. Physical Review B, 1982, 25(8): 5566-5569.
[5] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous hall effect[J]. Reviews of Modern Physics, 2010, 82(2): 1539-1592.
[6] KARPLUS R, LUTTINGER J M. Hall effect in ferromagnetics[J]. Physical Review, 1954, 95(5): 1154-1160.
[7] SMIT J. The spontaneous hall effect in ferromagnetics I[J]. Physica, 1955, 21(6): 877-887.
[8] BERGER L. Side-jump mechanism for the hall effect of ferromagnets[J]. Physical Review B, 1970, 2(11): 4559-4566.
[9] YAO Y, KLEINMAN L, MACDONALD A H, et al. First principles calculation of anomalous hall conductivity in ferromagnetic bcc Fe[J]. Physical Review Letters, 2004, 92(3): 037204.
[10] FANG Z, NAGAOSA N, TAKAHASHI K, et al. The anomalous hall effect and magnetic monopoles in momentum space[J]. Science, 2003, 302(5642): 92-95.
[11] JUNGWIRTH T, NIU Q, MACDONALD A H. Anomalous hall effect in ferromagnetic semiconductors[J]. Physical Review Letters, 2002, 88(20): 207208.
[12] ONODA M, NAGAOSA N. Topological nature of anomalous hall effect in ferromagnets[J]. Journal of the Physical Society of Japan, 2002, 71(1): 19-22.
[13] HALDANE F D M. Model for a quantum hall effect without Landau Levels: Condensed-matter realization of the ”Parity Anomaly”[J]. Physical Review Letters, 1988, 61(18): 2015-2018.
[14] LIU C X, QI X L, DAI X, et al. Quantum anomalous hall effect in Hg1−𝑦Mn𝑦Te quantum wells[J]. Physical Review Letters, 2008, 101(14): 146802.
[15] YU R, ZHANG W, ZHANG H J, et al. Quantized anomalous hall effect in magnetic topological insulators[J]. Science, 2010, 329(5987): 61-64.
[16] CHANG C Z, ZHANG J, FENG X, et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator[J]. Science, 2013, 340(6129): 167-170.
[17] KANE C L, MELE E J. 𝑍2 topological order and the quantum spin hall effect[J]. Physical Review Letters, 2005, 95(14): 146802.
[18] BERNEVIG B A, ZHANG S C. Quantum spin hall effect[J]. Physical Review Letters, 2006, 96(10): 106802.
[19] KöNIG M, WIEDMANN S, BRüNE C, et al. Quantum spin hall insulator state in HgTe quantum wells[J]. Science, 2007, 318(5851): 766-770.
[20] FU L, KANE C L, MELE E J. Topological insulators in three dimensions[J]. Physical Review Letters, 2007, 98(10): 106803.
[21] MOORE J E, BALENTS L. Topological invariants of time-reversal-invariant band structures[J]. Physical Review B, 2007, 75(12): 121306.
[22] ROY R. Topological phases and the quantum spin hall effect in three dimensions[J]. Physical Review B, 2009, 79(19): 195322.
[23] HSIEH D, QIAN D, WRAY L, et al. A topological Dirac insulator in a quantum spin hall phase[J]. Nature, 2008, 452(7190): 970-974.
[24] ZHANG H, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.
[25] OTROKOV M M, KLIMOVSKIKH I I, BENTMANN H, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576(7787): 416-422.
[26] ZHANG D, SHI M, ZHU T, et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect[J]. Physical Review Letters, 2019, 122(20): 206401.
[27] LI J, LI Y, DU S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials[J]. Science Advances, 2019, 5(6): eaaw5685.
[28] OTROKOV M M, RUSINOV I P, BLANCO-REY M, et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films[J]. Physical Review Letters, 2019, 122(10): 107202.
[29] WENG H, DAI X, FANG Z. Topological semimetals predicted from first-principles calculations[J]. Journal of Physics: Condensed Matter, 2016, 28(30): 303001.
[30] WANG Z, SUN Y, CHEN X Q, et al. Dirac semimetal and topological phase transitions in 𝐴3Bi(𝐴 = Na, K, Rb)[J]. Physical Review B, 2012, 85(19): 195320.
[31] WANG Z, WENG H, WU Q, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2[J]. Physical Review B, 2013, 88(12): 125427.
[32] YOUNG S M, ZAHEER S, TEO J C Y, et al. Dirac semimetal in three dimensions[J]. Physical Review Letters, 2012, 108(14): 140405.
[33] YANG B J, NAGAOSA N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology[J]. Nature Communications, 2014, 5(1): 4898.
[34] JIN Y J, ZHENG B B, XIAO X L, et al. Two-dimensional Dirac semimetals without inversion symmetry[J]. Physical Review Letters, 2020, 125(11): 116402.
[35] NIELSEN H, NINOMIYA M. Absence of neutrinos on a lattice: (I). Proof by homotopy theory[J]. Nuclear Physics B, 1981, 185(1): 20-40.
[36] NIELSEN H, NINOMIYA M. Absence of neutrinos on a lattice: (II). Intuitive topological proof[J]. Nuclear Physics B, 1981, 193(1): 173-194.
[37] WAN X, TURNER A M, VISHWANATH A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[J]. Physical Review B, 2011, 83(20): 205101.
[38] XU G, WENG H, WANG Z, et al. Chern semimetal and the quantized anomalous hall effect in HgCr2Se4[J]. Physical Review Letters, 2011, 107(18): 186806.
[39] XIA B W, JIN Y J, ZHAO J Z, et al. Robust twin pairs of Weyl fermions in ferromagnetic oxides[J]. Physical Review Letters, 2019, 122(5): 057205.
[40] XU Q, LIU E, SHI W, et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2[J]. Physical Review B, 2018, 97(23): 235416.
[41] WANG Q, XU Y, LOU R, et al. Large intrinsic anomalous hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions[J]. Nature Communications, 2018, 9(1): 3681.
[42] LIU E, SUN Y, KUMAR N, et al. Giant anomalous hall effect in a ferromagnetic kagome-lattice semimetal[J]. Nature Physics, 2018, 14(11): 1125-1131.
[43] WENG H, FANG C, FANG Z, et al. Weyl semimetal phase in noncentrosymmetric transition-Metal monophosphides[J]. Physical Review X, 2015, 5(1): 011029.
[44] HUANG S M, XU S Y, BELOPOLSKI I, et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class[J]. Nature Communications, 2015, 6(1): 7373.
[45] LV B Q, WENG H M, FU B B, et al. Experimental discovery of Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031013.
[46] XU S Y, BELOPOLSKI I, ALIDOUST N, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs[J]. Science, 2015, 349(6248): 613-617.
[47] LV B Q, XU N, WENG H M, et al. Observation of Weyl nodes in TaAs[J]. Nature Physics, 2015, 11(9): 724-727.
[48] HUANG X, ZHAO L, LONG Y, et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031023.
[49] SOLUYANOV A A, GRESCH D, WANG Z, et al. Type-II Weyl semimetals[J]. Nature, 2015, 527(7579): 495-498.
[50] DENG K, WAN G, DENG P, et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2[J]. Nature Physics, 2016, 12(12): 1105-1110.
[51] SUN Y, WU S C, ALI M N, et al. Prediction of Weyl semimetal in orthorhombic MoTe2[J]. Physical Review B, 2015, 92(16): 161107.
[52] WANG Z, GRESCH D, SOLUYANOV A A, et al. MoTe2: A type-II Weyl topological metal[J]. Physical Review Letters, 2016, 117(5): 056805.
[53] WU Y, MOU D, JO N H, et al. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2[J]. Physical Review B, 2016, 94(12): 121113.
[54] BELOPOLSKI I, SANCHEZ D S, ISHIDA Y, et al. Discovery of a new type of topological Weyl fermion semimetal state in Mo𝑥W1−𝑥Te2[J]. Nature Communications, 2016, 7(1): 13643.
[55] LI X P, FU B, MA D S, et al. Double Dirac nodal line semimetal with a torus surface state[J]. Physical Review B, 2021, 103(16): L161109.
[56] WANG R Y, CHEN Z J, HUANG Z Q, et al. Classification and materials realization of topologically robust nodal ring phonons[J]. Physical Review Materials, 2021, 5(8): 084202.
[57] BIAN G, CHANG T R, SANKAR R, et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2[J]. Nature Communications, 2016, 7(1): 10556.
[58] DU Y, BO X, WANG D, et al. Emergence of topological nodal lines and type-II Weyl nodes in the strong spin-orbit coupling system InNb𝑋2 (𝑋 = S,Se)[J]. Physical Review B, 2017, 96(23): 235152.
[59] ZHANG Z, WEI Q, CHENG Y, et al. Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice[J]. Physical Review Letters, 2017, 118(8): 084303.
[60] HE H, QIU C, YE L, et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal[J]. Nature, 2018, 560(7716): 61-64.
[61] ZHANG Z, TIAN Y, CHENG Y, et al. Experimental verification of acoustic pseudospin multipoles in a symmetry-broken snowflakelike topological insulator[J]. Physical Review B, 2017, 96(24): 241306.
[62] ZHANG T, SONG Z, ALEXANDRADINATA A, et al. Double-Weyl phonons in transition-Metal monosilicides[J]. Physical Review Letters, 2018, 120(1): 016401.
[63] MIAO H, ZHANG T T, WANG L, et al. Observation of double Weyl cphonons in parity-breaking FeSi[J]. Physical Review Letters, 2018, 121(3): 035302.
[64] WANG R, XIA B W, CHEN Z J, et al. Symmetry-protected topological triangular Weyl complex[J]. Physical Review Letters, 2020, 124(10): 105303.
[65] CHEN Z J, WANG R, XIA B W, et al. Three-dimensional Dirac phonons with inversion symmetry[J]. Physical Review Letters, 2021, 126(18): 185301.
[66] ZHENG B, ZHAN F, WU X, et al. Hourglass phonons jointly protected by symmorphic and nonsymmorphic symmetries[J]. Physical Review B, 2021, 104(6): L060301.
[67] LI J, XIE Q, ULLAH S, et al. Coexistent three-component and two-component Weyl phonons in TiS, ZrSe, and HfTe[J]. Physical Review B, 2018, 97(5): 054305.
[68] ZHANG T T, MIAO H, WANG Q, et al. Phononic helical nodal lines with 𝒫𝒯 protection in MoB2[J]. Physical Review Letters, 2019, 123(24): 245302.
[69] LIU Q B, WANG Z, FU H H. Charge-four Weyl phonons[J]. Physical Review B, 2021, 103(16): L161303.
[70] FU L, KANE C L. Time reversal polarization and a 𝑍2 adiabatic spin pump[J]. Physical Review B, 2006, 74(19): 195312.
[71] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln[J]. Annalen der Physik, 1927, 389(20): 457-484.
[72] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
[73] RAJAGOPAL A K, CALLAWAY J. Inhomogeneous electron gas[J]. Physical Review B, 1973, 7(5): 1912-1919.
[74] HARTREE D. The wave mechanics of an atom with a non-Coulomb central field Part I :theory and methods[J]. Proceedings of the Cambridge Philosophical Society, 1928, 24: 89-110.
[75] FOCK V. Approximation method for the solution of the quantum mechanical multibody problems[J]. Zeitschrift Fur Physik, 1930, 61(1-2): 126-148.
[76] KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B, 1993, 48(17): 13115-13118.
[77] KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
[78] TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Physical Review B, 2008, 78(13): 134106.
[79] BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562.
[80] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials[J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502.
[81] MARZARI N, VANDERBILT D. Maximally localized generalized Wannier functions for composite energy bands[J]. Physical Review B, 1997, 56(20): 12847-12865.
[82] SOUZA I, MARZARI N, VANDERBILT D. Maximally localized Wannier functions for entangled energy bands[J]. Physical Review B, 2001, 65(3): 035109.
[83] MARZARI N, MOSTOFI A A, YATES J R, et al. Maximally localized Wannier functions: Theory and applications[J]. Reviews of Modern Physics, 2012, 84(4): 1419-1475.
[84] MOSTOFI A A, YATES J R, LEE Y S, et al. Wannier90: A tool for obtaining maximallylocalised Wannier functions[J]. Computer Physics Communications, 2008, 178(9): 685-699.
[85] SANCHO M P L, SANCHO J M L, SANCHO J M L, et al. Highly convergent schemes for the calculation of bulk and surface Green functions[J]. Journal of Physics F: Metal Physics, 1985, 15(4): 851-858.
[86] HASAN M Z, KANE C L. Colloquium: Topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.
[87] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057-1110.
[88] ARMITAGE N P, MELE E J, VISHWANATH A. Weyl and Dirac semimetals in threedimensional solids[J]. Reviews of Modern Physics, 2018, 90(1): 015001.
[89] WENG H, FANG C, FANG Z, et al. Weyl semimetal phase in noncentrosymmetric transitionmetal monophosphides[J]. Physical Review X, 2015, 5(1): 011029.
[90] WANG H, RUAN J, ZHANG H. Non-Hermitian nodal-line semimetals with an anomalous bulk-boundary correspondence[J]. Physical Review B, 2019, 99(7): 075130.
[91] YU Z M, WU W, SHENG X L, et al. Quadratic and cubic nodal lines stabilized by crystalline symmetry[J]. Physical Review B, 2019, 99(12): 121106.
[92] BIAN G, CHANG T R, ZHENG H, et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2[J]. Physical Review B, 2016, 93(12): 121113.
[93] FANG C, CHEN Y, KEE H Y, et al. Topological nodal line semimetals with and without spinorbital coupling[J]. Physical Review B, 2015, 92(8): 081201.
[94] HIRAYAMA M, OKUGAWA R, MIYAKE T, et al. Topological Dirac nodal lines and surface charges in fcc alkaline earth metals[J]. Nature Communications, 2017, 8(1): 14022.
[95] YAN Z, BI R, SHEN H, et al. Nodal-link semimetals[J]. Physical Review B, 2017, 96(4): 041103.
[96] HUH Y, MOON E G, KIM Y B. Long-range Coulomb interaction in nodal-ring semimetals[J]. Physical Review B, 2016, 93(3): 035138.
[97] DENG W, LU J, LI F, et al. Nodal rings and drumhead surface states in phononic crystals[J]. Nature Communications, 2019, 10(1): 1769.
[98] ZHONG C, CHEN Y, XIE Y, et al. Towards three-dimensional Weyl-surface semimetals in graphene networks[J]. Nanoscale, 2016, 8(13): 7232-7239.
[99] WU W, LIU Y, LI S, et al. Nodal surface semimetals: Theory and material realization[J]. Physical Review B, 2018, 97(11): 115125.
[100] LIANG Q F, ZHOU J, YU R, et al. Node-surface and node-line fermions from nonsymmorphic lattice symmetries[J]. Physical Review B, 2016, 93(8): 085427.
[101] ZHANG S B, ZHOU J. Quantum oscillations in acoustic phonons in Weyl semimetals[J]. Physical Review B, 2020, 101(8): 085202.
[102] WANG P, LU L, BERTOLDI K. Topological phononic crystals with one-way elastic edge waves[J]. Physical Review Letters, 2015, 115(10): 104302.
[103] XIE Q, LI J, ULLAH S, et al. Phononic Weyl points and one-way topologically protected nontrivial phononic surface arc states in noncentrosymmetric WC-type materials[J]. Physical Review B, 2019, 99(17): 174306.
[104] LIU Y, XU Y, ZHANG S C, et al. Model for topological phononics and phonon diode[J]. Physical Review B, 2017, 96(6): 064106.
[105] JIN Y J, CHEN Z J, XIA B W, et al. Ideal intersecting nodal-ring phonons in bcc C8[J]. Physical Review B, 2018, 98(22): 220103.
[106] SÜSSTRUNK R, HUBER S D. Observation of phononic helical edge states in a mechanical topological insulator[J]. Science, 2015, 349(6243): 47-50.
[107] LIU F, DENG H Y, WAKABAYASHI K. Topological photonic crystals with zero Berry curvature[J]. Physical Review B, 2018, 97(3): 035442.
[108] STENULL O, KANE C L, LUBENSKY T C. Topological phonons and Weyl lines in three dimensions[J]. Physical Review Letters, 2016, 117(6): 068001.
[109] LIU Y, XU Y, DUAN W. Berry phase and topological effects of phonons[J]. National Science Review, 2018, 5(3): 314-316.
[110] SÜSSTRUNK R, HUBER S D. Observation of phononic helical edge states in a mechanical topological insulator[J]. Science, 2015, 349(6243): 47-50.
[111] MOUSAVI S H, KHANIKAEV A B, WANG Z. Topologically protected elastic waves in phononic metamaterials[J]. Nature Communications, 2015, 6(1): 8682.
[112] HE C, NI X, GE H, et al. Acoustic topological insulator and robust one-way sound transport[J]. Nature Physics, 2016, 12(12): 1124-1129.
[113] PENG B, HU Y, MURAKAMI S, et al. Topological phonons in oxide perovskites controlled by light[J]. Science Advances, 2020, 6(46): eabd1618.
[114] LI J, XIE Q, LIU J, et al. Phononic Weyl nodal straight lines in MgB2[J]. Physical Review B, 2020, 101(2): 024301.
[115] DAHN J R, WAY B M, FULLER E, et al. Structure of siloxene and layered polysilane (Si6H6)[J]. Physical Review B, 1993, 48(24): 17872-17877.
[116] HE J, S. TSE J, D. KLUG D, et al. Layered polysilane: thermolysis and photoluminescence[J]. Journal of Materials Chemistry, 1998, 8(3): 705-710.
[117] DETTLAFF-WEGLIKOWSKA U, HÖNLE W, MOLASSIOTI-DOHMS A, et al. Structure and optical properties of the planar silicon compounds polysilane and Wöhler siloxene[J]. Physical Review B, 1997, 56(20): 13132-13140.
[118] RAZZETTI C, LOTTICI P, ANTONIOLI G. Structure and lattice dynamics of nonmagnetic defective A-II-B-III-2-X-IV-4 compounds and alloys[J]. Progress in Crystal Growth and Characterization, 1987, 15(1): 43-73.
[119] BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1984, 392(1802): 45-57.
[120] FU L, KANE C L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator[J]. Physical Review Letters, 2008, 100(9): 096407.
[121] SAJADI E, PALOMAKI T, FEI Z, et al. Gate-induced superconductivity in a monolayer topological insulator[J]. Science, 2018, 362(6417): 922-925.
[122] FATEMI V, WU S, CAO Y, et al. Electrically tunable low-density superconductivity in a monolayer topological insulator[J]. Science, 2018, 362(6417): 926-929.
[123] BENALCAZAR W A, BERNEVIG B A, HUGHES T L. Quantized electric multipole insulators[J]. Science, 2017, 357(6346): 61-66.
[124] SCHINDLER F, COOK A M, VERGNIORY M G, et al. Higher-order topological insulators[J]. Science Advances, 2018, 4(6): eaat0346.
[125] LIU Z K, ZHOU B, ZHANG Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi[J]. Science, 2014, 343(6173): 864-867.
[126] JIN Y J, XU Y, CHEN Z J, et al. Type-II quadratic and cubic Weyl fermions[J]. Physical Review B, 2022, 105(3): 035141.
[127] YU R, WENG H, FANG Z, et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN[J]. Physical Review Letters, 2015, 115(3): 036807.
[128] WENG H, LIANG Y, XU Q, et al. Topological node-line semimetal in three-dimensional graphene networks[J]. Physical Review B, 2015, 92(4): 045108.
[129] FANG Z, NAGAOSA N, TAKAHASHI K S, et al. The anomalous hall effect and magnetic monopoles in momentum space[J]. Science, 2003, 302(5642): 92-95.
[130] UDAGAWA M, BERGHOLTZ E J. Field-selective anomaly and chiral mode reversal in type-II Weyl materials[J]. Physical Review Letters, 2016, 117(8): 086401.
[131] GAO Z, HUA M, ZHANG H, et al. Classification of stable Dirac and Weyl semimetals with reflection and rotational symmetry[J]. Physical Review B, 2016, 93(20): 205109.
[132] VAFEK O, VISHWANATH A. Dirac fermions in solids: From high-Tc cuprates and graphene to topological insulators and Weyl semimetals[J]. Annual Review of Condensed Matter Physics, 2014, 5(1): 83-112.
[133] YU Z M, ZHANG Z, LIU G B, et al. Encyclopedia of emergent particles in three-dimensional crystals[J]. Science Bulletin, 2022, 67(4): 375-380.
[134] LIU Q B, QIAN Y, FU H H, et al. Symmetry-enforced Weyl phonons[J]. npj Computational Materials, 2020, 6(1): 95.
[135] HUANG Z, CHEN Z, ZHENG B, et al. Three-terminal Weyl complex with double surface arcs in a cubic lattice[J]. npj Computational Materials, 2020, 6(1): 87.
[136] ZHANG T, TAKAHASHI R, FANG C, et al. Twofold quadruple Weyl nodes in chiral cubic crystals[J]. Physical Review B, 2020, 102(12): 125148.
[137] JIN Y J, CHEN Z J, XIAO X L, et al. Tunable double Weyl phonons driven by chiral point group symmetry[J]. Physical Review B, 2021, 103(10): 104101.
[138] LI H, ZHANG T, SAID A, et al. Observation of a chiral wave function in the twofold-degenerate quadruple Weyl system BaPtGe[J]. Physical Review B, 2021, 103(18): 184301.
[139] CAI X, YE L, QIU C, et al. Symmetry-enforced three-dimensional Dirac phononic crystals[J]. Light: Science & Applications, 2020, 9(1): 38.
[140] LI J, WANG L, LIU J, et al. Topological phonons in graphene[J]. Physical Review B, 2020, 101(8): 081403.
[141] PARK S, HWANG Y, CHOI H C, et al. Topological acoustic triple point[J]. Nature Communications, 2021, 12(1): 6781.
[142] LIU G, JIN Y, CHEN Z, et al. Symmetry-enforced straight nodal-line phonons[J]. Physical Review B, 2021, 104(2): 024304.
[143] XIE C, YUAN H, LIU Y, et al. Three-nodal surface phonons in solid-state materials: Theory and material realization[J]. Physical Review B, 2021, 104(13): 134303.
[144] LIU Q B, WANG Z Q, FU H H. Ideal topological nodal-surface phonons in RbTeAu-family materials[J]. Physical Review B, 2021, 104(4): L041405.
[145] PTOK A, KOBIAŁKA A, STERNIK M, et al. Chiral phonons in the honeycomb sublattice of layered CoSn-like compounds[J]. Physical Review B, 2021, 104(5): 054305.
[146] HE H, QIU C, CAI X, et al. Observation of quadratic Weyl points and double-helicoid arcs[J]. Nature Communications, 2020, 11(1): 1820.
[147] WANG J, YUAN H, KUANG M, et al. Coexistence of zero-, one-, and two-dimensional degeneracy in tetragonal SnO2 phonons[J]. Physical Review B, 2021, 104(4): L041107.
[148] ZHOU F, ZHANG Z, CHEN H, et al. Hybrid-type nodal ring phonons and coexistence of higher-order quadratic nodal line phonons in an AgZr alloy[J]. Physical Review B, 2021, 104(17): 174108.
[149] LIU Q B, FU H H, WU R. Topological phononic nodal hexahedron net and nodal links in the high-pressure phase of the semiconductor CuCl[J]. Physical Review B, 2021, 104(4): 045409.
[150] SOLUYANOV A A, VANDERBILT D. Computing topological invariants without inversion symmetry[J]. Physical Review B, 2011, 83(23): 235401.
[151] YU R, QI X L, BERNEVIG A, et al. Equivalent expression of ℤ2 topological invariant for band insulators using the non-Abelian Berry connection[J]. Physical Review B, 2011, 84(7): 075119.
[152] TRINSCHEK D, JANSEN M. A new modification of Na2Zn2O3[J]. Zeitschrift für Naturforschung B, 1996, 51(7): 917-921.
[153] BURKOV A A, BALENTS L. Weyl semimetal in a topological insulator multilayer[J]. Physical Review Letters, 2011, 107(12): 127205.
[154] FANG C, GILBERT M J, DAI X, et al. Multi-Weyl topological semimetals stabilized by point group symmetry[J]. Physical Review Letters, 2012, 108(26): 266802.
[155] YUAN X, YAN Z, SONG C, et al. Chiral Landau levels in Weyl semimetal NbAs with multiple topological carriers[J]. Nature Communications, 2018, 9(1): 1854.
[156] KIM Y, WIEDER B J, KANE C L, et al. Dirac line nodes in inversion-symmetric crystals[J]. Physical Review Letters, 2015, 115(3): 036806.
[157] WANG X, ZHOU F, YANG T, et al. Symmetry-enforced ideal lanternlike phonons in the ternary nitride Li6WN4[J]. Physical Review B, 2021, 104(4): L041104.
[158] ZYUZIN A A, BURKOV A A. Topological response in Weyl semimetals and the chiral anomaly[J]. Physical Review B, 2012, 86(11): 115133.
[159] SON D T, SPIVAK B Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals[J]. Physical Review B, 2013, 88(10): 104412.
[160] LU L, WANG Z, YE D, et al. Experimental observation of Weyl points[J]. Science, 2015, 349(6248): 622-624.
[161] TAMAI A, WU Q S, CUCCHI I, et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2[J]. Physical Review X, 2016, 6(3): 031021.
[162] YU Z M, YAO Y, YANG S A. Predicted unusual magnetoresponse in type-II Weyl semimetals[J]. Physical Review Letters, 2016, 117(7): 077202.
[163] XIA B W, WANG R, CHEN Z J, et al. Symmetry-protected ideal type-II Weyl phonons in CdTe[J]. Physical Review Letters, 2019, 123(6): 065501.
[164] ZHENG B, XIA B, WANG R, et al. Ideal type-III nodal-ring phonons[J]. Physical Review B, 2020, 101(10): 100303.
[165] LI X P, DENG K, FU B, et al. Type-III Weyl semimetals: (TaSe4)2I[J]. Physical Review B, 2021, 103(8): L081402.
[166] DING G, ZHOU F, ZHANG Z, et al. Charge-two Weyl phonons with type-III dispersion[J]. Physical Review B, 2022, 105(13): 134303.
[167] TSIRKIN S S, SOUZA I, VANDERBILT D. Composite Weyl nodes stabilized by screw symmetry with and without time-reversal invariance[J]. Physical Review B, 2017, 96(4): 045102.
[168] CHANG M L, XIAO M, CHEN W J, et al. Multiple Weyl points and the sign change of their topological charges in woodpile photonic crystals[J]. Physical Review B, 2017, 95(12): 125136.
[169] CUI C, LI X P, MA D S, et al. Charge-four Weyl point: Minimum lattice model and chiralitydependent properties[J]. Physical Review B, 2021, 104(7): 075115.
[170] WANG L, JIAN S K, YAO H. Hourglass semimetals with nonsymmorphic symmetries in three dimensions[J]. Physical Review B, 2017, 96(7): 075110.
[171] FURUSAKI A. Weyl points and Dirac lines protected by multiple screw rotations[J]. Science Bulletin, 2017, 62(11): 788-794.
[172] WANG S S, LIU Y, YU Z M, et al. Hourglass Dirac chain metal in rhenium dioxide[J]. Nature Communications, 2017, 8(1): 1844.
[173] CHEN Z J, XIE Z J, JIN Y J, et al. Hybrid nodal-ring phonons with hourglass dispersion in AgAlO2[J]. Physical Review Materials, 2022, 6(3): 034202.
[174] ROSENZWEIG A, MOROSIN B. A reinvestigation of the crystal structure of LiIO3[J]. Acta Crystallographica, 1966, 20(6): 758-761.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544130
专题理学院_物理系
推荐引用方式
GB/T 7714
刘广. 几种拓扑声子态的理论计算研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930762-刘广-物理系.pdf(16648KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘广]的文章
百度学术
百度学术中相似的文章
[刘广]的文章
必应学术
必应学术中相似的文章
[刘广]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。