中文版 | English
题名

不同图态类型多组份Cluster纠缠态光场的量子导引特性研究

其他题名
QUANUM STEERING CHARACTERIZATION OF MULTIPARTITE OPTICAL CLUSTER ENTANGLED STATE WITH DIFFERENT GRAPH STATE
姓名
姓名拼音
XU Donghui
学号
12132857
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
邓晓玮
导师单位
量子科学与工程研究院
外机构导师
耿巍
外机构导师单位
华为有限公司
论文答辩日期
2023-05-22
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

量子纠缠、量子导引、贝尔非局域性等不同形式的量子关联是量子理论基础研究的重点问题,也是量子信息的核心资源。量子导引是严格度等级介于量子纠缠和贝尔非局域性之间的一种量子关联,若共享一对量子态的双方中的一方可以通过自己一方的测量结果推断出另一方的结果,即为可以实现对另一方的量子导引,具有天然的不对称性。量子导引可应用于单方面设备无关的多方量子通信方案,为实现更高级别的量子保密和量子通信提供更安全的保障。

非线性晶体KTP(KTiOPO4)、光学超晶格晶体PPKTP (Periodically Poled KTiOPO4)PPLN(Periodically Poled LiNbO3) 等是量子光学系统中量子资源制备的必不可少的材料。非周期性改变晶体的非线性系数可以得到相位匹配,在光学谐振腔中使用周期极化结构的晶体的准相位匹配原则可以实现量子纠缠光源的制备,具有自发参量下转换效率高等特点。随着量子信息任务复杂度的不断提升,需要更多组份的纠缠资源去完成特定的量子信息任务。而基于非线性晶体及光学谐振腔制备的量子纠缠资源是一切多组份纠缠态制备的基础。

多组份纠缠态有多种类型,如Cluster纠缠态、GHZ纠缠态和权重图态等。其中,Cluster纠缠态具有广泛的应用和巨大的潜力。它是一种具有较高的纠缠保持特性的多组份纠缠态,其相互作用仅存在于相邻模式之间,测量Cluster纠缠态中的任意一个模式,仅破坏与之相邻模式之间的量子关联,而不会破坏所有的量子关联。因此,多组份Cluster纠缠态在连续变量单向量子计算领域有着重要的作用。当一个系统包含两个以上的子系统时,各个子系统之间的关联方式就变得多种多样。特别地,由于量子导引具有方向性并满足单配性关系,比纠缠特性具有更丰富的研究内容。相关研究表明,连续变量多组份量子资源的关联方式与量子导引特性的存在方式与多组份的图结构有很大的关系,具有不同图态结构的多组份Cluster纠缠态光场中将会存在更丰富的量子导引特性。对于更丰富的量子导引特性研究可以为量子秘密共享等量子通信网络的应用提供更多样的量子资源。

本文利用以KTP等非线性光学晶体为主要元件的光学非简并光学参量放大器(NOPA)制备量子压缩态光场,在此基础上利用不同数量的压缩态光场理论制备五组份星形、环形和六组份环形Cluster纠缠态光场。进一步重构所制备的量子光场的协方差矩,从而研究不同图态类型的五组份和六组份Cluster纠缠态光场的量子导引特性,加深对Cluster纠缠态的认识,为多组份纠缠态应用于量子信息任务的方案奠定一定的基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1]ASPECT A. Bell's inequality test: more ideal than ever[J]. Nature, 1999, 398(6724): 189-190.
[2]SCHRöDINGER E. Discussion of probability relations between separated systems; proceedings of the Mathematical Proceedings of the Cambridge Philosophical Society, F, 1935 [C]. Cambridge University Press.
[3]MCWEENY R. On the Einstein-Podolsky-Rosen Paradox[J]. Advances in Quantum Chemistry, 2000, 36(08): 365-384.
[4]BRUNNER N, CAVALCANTI D, PIRONIO S, et al. Bell nonlocality[J]. Review of Modern Physics, 2013, 86(2): 419-478.
[5]CERF N J, LEVY M, ASSCHE G V. Quantum Distribution of Gaussian Keys with Squeezed States[J]. Physical Review A, 2000, 63(5): 535-540.
[6]GOTTESMAN D, PRESKILL J. Secure quantum key distribution using squeezed states - art. no. 022309[J]. Physical Review, A, 2001(2): 63.
[7]HE Q, ROSALES-ZARATE L, ADESSO G, et al. Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering[J]. Physical review letters, 2015, 115(18): 180502.
[8]BRAUNSTEIN S L, FUCHS C A, KIMBLE H J. Criteria for Continuous-Variable Quantum Teleportation[J]. Optica Acta International Journal of Optics, 1999, 47(2-3): 267-278.
[9]CAVALCANTI E G, JONES S J, WISEMAN H M, et al. Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox[J]. Physical Review A, 2009, 80(3): 032112.
[10]VAN LOOCK P, BRAUNSTEIN S L. Multipartite Entanglement for Continuous Variables: A Quantum Teleportation Network[J]. Physical review letters, 2000, 84(15): 3482-3485.
[11]YONEZAWA H, AOKI T, FURUSAWA A. Demonstration of a quantum teleportation network for continuous variables[J]. Nature, 2004, 431(7007): p. 430-433.
[12]LOOCK P V, WEEDBROOK C, GU M. Building Gaussian cluster states by linear optics[J]. Physical Review A, 2006, 76(3): 399-406.
[13]ZHANG, JING. Graphical description of local Gaussian operations for continuous-variable weighted graph states[J]. Physical Review A, 2008, 78(5): 52307-52307.
[14]MILNE D F, KOROLKOVA N V, LOOCK P V. Universal quantum computation with continuous-variable Abelian anyons[J]. American Physical Society, 2012(5)
[15]JING J, ZHANG J, YAN Y, et al. Experimental Demonstration of Tripartite Entanglement and Controlled Dense Coding for Continuous Variables[J]. Physical review letters, 2003, 90(16): 167903.
[16]SHEN H, SU X, JIA X, et al. Quantum Communication Network Utilizing Quadripartite Entangled States of Optical Field[J]. Physical Review A, 2009, 80(4): 82-82.
[17]FABRE C, TREPS N, ROSLUND J, et al. Parametrically generated ultrafast frequency combs : a promising tool for wavelength multiplexed quantum information processing; proceedings of the Conference on Coherence and Quantum Optics, F, 2013 [C].
[18]DENG X, TIAN C, WANG M, et al. Quantification of quantum steering in a Gaussian Greenberger-Horne-Zeilinger state[J]. Optics Communications, 2018, 421: 14-18.
[19]MENICUCCI N C, FLAMMIA S T, LOOCK P V. Graphical calculus for Gaussian pure states[J]. Physreva, 2010, 83(4): 2412-2414.
[20]SCHR DINGER E, BORN M. Discussion of Probability Relations between Separated Systems[J]. Proceedings of the Cambridge Philosophical Society, 1935, 31(04): 555-563.
[21]REID M. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification[J]. Physical Review A, 1989, 40(2): 913.
[22]OU Z Y, PEREIRA S F, KIMBLE H J, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Physical review letters, 1992, 68(25)
[23]JONES S J, WISEMAN H M, DOHERTY A C. Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering[J]. Physical Review A, 2007, 76(5)
[24]REID M, DRUMMOND P D, BOWEN W P, et al. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications[J]. Review of Modern Physics, 2009, 81(4)
[25]MCWEENY R. On the Einstein-Podolsky-Rosen Paradox[J]. Advances in Quantum Chemistry, 2000, 36(08): 365-384.
[26]CAVALCANTI E G, JONES S J, WISEMAN H M, et al. Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox[J]. Physical Review A, 2009, 80(3): 84-85.
[27]BRANCIARD C, CAVALCANTI E G, WALBORN S P, et al. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering[J]. Physical Review A Atomic Molecular & Optical Physics, 2011, 85(1): 281-289.
[28]HE, REID. Genuine multipartite Einstein-Podolsky-Rosen steering[J]. Physical review letters, 2013
[29]EVANS D A, CAVALCANTI E G, WISEMAN H M. Loss-tolerant tests of Einstein-Podolsky-Rosen steering[J]. Physical Review A, 2013, 88(2): 22106-22106.
[30]KOGIAS I, LEE A R, RAGY S, et al. Quantification of Gaussian quantum steering[J]. Physical review letters, 2014, 114(6): 060403.
[31]ZHEN Y Z, ZHENG Y L, CAO W F, et al. Certifying Einstein-Podolsky-Rosen steering via the local uncertainty principle[J]. Physical Review A, 2016, 93(1): 012108.
[32]QIN Z, DENG X, TIAN C, et al. Manipulating the direction of Einstein-Podolsky-Rosen steering[J]. Physical Review A, 2017, 95(5): 052114.
[33]WANG M, XIANG Y, KANG H, et al. Deterministic distribution of multipartite entanglement and steering in a quantum network by separable states[J]. Physical review letters, 2020, 125(26): 260506.
[34]HAO S, DENG X, LIU Y, et al. Quantum computation and error correction based on continuous variable cluster states[J]. Chinese Physics B, 2021
[35]ZENG L, MA R, WEN H, et al. Deterministic distribution of orbital angular momentum multiplexed continuous-variable entanglement and quantum steering[J]. Photonics Research, 2022, 10(3): 777-785.
[36]WALTHER P, RESCH K J, RUDOLPH T, et al. Experimental One-Way Quantum Computing[J]. Nature, 2005, 434(7030): 169-176.
[37]MENICUCCI N C, LOOCK P V, GU M, et al. Universal Quantum Computation with Continuous-Variable Cluster States[J]. Physical review letters, 2006, 97(11): 110501.
[38]YUKAWA M, UKAI R, LOOCK P V, et al. Experimental generation of four-mode continuous-variable cluster states[J]. Physical Review A, 2008, 78(1): 225-226.
[39]DENG X, XIANG Y, TIAN C, et al. Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states[J]. Physical review letters, 2017, 118(23)
[40]ZHANG J, BRAUNSTEIN S L. Continuous-variable Gaussian analog of cluster states[J]. Physical Review A, 2006, 73: 032318.
[41]DENG X, HAO S, GUO H, et al. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators[J]. Scientific Reports, 2016, 6(1): 22914.
[42]赵亚平, 郝树宏, 苏晓龙, et al. 连续变量六组份和八组份星型Cluster纠缠态光场产生系统[J]. 光学学报, 2012, 32(6): 8.
[43]MENICUCCI N C, FLAMMIA S T, LOOCK P V. Graphical calculus for Gaussian pure states[J]. Physreva, 2010, 83(4): 2412-2414.
[44]YACOUBIAN A. Optics Essentials: An Interdisciplinary Guide[J]. Crc Press, 2014
[45]CHEW W, TONG M, HU B. Integral Equation Methods for Electromagnetic and Elastic Waves[J]. Synthesis Lectures on Computational Electromagnetics, 2008, 3(1): 1-241.
[46]FERRARO R. Einstein's Space-Time: An introduction to special and general relativity[J]. Classical & Quantum Gravity An Interantional Journal of Gravity Geometry of Field Theories Supergravity Cosmology, 2007
[47]PLANCK M. The Theory of Hea Radiation[J]. 1914
[48]EINSTEIN A. ON A HEURISTIC VIEWPOINT OF THE CREATION AND MODIFICATION OF LIGHT[J]. anndphys, 1905
[49]WILCZEK F. Niels Bohr's Times: In Physics, Philosophy, and Polity[J]. 1992
[50]FUJIKI M, DONGURI Y, ZHAO Y, et al. Photon Magic: Chiroptical Polarisation, Depolarisation, Inversion, Retention and Switching of Non-photochromic Light-emitting Polymer in Optofluidic Medium[J]. Polymer Chemistry, 2014, 6(9): 1627-1638.
[51]GREEN H S. Matrix mechanics[J]. matrix mechanics, 1965
[52]FERMI E. Considerazioni sulla quantizzazione dei sistemi che contengono degli elementi identici[J]. IL Nuovo Cimento, 1924, 1(1): 145-152.
[53]GOTTFRIED K, JACKSON J D. Mozart and quantum mechanics: An appreciation of Victor Weisskopf[J]. Physics Today, 2003, 56(2): 43-47.
[54]EINSTEIN A, PODOLSKY B, ROSEN N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[J]. Physical Review, 1935, 47
[55]HENNY, M., OBERHOLZER, et al. The fermionic Hanbury Brown and Twiss experiment[J]. Science, 1999
[56]GLAUBER, ROY. Coherent and Incoherent States of the Radiation Field[J]. 1963, 131(6): 2766-2788.
[57]FöRSTER T. Intermolecular energy migration and fluorescence[J]. 1948
[58]ANDREWS D L. A unified theory of radiative and radiationless molecular energy transfer[J]. Chemical physics, 1989, 135(2): 195-201.
[59]BECK H, SPRUIT W P. 1/f noise in the variance of Johnson noise[J]. Journal of Applied Physics, 1978, 49(6): 3384-3385.
[60]HILGEVOORD, JAN. The uncertainty principle for energy and time[J]. American Journal of Physics, 1996
[61]MENICUCCI N C, FLAMMIA S T, LOOCK P V. Graphical calculus for Gaussian pure states[J]. Physreva, 2010, 83(4): 2412-2414.
[62]ZHENG Z, GONG M, ZHANG Y, et al. Fulde-Ferrell-Larkin-Ovchinnikov Phases in Two-dimensional Spin-Orbit Coupled Degenerate Fermi Gases[J]. American Physical Society, 2012
[63]ZHENG Z, GONG M, ZOU X, et al. Route to Observable Fulde-Ferrell-Larkin-Ovchinnikov Phases in 3D Spin-Orbit Coupled Degenerate Fermi Gases[J]. Physical Review A, 2012, 87(3)
[64]彭承志, 潘建伟. 量子科学实验卫星——"墨子号"[J]. 中国科学院院刊, 2016, 31(9): 9.
[65]PAN J, LI Z, ZHANG Y, et al. Correlating intensity of pulse moment with exploration depth in surface NMR[J]. Journal of Applied Geophysics, 2017, 142: 1-13.
[66]CASTELVECCHI D. China's quantum satellite clears major hurdle on way to ultrasecure communications[J]. Nature, 2017
[67]ZHANG T C. The united research of ER, EPR, String theory and Force[J]. IOP Conference Series Materials Science and Engineering, 2019
[68]MARKOFF J. Sorry, Einstein. Quantum study suggests ‘spooky action’is real[J]. The New York Times, 2015, 21
[69]SCARANI V, BECHMANN-PASQUINUCCI H, CERF N J, et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3): 1301.
[70]DEUTSCH D. Quantum theory, the Church–Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1985, 400(1818): 97-117.
[71]OCKELOEN-KORPPI C, DAMSKäGG E, PIRKKALAINEN J-M, et al. Stabilized entanglement of massive mechanical oscillators[J]. Nature, 2018, 556(7702): 478-482.
[72]ZHANG J, BRAUNSTEIN S L. Continuous-variable Gaussian analog of cluster states[J]. Physical Review A, 2006, 73: 032318.
[73]MENICUCCI N C, FLAMMIA S T, LOOCK P V. Graphical calculus for Gaussian pure states[J]. Physreva, 2010, 83(4): 2412-2414.
[74]LOOCK P V, WEEDBROOK C, GU M. Building Gaussian cluster states by linear optics[J]. Physical Review A, 2006, 76(3): 399-406.
[75]HENDRYCH M. Experimental Quantum Cryptography[J]. 2002
[76]TRAVISNORSEN, TRAVISNORSEN, TRAVISNORSEN, et al. Bell's Theorem[J]. 2017
[77]BLAYLOCK G. The EPR paradox, Bell's inequality, and the question of locality[Z]. arXiv. 2009: 111-120
[78]BELL J S. On the Einstein Podolsky Rosen paradox[J]. Physics Physique Fizika, 1964, 1(3): 195-200.
[79]MAYER J D. The role of spatial analysis and geographic data in the detection of disease causation[J]. Social Science & Medicine, 1983, 17(16): 1213-1221.
[80]GREENSTEIN, GEORGE. The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics[J]. American Journal of Physics, 1998, 66(5): 455-456.
[81]WEIGEL, JACK, W. Quantum: Einstein, Bohr, and the Great Debate About the Nature of Reality[J]. Library Journal, 2010
[82]SCHNEELOCH J, BROADBENT C J, WALBORN S P, et al. EPR Steering Inequalities from Entropic Uncertainty Relations[J]. Physical Review A, 2013, 87(6): 11738-11743.
[83]DENG X, XIANG Y, TIAN C, et al. Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states[J]. Physical review letters, 2017, 118(23)
[84]JONES S J, WISEMAN H M, DOHERTY A C. Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering[J]. Physical Review A, 2007, 76(5)
[85]ZHANG Y, WANG H, LI X, et al. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier[J]. Physical Review A, 2000, 62(2): 1845-1848.
[86]OU, PEREIRA, KIMBLE, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Physical review letters, 1992, 68(25): 3663-3666.
[87]ARMSTRONG J, BLOEMBERGEN N, GILL D. Linear Effect of Applied Electric Field on Nuclear Quadrupole Resonance[J]. Physical review letters, 1961, 7(1): 11-14.
[88]KOVACS L. Electrical Conductivity of LiNbO_3[J]. Properties of Lithium Niobate Inspec, 2002
[89]GRILLI S, FERRARO P, NATALE P D, et al. Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching[J]. Applied Physics Letters, 2005, 87(23): 1918.
[90]BOYD R W. The Electrooptic and Photorefractive Effects - ScienceDirect[J]. Nonlinear Optics (Third Edition), 2008: 511-541.
[91]TESFA, SINTAYEHU. Driven degenerate three-level cascade laser[J]. Optics Communications, 2006: S0030401806008935.
[92]GOLDSTEIN D. Polarized Light, Third Edition[J]. Crc Press, 2010
[93]RECK M, ZEILINGER A, BERNSTEIN H J, et al. Experimental realization of any discrete unitary operator[J]. Physical review letters, 1994, 73(1): 58-61.
[94]FARINA, J. Integrated optics: Theory and technology[J]. Quantum Electronics IEEE Journal of, 1983
[95]BRUNNER N, CAVALCANTI D, PIRONIO S, et al. Bell nonlocality[J]. Reviews of Modern Physics, 2014
[96]XIANG Y, LIU Y, CAI Y, et al. Monogamy relations within quadripartite Einstein-Podolsky-Rosen steering based on cascaded four-wave mixing processes[J]. Physical Review A, 2020, 101(5): 053834.
[97]DESIGNOLLE S, SRIVASTAV V, UOLA R, et al. Genuine high-dimensional quantum steering[J]. Physical review letters, 2021, 126(20): 200404.
[98]OPANCHUK B, ARNAUD L, REID M. Detecting faked continuous-variable entanglement using one-sided device-independent entanglement witnesses[J]. Physical Review A, 2013, 89(6): 2044-2049.
[99]COFFMAN V. Distributed entanglement - art. no. 052306[J]. Physical Review, A Atomic, molecular, and optical physics, 2000, 61(5)
[100]XIANG Y, KOGIAS I, ADESSO G, et al. Multipartite Gaussian steering: Monogamy constraints and quantum cryptography applications[J]. Physreva, 2017, 95(1): 010101.
[101]ADESSO G, ILLUMINATI F. Entanglement in continuous variable systems: Recent advances and current perspectives[Z]. IOP Publishing. 2007: 7821-7880

所在学位评定分委会
材料与化工
国内图书分类号
O431.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544133
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
徐栋辉. 不同图态类型多组份Cluster纠缠态光场的量子导引特性研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132857-徐栋辉-量子科学与工程(5848KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[徐栋辉]的文章
百度学术
百度学术中相似的文章
[徐栋辉]的文章
必应学术
必应学术中相似的文章
[徐栋辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。