[1]ASPECT A. Bell's inequality test: more ideal than ever[J]. Nature, 1999, 398(6724): 189-190.
[2]SCHRöDINGER E. Discussion of probability relations between separated systems; proceedings of the Mathematical Proceedings of the Cambridge Philosophical Society, F, 1935 [C]. Cambridge University Press.
[3]MCWEENY R. On the Einstein-Podolsky-Rosen Paradox[J]. Advances in Quantum Chemistry, 2000, 36(08): 365-384.
[4]BRUNNER N, CAVALCANTI D, PIRONIO S, et al. Bell nonlocality[J]. Review of Modern Physics, 2013, 86(2): 419-478.
[5]CERF N J, LEVY M, ASSCHE G V. Quantum Distribution of Gaussian Keys with Squeezed States[J]. Physical Review A, 2000, 63(5): 535-540.
[6]GOTTESMAN D, PRESKILL J. Secure quantum key distribution using squeezed states - art. no. 022309[J]. Physical Review, A, 2001(2): 63.
[7]HE Q, ROSALES-ZARATE L, ADESSO G, et al. Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering[J]. Physical review letters, 2015, 115(18): 180502.
[8]BRAUNSTEIN S L, FUCHS C A, KIMBLE H J. Criteria for Continuous-Variable Quantum Teleportation[J]. Optica Acta International Journal of Optics, 1999, 47(2-3): 267-278.
[9]CAVALCANTI E G, JONES S J, WISEMAN H M, et al. Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox[J]. Physical Review A, 2009, 80(3): 032112.
[10]VAN LOOCK P, BRAUNSTEIN S L. Multipartite Entanglement for Continuous Variables: A Quantum Teleportation Network[J]. Physical review letters, 2000, 84(15): 3482-3485.
[11]YONEZAWA H, AOKI T, FURUSAWA A. Demonstration of a quantum teleportation network for continuous variables[J]. Nature, 2004, 431(7007): p. 430-433.
[12]LOOCK P V, WEEDBROOK C, GU M. Building Gaussian cluster states by linear optics[J]. Physical Review A, 2006, 76(3): 399-406.
[13]ZHANG, JING. Graphical description of local Gaussian operations for continuous-variable weighted graph states[J]. Physical Review A, 2008, 78(5): 52307-52307.
[14]MILNE D F, KOROLKOVA N V, LOOCK P V. Universal quantum computation with continuous-variable Abelian anyons[J]. American Physical Society, 2012(5)
[15]JING J, ZHANG J, YAN Y, et al. Experimental Demonstration of Tripartite Entanglement and Controlled Dense Coding for Continuous Variables[J]. Physical review letters, 2003, 90(16): 167903.
[16]SHEN H, SU X, JIA X, et al. Quantum Communication Network Utilizing Quadripartite Entangled States of Optical Field[J]. Physical Review A, 2009, 80(4): 82-82.
[17]FABRE C, TREPS N, ROSLUND J, et al. Parametrically generated ultrafast frequency combs : a promising tool for wavelength multiplexed quantum information processing; proceedings of the Conference on Coherence and Quantum Optics, F, 2013 [C].
[18]DENG X, TIAN C, WANG M, et al. Quantification of quantum steering in a Gaussian Greenberger-Horne-Zeilinger state[J]. Optics Communications, 2018, 421: 14-18.
[19]MENICUCCI N C, FLAMMIA S T, LOOCK P V. Graphical calculus for Gaussian pure states[J]. Physreva, 2010, 83(4): 2412-2414.
[20]SCHR DINGER E, BORN M. Discussion of Probability Relations between Separated Systems[J]. Proceedings of the Cambridge Philosophical Society, 1935, 31(04): 555-563.
[21]REID M. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification[J]. Physical Review A, 1989, 40(2): 913.
[22]OU Z Y, PEREIRA S F, KIMBLE H J, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Physical review letters, 1992, 68(25)
[23]JONES S J, WISEMAN H M, DOHERTY A C. Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering[J]. Physical Review A, 2007, 76(5)
[24]REID M, DRUMMOND P D, BOWEN W P, et al. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications[J]. Review of Modern Physics, 2009, 81(4)
[25]MCWEENY R. On the Einstein-Podolsky-Rosen Paradox[J]. Advances in Quantum Chemistry, 2000, 36(08): 365-384.
[26]CAVALCANTI E G, JONES S J, WISEMAN H M, et al. Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox[J]. Physical Review A, 2009, 80(3): 84-85.
[27]BRANCIARD C, CAVALCANTI E G, WALBORN S P, et al. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering[J]. Physical Review A Atomic Molecular & Optical Physics, 2011, 85(1): 281-289.
[28]HE, REID. Genuine multipartite Einstein-Podolsky-Rosen steering[J]. Physical review letters, 2013
[29]EVANS D A, CAVALCANTI E G, WISEMAN H M. Loss-tolerant tests of Einstein-Podolsky-Rosen steering[J]. Physical Review A, 2013, 88(2): 22106-22106.
[30]KOGIAS I, LEE A R, RAGY S, et al. Quantification of Gaussian quantum steering[J]. Physical review letters, 2014, 114(6): 060403.
[31]ZHEN Y Z, ZHENG Y L, CAO W F, et al. Certifying Einstein-Podolsky-Rosen steering via the local uncertainty principle[J]. Physical Review A, 2016, 93(1): 012108.
[32]QIN Z, DENG X, TIAN C, et al. Manipulating the direction of Einstein-Podolsky-Rosen steering[J]. Physical Review A, 2017, 95(5): 052114.
[33]WANG M, XIANG Y, KANG H, et al. Deterministic distribution of multipartite entanglement and steering in a quantum network by separable states[J]. Physical review letters, 2020, 125(26): 260506.
[34]HAO S, DENG X, LIU Y, et al. Quantum computation and error correction based on continuous variable cluster states[J]. Chinese Physics B, 2021
[35]ZENG L, MA R, WEN H, et al. Deterministic distribution of orbital angular momentum multiplexed continuous-variable entanglement and quantum steering[J]. Photonics Research, 2022, 10(3): 777-785.
[36]WALTHER P, RESCH K J, RUDOLPH T, et al. Experimental One-Way Quantum Computing[J]. Nature, 2005, 434(7030): 169-176.
[37]MENICUCCI N C, LOOCK P V, GU M, et al. Universal Quantum Computation with Continuous-Variable Cluster States[J]. Physical review letters, 2006, 97(11): 110501.
[38]YUKAWA M, UKAI R, LOOCK P V, et al. Experimental generation of four-mode continuous-variable cluster states[J]. Physical Review A, 2008, 78(1): 225-226.
[39]DENG X, XIANG Y, TIAN C, et al. Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states[J]. Physical review letters, 2017, 118(23)
[40]ZHANG J, BRAUNSTEIN S L. Continuous-variable Gaussian analog of cluster states[J]. Physical Review A, 2006, 73: 032318.
[41]DENG X, HAO S, GUO H, et al. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators[J]. Scientific Reports, 2016, 6(1): 22914.
[42]赵亚平, 郝树宏, 苏晓龙, et al. 连续变量六组份和八组份星型Cluster纠缠态光场产生系统[J]. 光学学报, 2012, 32(6): 8.
[43]MENICUCCI N C, FLAMMIA S T, LOOCK P V. Graphical calculus for Gaussian pure states[J]. Physreva, 2010, 83(4): 2412-2414.
[44]YACOUBIAN A. Optics Essentials: An Interdisciplinary Guide[J]. Crc Press, 2014
[45]CHEW W, TONG M, HU B. Integral Equation Methods for Electromagnetic and Elastic Waves[J]. Synthesis Lectures on Computational Electromagnetics, 2008, 3(1): 1-241.
[46]FERRARO R. Einstein's Space-Time: An introduction to special and general relativity[J]. Classical & Quantum Gravity An Interantional Journal of Gravity Geometry of Field Theories Supergravity Cosmology, 2007
[47]PLANCK M. The Theory of Hea Radiation[J]. 1914
[48]EINSTEIN A. ON A HEURISTIC VIEWPOINT OF THE CREATION AND MODIFICATION OF LIGHT[J]. anndphys, 1905
[49]WILCZEK F. Niels Bohr's Times: In Physics, Philosophy, and Polity[J]. 1992
[50]FUJIKI M, DONGURI Y, ZHAO Y, et al. Photon Magic: Chiroptical Polarisation, Depolarisation, Inversion, Retention and Switching of Non-photochromic Light-emitting Polymer in Optofluidic Medium[J]. Polymer Chemistry, 2014, 6(9): 1627-1638.
[51]GREEN H S. Matrix mechanics[J]. matrix mechanics, 1965
[52]FERMI E. Considerazioni sulla quantizzazione dei sistemi che contengono degli elementi identici[J]. IL Nuovo Cimento, 1924, 1(1): 145-152.
[53]GOTTFRIED K, JACKSON J D. Mozart and quantum mechanics: An appreciation of Victor Weisskopf[J]. Physics Today, 2003, 56(2): 43-47.
[54]EINSTEIN A, PODOLSKY B, ROSEN N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[J]. Physical Review, 1935, 47
[55]HENNY, M., OBERHOLZER, et al. The fermionic Hanbury Brown and Twiss experiment[J]. Science, 1999
[56]GLAUBER, ROY. Coherent and Incoherent States of the Radiation Field[J]. 1963, 131(6): 2766-2788.
[57]FöRSTER T. Intermolecular energy migration and fluorescence[J]. 1948
[58]ANDREWS D L. A unified theory of radiative and radiationless molecular energy transfer[J]. Chemical physics, 1989, 135(2): 195-201.
[59]BECK H, SPRUIT W P. 1/f noise in the variance of Johnson noise[J]. Journal of Applied Physics, 1978, 49(6): 3384-3385.
[60]HILGEVOORD, JAN. The uncertainty principle for energy and time[J]. American Journal of Physics, 1996
[61]MENICUCCI N C, FLAMMIA S T, LOOCK P V. Graphical calculus for Gaussian pure states[J]. Physreva, 2010, 83(4): 2412-2414.
[62]ZHENG Z, GONG M, ZHANG Y, et al. Fulde-Ferrell-Larkin-Ovchinnikov Phases in Two-dimensional Spin-Orbit Coupled Degenerate Fermi Gases[J]. American Physical Society, 2012
[63]ZHENG Z, GONG M, ZOU X, et al. Route to Observable Fulde-Ferrell-Larkin-Ovchinnikov Phases in 3D Spin-Orbit Coupled Degenerate Fermi Gases[J]. Physical Review A, 2012, 87(3)
[64]彭承志, 潘建伟. 量子科学实验卫星——"墨子号"[J]. 中国科学院院刊, 2016, 31(9): 9.
[65]PAN J, LI Z, ZHANG Y, et al. Correlating intensity of pulse moment with exploration depth in surface NMR[J]. Journal of Applied Geophysics, 2017, 142: 1-13.
[66]CASTELVECCHI D. China's quantum satellite clears major hurdle on way to ultrasecure communications[J]. Nature, 2017
[67]ZHANG T C. The united research of ER, EPR, String theory and Force[J]. IOP Conference Series Materials Science and Engineering, 2019
[68]MARKOFF J. Sorry, Einstein. Quantum study suggests ‘spooky action’is real[J]. The New York Times, 2015, 21
[69]SCARANI V, BECHMANN-PASQUINUCCI H, CERF N J, et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3): 1301.
[70]DEUTSCH D. Quantum theory, the Church–Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1985, 400(1818): 97-117.
[71]OCKELOEN-KORPPI C, DAMSKäGG E, PIRKKALAINEN J-M, et al. Stabilized entanglement of massive mechanical oscillators[J]. Nature, 2018, 556(7702): 478-482.
[72]ZHANG J, BRAUNSTEIN S L. Continuous-variable Gaussian analog of cluster states[J]. Physical Review A, 2006, 73: 032318.
[73]MENICUCCI N C, FLAMMIA S T, LOOCK P V. Graphical calculus for Gaussian pure states[J]. Physreva, 2010, 83(4): 2412-2414.
[74]LOOCK P V, WEEDBROOK C, GU M. Building Gaussian cluster states by linear optics[J]. Physical Review A, 2006, 76(3): 399-406.
[75]HENDRYCH M. Experimental Quantum Cryptography[J]. 2002
[76]TRAVISNORSEN, TRAVISNORSEN, TRAVISNORSEN, et al. Bell's Theorem[J]. 2017
[77]BLAYLOCK G. The EPR paradox, Bell's inequality, and the question of locality[Z]. arXiv. 2009: 111-120
[78]BELL J S. On the Einstein Podolsky Rosen paradox[J]. Physics Physique Fizika, 1964, 1(3): 195-200.
[79]MAYER J D. The role of spatial analysis and geographic data in the detection of disease causation[J]. Social Science & Medicine, 1983, 17(16): 1213-1221.
[80]GREENSTEIN, GEORGE. The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics[J]. American Journal of Physics, 1998, 66(5): 455-456.
[81]WEIGEL, JACK, W. Quantum: Einstein, Bohr, and the Great Debate About the Nature of Reality[J]. Library Journal, 2010
[82]SCHNEELOCH J, BROADBENT C J, WALBORN S P, et al. EPR Steering Inequalities from Entropic Uncertainty Relations[J]. Physical Review A, 2013, 87(6): 11738-11743.
[83]DENG X, XIANG Y, TIAN C, et al. Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states[J]. Physical review letters, 2017, 118(23)
[84]JONES S J, WISEMAN H M, DOHERTY A C. Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering[J]. Physical Review A, 2007, 76(5)
[85]ZHANG Y, WANG H, LI X, et al. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier[J]. Physical Review A, 2000, 62(2): 1845-1848.
[86]OU, PEREIRA, KIMBLE, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Physical review letters, 1992, 68(25): 3663-3666.
[87]ARMSTRONG J, BLOEMBERGEN N, GILL D. Linear Effect of Applied Electric Field on Nuclear Quadrupole Resonance[J]. Physical review letters, 1961, 7(1): 11-14.
[88]KOVACS L. Electrical Conductivity of LiNbO_3[J]. Properties of Lithium Niobate Inspec, 2002
[89]GRILLI S, FERRARO P, NATALE P D, et al. Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching[J]. Applied Physics Letters, 2005, 87(23): 1918.
[90]BOYD R W. The Electrooptic and Photorefractive Effects - ScienceDirect[J]. Nonlinear Optics (Third Edition), 2008: 511-541.
[91]TESFA, SINTAYEHU. Driven degenerate three-level cascade laser[J]. Optics Communications, 2006: S0030401806008935.
[92]GOLDSTEIN D. Polarized Light, Third Edition[J]. Crc Press, 2010
[93]RECK M, ZEILINGER A, BERNSTEIN H J, et al. Experimental realization of any discrete unitary operator[J]. Physical review letters, 1994, 73(1): 58-61.
[94]FARINA, J. Integrated optics: Theory and technology[J]. Quantum Electronics IEEE Journal of, 1983
[95]BRUNNER N, CAVALCANTI D, PIRONIO S, et al. Bell nonlocality[J]. Reviews of Modern Physics, 2014
[96]XIANG Y, LIU Y, CAI Y, et al. Monogamy relations within quadripartite Einstein-Podolsky-Rosen steering based on cascaded four-wave mixing processes[J]. Physical Review A, 2020, 101(5): 053834.
[97]DESIGNOLLE S, SRIVASTAV V, UOLA R, et al. Genuine high-dimensional quantum steering[J]. Physical review letters, 2021, 126(20): 200404.
[98]OPANCHUK B, ARNAUD L, REID M. Detecting faked continuous-variable entanglement using one-sided device-independent entanglement witnesses[J]. Physical Review A, 2013, 89(6): 2044-2049.
[99]COFFMAN V. Distributed entanglement - art. no. 052306[J]. Physical Review, A Atomic, molecular, and optical physics, 2000, 61(5)
[100]XIANG Y, KOGIAS I, ADESSO G, et al. Multipartite Gaussian steering: Monogamy constraints and quantum cryptography applications[J]. Physreva, 2017, 95(1): 010101.
[101]ADESSO G, ILLUMINATI F. Entanglement in continuous variable systems: Recent advances and current perspectives[Z]. IOP Publishing. 2007: 7821-7880
修改评论