[1] ONYEAGUSI C. I.; MALCOLMSON S. J., Strategies for the Catalytic Enantioselective Synthesis of α-Trifluoromethyl Amines. ACS Catalysis 2020, 10 (21), 12507-12536.
[2] KRYSTA BROWN D., Anthony A. Donato, MD, MHPE, In type 2 diabetes, liraglutide reduced CV events at 5 y vs. glargine, glimepiride, or sitagliptin. Annals of Internal Medicine 2023, 176 (1), JC9.
[3] TAKAHASHI H.; HIDAKA S.; SEKI C., et al., Characteristics of repaglinide effects on insulin secretion. European Journal of Pharmacology 2018, 828, 52-59.
[4] MARX L.; RíOS-LOMBARDíA N.; SüSS P., et al., Chemoenzymatic Synthesis of Sertraline. European Journal of Organic Chemistry 2020, 2020 (4), 510-513.
[5] ZHANG W. L. a. X.-M., Stereoselective Formation of Amines, Springer. Berlin, 2014.
[6] YANG J.-D.; XUE J.; CHENG J.-P., Understanding the role of thermodynamics in catalytic imine reductions. Chemical Society Reviews 2019, 48 (11), 2913-2926.
[7] BARRIOS-RIVERA J.; XU Y.; WILLS M., et al., A diversity of recently reported methodology for asymmetric imine reduction. Organic Chemistry Frontiers 2020, 7 (20), 3312-3342.
[8] ABDINE R. A. A.; HEDOUIN G.; COLOBERT F., et al., Metal-Catalyzed Asymmetric Hydrogenation of C═N Bonds. ACS Catalysis 2021, 11 (1), 215-247.
[9] TIAN Y.; HU L. a.; WANG Y.-Z., et al., Recent advances on transition-metal-catalysed asymmetric reductive amination. Organic Chemistry Frontiers 2021, 8 (10), 2328-2342.
[10] BLASER H.-U.; BUSER H.-P.; JALETT H.-P., et al., Iridium Ferrocenyl Diphosphine Catalyzed Enantioselective Reductive Alkylation of a Hindered Aniline. Synlett 1999 , 867-868.
[11] LI C.; VILLA-MARCOS B.; XIAO J., Metal−Brønsted Acid Cooperative Catalysis for Asymmetric Reductive Amination. Journal of the American Chemical Society 2009, 131 (20), 6967-6969.
[12] ZHOU S.; FLEISCHER S.; JIAO H., et al., Cooperative Catalysis with Iron and a Chiral Brønsted Acid for Asymmetric Reductive Amination of Ketones. Advanced Synthesis & Catalysis 2014, 356 (16), 3451-3455.
[13] HUANG H.; LIU X.; ZHOU L., et al., Direct Asymmetric Reductive Amination for the Synthesis of Chiral β-Arylamines. Angewandte Chemie International Edition 2016, 55 (17), 5309-5312.
[14] WU Z.; DU S.; GAO G., et al., Secondary amines as coupling partners in direct catalytic asymmetric reductive amination. Chemical Science 2019, 10 (16), 4509-4514.
[15] GILBERT S. H.; TIN S.; FUENTES J. A., et al., Rhodium catalysts derived from a fluorinated phanephos ligand are highly active catalysts for direct asymmetric reductive amination of secondary amines. Tetrahedron 2021, 80, 131863.
[16] STEINHUEBEL D.; SUN Y.; MATSUMURA K., et al., Direct Asymmetric Reductive Amination. Journal of the American Chemical Society 2009, 131 (32), 11316-11317.
[17] TAN X.; GAO S.; ZENG W., et al., Asymmetric Synthesis of Chiral Primary Amines by Ruthenium-Catalyzed Direct Reductive Amination of Alkyl Aryl Ketones with Ammonium Salts and Molecular H2. Journal of the American Chemical Society 2018, 140 (6), 2024-2027.
[18] LOU Y.; HU Y.; LU J., et al., Dynamic Kinetic Asymmetric Reductive Amination: Synthesis of Chiral Primary β-Amino Lactams. Angewandte Chemie International Edition 2018, 57 (43), 14193-14197.
[19] GALLARDO-DONAIRE J.; HERMSEN M.; WYSOCKI J., et al., Direct Asymmetric Ruthenium-Catalyzed Reductive Amination of Alkyl–Aryl Ketones with Ammonia and Hydrogen. Journal of the American Chemical Society 2018, 140 (1), 355-361.
[20] BREWER A. C.; RUBLE J. C.; VANDEVEER H. G., et al., Development and Scale-Up of a Direct Asymmetric Reductive Amination with Ammonia. Organic Process Research & Development 2021, 25 (3), 576-582.
[21] HU L. a.; ZHANG Y.; ZHANG Q.-W., et al., Ruthenium-Catalyzed Direct Asymmetric Reductive Amination of Diaryl and Sterically Hindered Ketones with Ammonium Salts and H2. Angewandte Chemie International Edition 2020, 59 (13), 5321-5325.
[22] ZHANG Y.; LIU Y.-Q.; HU L. a., et al., Asymmetric Reductive Amination/Ring-Closing Cascade: Direct Synthesis of Enantioenriched Biaryl-Bridged NH Lactams. Organic Letters 2020, 22 (16), 6479-6483.
[23] ZHAO X.; XU H.; HUANG X., et al., Asymmetric Stepwise Reductive Amination of Sulfonamides, Sulfamates, and a Phosphinamide by Nickel Catalysis. Angewandte Chemie International Edition 2019, 58 (1), 292-296.
[24] STROTMAN N. A.; BAXTER C. A.; BRANDS K. M. J., et al., Reaction Development and Mechanistic Study of a Ruthenium Catalyzed Intramolecular Asymmetric Reductive Amination en Route to the Dual Orexin Inhibitor Suvorexant (MK-4305). Journal of the American Chemical Society 2011, 133 (21), 8362-8371.
[25] SONG B.; YU C.-B.; JI Y., et al., Synthesis of chiral sultams via palladium-catalyzed intramolecular asymmetric reductive amination. Chemical Communications 2017, 53 (10), 1704-1707.
[26] SLABU I.; GALMAN J. L.; LLOYD R. C., et al., Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catalysis 2017, 7 (12), 8263-8284.
[27] SAVILE C. K.; JANEY J. M.; MUNDORFF E. C., et al., Biocatalytic Asymmetric Synthesis of Chiral Amines from Ketones Applied to Sitagliptin Manufacture. Science 2010, 329 (5989), 305-309.
[28] GUO F.; BERGLUND P., Transaminase biocatalysis: optimization and application. Green Chemistry 2017, 19 (2), 333-360.
[29] FRANCE S. P.; HEPWORTH L. J.; TURNER N. J., et al., Constructing Biocatalytic Cascades: In Vitro and in Vivo Approaches to de Novo Multi-Enzyme Pathways. ACS Catalysis 2017, 7 (1), 710-724.
[30] CHEN J.; LIU Y. E.; GONG X., et al., Biomimetic Chiral Pyridoxal and Pyridoxamine Catalysts. Chinese Journal of Chemistry 2019, 37 (2), 103-112.
[31] SHI L.; TAO C.; YANG Q., et al., Chiral Pyridoxal-Catalyzed Asymmetric Biomimetic Transamination of α-Keto Acids. Organic Letters 2015, 17 (23), 5784-5787.
[32] LAN X.; TAO C.; LIU X., et al., Asymmetric Transamination of α-Keto Acids Catalyzed by Chiral Pyridoxamines. Organic Letters 2016, 18 (15), 3658-3661.
[33] LIU Y. E.; LU Z.; LI B., et al., Enzyme-Inspired Axially Chiral Pyridoxamines Armed with a Cooperative Lateral Amine Chain for Enantioselective Biomimetic Transamination. Journal of the American Chemical Society 2016, 138 (34), 10730-10733.
[34] CHEN L.; LUO M.-J.; ZHU F., et al., Combining Chiral Aldehyde Catalysis and Transition-Metal Catalysis for Enantioselective α-Allylic Alkylation of Amino Acid Esters. Journal of the American Chemical Society 2019, 141 (13), 5159-5163.
[35] LOU Y.; HU Y.; LU J., et al., Dynamic Kinetic Asymmetric Reductive Amination: Synthesis of Chiral Primary β-Amino Lactams. Angewandte Chemie International Edition 2018, 57 (43), 14193-14197.
[36] BLASKOVICH M. A. T., Unusual Amino Acids in Medicinal Chemistry. Journal of Medicinal Chemistry 2016, 59 (24), 10807-10836.
[37] KUNISUKE; S. V. A. I., Asymmetric Synthesis and Application of α-Amino Acids. Washington, DC: , 2009.
[38] POLLEGIONI L. S., Stefano;, Unnatural Amino Acids. Springer: New York, 2012.
[39] BRUCKNER H. F., Noriko;, D-Amino Acids in Chemistry, Life Sciences, and Biotechnology. Wiley-VCH: New York, 2011.
[40] KAPTEIN S. J. F.; GOETHALS O.; KIEMEL D., et al., A pan-serotype dengue virus inhibitor targeting the NS3–NS4B interaction. Nature 2021, 598 (7881), 504-509.
[41] DAVIE E. A. C.; MENNEN S. M.; XU Y., et al., Asymmetric Catalysis Mediated by Synthetic Peptides. Chemical Reviews 2007, 107 (12), 5759-5812.
[42] NáJERA C.; SANSANO J. M., Catalytic Asymmetric Synthesis of α-Amino Acids. Chemical Reviews 2007, 107 (11), 4584-4671.
[43] WANG J.; LIU X.; FENG X., Asymmetric Strecker Reactions. Chemical Reviews 2011, 111 (11), 6947-6983.
[44] ZHANG J.; JIA J.; ZENG X., et al., Chemo- and Enantioselective Hydrogenation of α-Formyl Enamides: An Efficient Access to Chiral α-Amido Aldehydes. Angewandte Chemie International Edition 2019, 58 (33), 11505-11512.
[45] BIOSCA M.; DE LA CRUZ-SáNCHEZ P.; PàMIES O., et al., P-Stereogenic N-Phosphine–Phosphite Ligands for the Rh-Catalyzed Hydrogenation of Olefins. The Journal of Organic Chemistry 2020, 85 (7), 4730-4739.
[46] PONRA S.; BOUDET B.; PHANSAVATH P., et al., Recent Developments in Transition-Metal-Catalyzed Asymmetric Hydrogenation of Enamides. Synthesis 2020, 53 (02), 193-214.
[47] EFTEKHARI-SIS B.; ZIRAK M., α-Imino Esters in Organic Synthesis: Recent Advances. Chemical Reviews 2017, 117 (12), 8326-8419.
[48] O'DONNELL M. J., The Enantioselective Synthesis of α-Amino Acids by Phase-Transfer Catalysis with Achiral Schiff Base Esters. Accounts of Chemical Research 2004, 37 (8), 506-517.
[49] GILLINGHAM D.; FEI N., Catalytic X–H insertion reactions based on carbenoids. Chemical Society Reviews 2013, 42 (12), 4918-4931.
[50] CAI W.; QIAO X.; ZHANG H., et al., Asymmetric biomimetic transamination of α-keto amides to peptides. Nature Communications 2021, 12 (1), 5174.
[51] XUE Y.-P.; CAO C.-H.; ZHENG Y.-G., Enzymatic asymmetric synthesis of chiral amino acids. Chemical Society Reviews 2018, 47 (4), 1516-1561.
[52] ACOSTA A.; CAMILLERI M., Elobixibat and its potential role in chronic idiopathic constipation. Therapeutic Advances in Gastroenterology 2014, 7 (4), 167-175.
[53] ZUEND S. J.; COUGHLIN M. P.; LALONDE M. P., et al., Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature 2009, 461 (7266), 968-970.
[54] MATADOR E.; IGLESIAS-SIGüENZA J.; MONGE D., et al., Enantio- and Diastereoselective Nucleophilic Addition of N-tert-Butylhydrazones to Isoquinolinium Ions through Anion-Binding Catalysis. Angewandte Chemie International Edition 2021, 60 (10), 5096-5101.
[55] ZHANG L.; FU N.; LUO S., Pushing the Limits of Aminocatalysis: Enantioselective Transformations of α-Branched β-Ketocarbonyls and Vinyl Ketones by Chiral Primary Amines. Accounts of Chemical Research 2015, 48 (4), 986-997.
[56] SHEN P.-X.; HU L.; SHAO Q., et al., Pd(II)-Catalyzed Enantioselective C(sp3)–H Arylation of Free Carboxylic Acids. Journal of the American Chemical Society 2018, 140 (21), 6545-6549.
[57] HAO W.; BAY K. L.; HARRIS C. F., et al., Probing Catalyst Speciation in Pd-MPAAM-Catalyzed Enantioselective C(sp3)–H Arylation: Catalyst Improvement via Destabilization of Off-Cycle Species. ACS Catalysis 2021, 11 (17), 11040-11048.
[58] GUO H.; LI J.; LIU D., et al., The Synthesis of Chiral α-Aryl α-Hydroxy Carboxylic Acids via RuPHOX-Ru Catalyzed Asymmetric Hydrogenation. Advanced Synthesis & Catalysis 2017, 359 (20), 3665-3673.
[59] WANG D.; ZHANG K.; JIA L., et al., nBu4NI-Mediated oxidation of methyl ketones to α-ketoamides: using ammonium, primary and secondary amine-salt as an amine moiety. Organic & Biomolecular Chemistry 2017, 15 (16), 3427-3434.
[60] KORWAR S.; MORRIS B. L.; PARIKH H. I., et al., Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP). Bioorganic & Medicinal Chemistry 2016, 24 (12), 2707-2715.
[61] ZHANG J.-R.; LIAO Y.-Y.; DENG J.-C., et al., DABCO-Promoted Decarboxylative Acylation: Synthesis of α-Keto and α,β-Unsaturated Amides or Esters. Asian Journal of Organic Chemistry 2017, 6 (3), 305-312.
[62] RAMACHANDRAN P. V.; BURGHARDT T. E.; REDDY M. V. R., Asymmetric Allylboration of α,β-Enals as a Surrogate for the Enantioselective Synthesis of Allylic Amines and α-Amino Acids. The Journal of Organic Chemistry 2005, 70 (6), 2329-2331.
[63] MURPHY C. D.; SANDFORD G., Recent advances in fluorination techniques and their anticipated impact on drug metabolism and toxicity. Expert Opinion on Drug Metabolism & Toxicology 2015, 11 (4), 589-599.
[64] YANG X.; WU T.; PHIPPS R. J., et al., Advances in Catalytic Enantioselective Fluorination, Mono-, Di-, and Trifluoromethylation, and Trifluoromethylthiolation Reactions. Chemical Reviews 2015, 115 (2), 826-870.
[65] GILLIS E. P.; EASTMAN K. J.; HILL M. D., et al., Applications of Fluorine in Medicinal Chemistry. Journal of Medicinal Chemistry 2015, 58 (21), 8315-8359.
[66] DUONG L. T.; CLARK S.; PICKARSKI M., et al., Effects of odanacatib on bone-turnover markers in osteoporotic postmenopausal women: a post hoc analysis of the LOFT study. Osteoporosis International 2022, 33 (10), 2165-2175.
[67] OJIMA I.; SLATER J. C.; PERA P., et al., Synthesis and biological activity of novel 3′-trifluoromethyl taxoids. Bioorganic & Medicinal Chemistry Letters 1997, 7 (2), 133-138.
[68] CORNEC A.-S.; JAMES M. J.; KOVALEVICH J., et al., Pharmacokinetic, pharmacodynamic and metabolic characterization of a brain retentive microtubule (MT)-stabilizing triazolopyrimidine. Bioorganic & Medicinal Chemistry Letters 2015, 25 (21), 4980-4982.
[69] SANI M.; VOLONTERIO A.; ZANDA M., The Trifluoroethylamine Function as Peptide Bond Replacement. ChemMedChem 2007, 2 (12), 1693-1700.
[70] ZHANG X.; ZHANG N.; CHEN G., et al., Discovery of novel HCV inhibitors: Synthesis and biological activity of 6-(indol-2-yl)pyridine-3-sulfonamides targeting hepatitis C virus NS4B. Bioorganic & Medicinal Chemistry Letters 2013, 23 (13), 3947-3953.
[71] HIRANO M.; KOMINE N.; ARATA E., et al., Recent advances of achiral and chiral diene ligands in transition-metal catalyses. Tetrahedron Letters 2019, 60 (37), 150924.
[72] ZHU Y.; LI B.; WANG C., et al., Asymmetric synthesis of CF3-containing tetrahydroquinoline via a thiourea-catalyzed cascade reaction. Organic & Biomolecular Chemistry 2017, 15 (21), 4544-4547.
[73] LIU M.; LI J.; XIAO X., et al., An efficient synthesis of optically active trifluoromethyl aldimines via asymmetric biomimetic transamination. Chemical Communications 2013, 49 (14), 1404-1406.
[74] HOLZER A. K.; HIEBLER K.; MUTTI F. G., et al., Asymmetric Biocatalytic Amination of Ketones at the Expense of NH3 and Molecular Hydrogen. Organic Letters 2015, 17 (10), 2431-2433.
[75] ZHU J.; HUANG L.; DONG W., et al., Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to N-Unprotected Ketimines: Efficient Synthesis of Cipargamin. Angewandte Chemie International Edition 2019, 58 (45), 16119-16123.
[76] ABE H.; AMII H.; UNEYAMA K., Pd-Catalyzed Asymmetric Hydrogenation of α-Fluorinated Iminoesters in Fluorinated Alcohol: A New and Catalytic Enantioselective Synthesis of Fluoro α-Amino Acid Derivatives. Organic Letters 2001, 3 (3), 313-315.
[77] CHEN M.-W.; DUAN Y.; CHEN Q.-A., et al., Enantioselective Pd-Catalyzed Hydrogenation of Fluorinated Imines: Facile Access to Chiral Fluorinated Amines. Organic Letters 2010, 12 (21), 5075-5077.
[78] HENSELER A.; KATO M.; MORI K., et al., Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation: Facile Synthetic Access to Highly Optically Active Trifluoromethylated Amines. Angewandte Chemie International Edition 2011, 50 (35), 8180-8183.
[79] PUNNA N.; SAITO T.; KOSOBOKOV M., et al., Stereodivergent trifluoromethylation of N-sulfinylimines by fluoroform with either organic-superbase or organometallic-base. Chemical Communications 2018, 54 (34), 4294-4297.
[80] ZHU T.-Z.; SHAO P.-L.; ZHANG X., Asymmetric hydrogenation of trifluoromethyl ketones: application in the synthesis of Odanacatib and LX-1031. Organic Chemistry Frontiers 2021, 8 (14), 3705-3711.
修改评论