中文版 | English
题名

钌催化酮的直接不对称还原胺化

其他题名
RUTHENIUM-CATALYZED DIRECT ASYMMETRIC REDUCTIVE AMINATION OF KETONES
姓名
姓名拼音
WANG Yuanzheng
学号
12032066
学位类型
硕士
学位专业
070303 有机化学
学科门类/专业学位类别
07 理学
导师
张绪穆
导师单位
理学院
论文答辩日期
2023-05-29
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

手性胺作为一类重要的化合物,在制药、农药及材料科学等领域起重要作用。一直以来高效的手性胺合成方法得到科学家广泛的关注。过渡金属催化的直接不对称还原胺化反应,可以将酮一步转化为手性胺,是现如今化学合成制备手性胺类化合物最为简洁高效的方法之一。近年来,钌催化的铵盐为氨源的不对称还原胺化直接制备手性伯胺受到了广泛关注,并得到了一定程度的发展。然而,该方法仍然存在很大的底物限制,需要进一步研究,发展出更为普适、高效的手性伯胺制备方法。

为实现酮的高效、高选择性不对称还原胺化,用以得到手性伯胺,本文将继续探索醋酸钌-手性双膦配体体系催化的直接不对称还原胺化,希望能够发展出适用范围广高效可靠的用于各种手性伯胺制备的不对称还原胺化方法。本文研究了以α-酮酰胺为底物,氢气作为还原剂,利用醋酸钌-轴手性双膦配体络合物作为催化剂的不对称还原胺化反应。该方法具有良好的底物普适性,实现了α-芳基取代的α-酮酰胺、α-烷基取代的α-酮酰胺的不对称还原胺化反应,高效制备得到N非保护的非天然α-氨基酸衍生物。利用动态动力学拆分,该方法同样实现有两个手性中心的β-芳基-β-烷基取代的α-氨基酸衍生物的不对称还原胺化。除此之外,本文同样完成了以α-三氟苯乙酮为底物,醋酸铵为氨源,一步构建N非保护的手性α-三氟乙胺的方法。本文中完成不同电性取代的α-三氟乙胺底物的高效高选择性合成。最后本课题通过完成反应放大实验以及生物活性分子的合成证明该体系的应用潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] ONYEAGUSI C. I.; MALCOLMSON S. J., Strategies for the Catalytic Enantioselective Synthesis of α-Trifluoromethyl Amines. ACS Catalysis 2020, 10 (21), 12507-12536.
[2] KRYSTA BROWN D., Anthony A. Donato, MD, MHPE, In type 2 diabetes, liraglutide reduced CV events at 5 y vs. glargine, glimepiride, or sitagliptin. Annals of Internal Medicine 2023, 176 (1), JC9.
[3] TAKAHASHI H.; HIDAKA S.; SEKI C., et al., Characteristics of repaglinide effects on insulin secretion. European Journal of Pharmacology 2018, 828, 52-59.
[4] MARX L.; RíOS-LOMBARDíA N.; SüSS P., et al., Chemoenzymatic Synthesis of Sertraline. European Journal of Organic Chemistry 2020, 2020 (4), 510-513.
[5] ZHANG W. L. a. X.-M., Stereoselective Formation of Amines, Springer. Berlin, 2014.
[6] YANG J.-D.; XUE J.; CHENG J.-P., Understanding the role of thermodynamics in catalytic imine reductions. Chemical Society Reviews 2019, 48 (11), 2913-2926.
[7] BARRIOS-RIVERA J.; XU Y.; WILLS M., et al., A diversity of recently reported methodology for asymmetric imine reduction. Organic Chemistry Frontiers 2020, 7 (20), 3312-3342.
[8] ABDINE R. A. A.; HEDOUIN G.; COLOBERT F., et al., Metal-Catalyzed Asymmetric Hydrogenation of C═N Bonds. ACS Catalysis 2021, 11 (1), 215-247.
[9] TIAN Y.; HU L. a.; WANG Y.-Z., et al., Recent advances on transition-metal-catalysed asymmetric reductive amination. Organic Chemistry Frontiers 2021, 8 (10), 2328-2342.
[10] BLASER H.-U.; BUSER H.-P.; JALETT H.-P., et al., Iridium Ferrocenyl Diphosphine Catalyzed Enantioselective Reductive Alkylation of a Hindered Aniline. Synlett 1999 , 867-868.
[11] LI C.; VILLA-MARCOS B.; XIAO J., Metal−Brønsted Acid Cooperative Catalysis for Asymmetric Reductive Amination. Journal of the American Chemical Society 2009, 131 (20), 6967-6969.
[12] ZHOU S.; FLEISCHER S.; JIAO H., et al., Cooperative Catalysis with Iron and a Chiral Brønsted Acid for Asymmetric Reductive Amination of Ketones. Advanced Synthesis & Catalysis 2014, 356 (16), 3451-3455.
[13] HUANG H.; LIU X.; ZHOU L., et al., Direct Asymmetric Reductive Amination for the Synthesis of Chiral β-Arylamines. Angewandte Chemie International Edition 2016, 55 (17), 5309-5312.
[14] WU Z.; DU S.; GAO G., et al., Secondary amines as coupling partners in direct catalytic asymmetric reductive amination. Chemical Science 2019, 10 (16), 4509-4514.
[15] GILBERT S. H.; TIN S.; FUENTES J. A., et al., Rhodium catalysts derived from a fluorinated phanephos ligand are highly active catalysts for direct asymmetric reductive amination of secondary amines. Tetrahedron 2021, 80, 131863.
[16] STEINHUEBEL D.; SUN Y.; MATSUMURA K., et al., Direct Asymmetric Reductive Amination. Journal of the American Chemical Society 2009, 131 (32), 11316-11317.
[17] TAN X.; GAO S.; ZENG W., et al., Asymmetric Synthesis of Chiral Primary Amines by Ruthenium-Catalyzed Direct Reductive Amination of Alkyl Aryl Ketones with Ammonium Salts and Molecular H2. Journal of the American Chemical Society 2018, 140 (6), 2024-2027.
[18] LOU Y.; HU Y.; LU J., et al., Dynamic Kinetic Asymmetric Reductive Amination: Synthesis of Chiral Primary β-Amino Lactams. Angewandte Chemie International Edition 2018, 57 (43), 14193-14197.
[19] GALLARDO-DONAIRE J.; HERMSEN M.; WYSOCKI J., et al., Direct Asymmetric Ruthenium-Catalyzed Reductive Amination of Alkyl–Aryl Ketones with Ammonia and Hydrogen. Journal of the American Chemical Society 2018, 140 (1), 355-361.
[20] BREWER A. C.; RUBLE J. C.; VANDEVEER H. G., et al., Development and Scale-Up of a Direct Asymmetric Reductive Amination with Ammonia. Organic Process Research & Development 2021, 25 (3), 576-582.
[21] HU L. a.; ZHANG Y.; ZHANG Q.-W., et al., Ruthenium-Catalyzed Direct Asymmetric Reductive Amination of Diaryl and Sterically Hindered Ketones with Ammonium Salts and H2. Angewandte Chemie International Edition 2020, 59 (13), 5321-5325.
[22] ZHANG Y.; LIU Y.-Q.; HU L. a., et al., Asymmetric Reductive Amination/Ring-Closing Cascade: Direct Synthesis of Enantioenriched Biaryl-Bridged NH Lactams. Organic Letters 2020, 22 (16), 6479-6483.
[23] ZHAO X.; XU H.; HUANG X., et al., Asymmetric Stepwise Reductive Amination of Sulfonamides, Sulfamates, and a Phosphinamide by Nickel Catalysis. Angewandte Chemie International Edition 2019, 58 (1), 292-296.
[24] STROTMAN N. A.; BAXTER C. A.; BRANDS K. M. J., et al., Reaction Development and Mechanistic Study of a Ruthenium Catalyzed Intramolecular Asymmetric Reductive Amination en Route to the Dual Orexin Inhibitor Suvorexant (MK-4305). Journal of the American Chemical Society 2011, 133 (21), 8362-8371.
[25] SONG B.; YU C.-B.; JI Y., et al., Synthesis of chiral sultams via palladium-catalyzed intramolecular asymmetric reductive amination. Chemical Communications 2017, 53 (10), 1704-1707.
[26] SLABU I.; GALMAN J. L.; LLOYD R. C., et al., Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catalysis 2017, 7 (12), 8263-8284.
[27] SAVILE C. K.; JANEY J. M.; MUNDORFF E. C., et al., Biocatalytic Asymmetric Synthesis of Chiral Amines from Ketones Applied to Sitagliptin Manufacture. Science 2010, 329 (5989), 305-309.
[28] GUO F.; BERGLUND P., Transaminase biocatalysis: optimization and application. Green Chemistry 2017, 19 (2), 333-360.
[29] FRANCE S. P.; HEPWORTH L. J.; TURNER N. J., et al., Constructing Biocatalytic Cascades: In Vitro and in Vivo Approaches to de Novo Multi-Enzyme Pathways. ACS Catalysis 2017, 7 (1), 710-724.
[30] CHEN J.; LIU Y. E.; GONG X., et al., Biomimetic Chiral Pyridoxal and Pyridoxamine Catalysts. Chinese Journal of Chemistry 2019, 37 (2), 103-112.
[31] SHI L.; TAO C.; YANG Q., et al., Chiral Pyridoxal-Catalyzed Asymmetric Biomimetic Transamination of α-Keto Acids. Organic Letters 2015, 17 (23), 5784-5787.
[32] LAN X.; TAO C.; LIU X., et al., Asymmetric Transamination of α-Keto Acids Catalyzed by Chiral Pyridoxamines. Organic Letters 2016, 18 (15), 3658-3661.
[33] LIU Y. E.; LU Z.; LI B., et al., Enzyme-Inspired Axially Chiral Pyridoxamines Armed with a Cooperative Lateral Amine Chain for Enantioselective Biomimetic Transamination. Journal of the American Chemical Society 2016, 138 (34), 10730-10733.
[34] CHEN L.; LUO M.-J.; ZHU F., et al., Combining Chiral Aldehyde Catalysis and Transition-Metal Catalysis for Enantioselective α-Allylic Alkylation of Amino Acid Esters. Journal of the American Chemical Society 2019, 141 (13), 5159-5163.
[35] LOU Y.; HU Y.; LU J., et al., Dynamic Kinetic Asymmetric Reductive Amination: Synthesis of Chiral Primary β-Amino Lactams. Angewandte Chemie International Edition 2018, 57 (43), 14193-14197.
[36] BLASKOVICH M. A. T., Unusual Amino Acids in Medicinal Chemistry. Journal of Medicinal Chemistry 2016, 59 (24), 10807-10836.
[37] KUNISUKE; S. V. A. I., Asymmetric Synthesis and Application of α-Amino Acids. Washington, DC: , 2009.
[38] POLLEGIONI L. S., Stefano;, Unnatural Amino Acids. Springer: New York, 2012.
[39] BRUCKNER H. F., Noriko;, D-Amino Acids in Chemistry, Life Sciences, and Biotechnology. Wiley-VCH: New York, 2011.
[40] KAPTEIN S. J. F.; GOETHALS O.; KIEMEL D., et al., A pan-serotype dengue virus inhibitor targeting the NS3–NS4B interaction. Nature 2021, 598 (7881), 504-509.
[41] DAVIE E. A. C.; MENNEN S. M.; XU Y., et al., Asymmetric Catalysis Mediated by Synthetic Peptides. Chemical Reviews 2007, 107 (12), 5759-5812.
[42] NáJERA C.; SANSANO J. M., Catalytic Asymmetric Synthesis of α-Amino Acids. Chemical Reviews 2007, 107 (11), 4584-4671.
[43] WANG J.; LIU X.; FENG X., Asymmetric Strecker Reactions. Chemical Reviews 2011, 111 (11), 6947-6983.
[44] ZHANG J.; JIA J.; ZENG X., et al., Chemo- and Enantioselective Hydrogenation of α-Formyl Enamides: An Efficient Access to Chiral α-Amido Aldehydes. Angewandte Chemie International Edition 2019, 58 (33), 11505-11512.
[45] BIOSCA M.; DE LA CRUZ-SáNCHEZ P.; PàMIES O., et al., P-Stereogenic N-Phosphine–Phosphite Ligands for the Rh-Catalyzed Hydrogenation of Olefins. The Journal of Organic Chemistry 2020, 85 (7), 4730-4739.
[46] PONRA S.; BOUDET B.; PHANSAVATH P., et al., Recent Developments in Transition-Metal-Catalyzed Asymmetric Hydrogenation of Enamides. Synthesis 2020, 53 (02), 193-214.
[47] EFTEKHARI-SIS B.; ZIRAK M., α-Imino Esters in Organic Synthesis: Recent Advances. Chemical Reviews 2017, 117 (12), 8326-8419.
[48] O'DONNELL M. J., The Enantioselective Synthesis of α-Amino Acids by Phase-Transfer Catalysis with Achiral Schiff Base Esters. Accounts of Chemical Research 2004, 37 (8), 506-517.
[49] GILLINGHAM D.; FEI N., Catalytic X–H insertion reactions based on carbenoids. Chemical Society Reviews 2013, 42 (12), 4918-4931.
[50] CAI W.; QIAO X.; ZHANG H., et al., Asymmetric biomimetic transamination of α-keto amides to peptides. Nature Communications 2021, 12 (1), 5174.
[51] XUE Y.-P.; CAO C.-H.; ZHENG Y.-G., Enzymatic asymmetric synthesis of chiral amino acids. Chemical Society Reviews 2018, 47 (4), 1516-1561.
[52] ACOSTA A.; CAMILLERI M., Elobixibat and its potential role in chronic idiopathic constipation. Therapeutic Advances in Gastroenterology 2014, 7 (4), 167-175.
[53] ZUEND S. J.; COUGHLIN M. P.; LALONDE M. P., et al., Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature 2009, 461 (7266), 968-970.
[54] MATADOR E.; IGLESIAS-SIGüENZA J.; MONGE D., et al., Enantio- and Diastereoselective Nucleophilic Addition of N-tert-Butylhydrazones to Isoquinolinium Ions through Anion-Binding Catalysis. Angewandte Chemie International Edition 2021, 60 (10), 5096-5101.
[55] ZHANG L.; FU N.; LUO S., Pushing the Limits of Aminocatalysis: Enantioselective Transformations of α-Branched β-Ketocarbonyls and Vinyl Ketones by Chiral Primary Amines. Accounts of Chemical Research 2015, 48 (4), 986-997.
[56] SHEN P.-X.; HU L.; SHAO Q., et al., Pd(II)-Catalyzed Enantioselective C(sp3)–H Arylation of Free Carboxylic Acids. Journal of the American Chemical Society 2018, 140 (21), 6545-6549.
[57] HAO W.; BAY K. L.; HARRIS C. F., et al., Probing Catalyst Speciation in Pd-MPAAM-Catalyzed Enantioselective C(sp3)–H Arylation: Catalyst Improvement via Destabilization of Off-Cycle Species. ACS Catalysis 2021, 11 (17), 11040-11048.
[58] GUO H.; LI J.; LIU D., et al., The Synthesis of Chiral α-Aryl α-Hydroxy Carboxylic Acids via RuPHOX-Ru Catalyzed Asymmetric Hydrogenation. Advanced Synthesis & Catalysis 2017, 359 (20), 3665-3673.
[59] WANG D.; ZHANG K.; JIA L., et al., nBu4NI-Mediated oxidation of methyl ketones to α-ketoamides: using ammonium, primary and secondary amine-salt as an amine moiety. Organic & Biomolecular Chemistry 2017, 15 (16), 3427-3434.
[60] KORWAR S.; MORRIS B. L.; PARIKH H. I., et al., Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP). Bioorganic & Medicinal Chemistry 2016, 24 (12), 2707-2715.
[61] ZHANG J.-R.; LIAO Y.-Y.; DENG J.-C., et al., DABCO-Promoted Decarboxylative Acylation: Synthesis of α-Keto and α,β-Unsaturated Amides or Esters. Asian Journal of Organic Chemistry 2017, 6 (3), 305-312.
[62] RAMACHANDRAN P. V.; BURGHARDT T. E.; REDDY M. V. R., Asymmetric Allylboration of α,β-Enals as a Surrogate for the Enantioselective Synthesis of Allylic Amines and α-Amino Acids. The Journal of Organic Chemistry 2005, 70 (6), 2329-2331.
[63] MURPHY C. D.; SANDFORD G., Recent advances in fluorination techniques and their anticipated impact on drug metabolism and toxicity. Expert Opinion on Drug Metabolism & Toxicology 2015, 11 (4), 589-599.
[64] YANG X.; WU T.; PHIPPS R. J., et al., Advances in Catalytic Enantioselective Fluorination, Mono-, Di-, and Trifluoromethylation, and Trifluoromethylthiolation Reactions. Chemical Reviews 2015, 115 (2), 826-870.
[65] GILLIS E. P.; EASTMAN K. J.; HILL M. D., et al., Applications of Fluorine in Medicinal Chemistry. Journal of Medicinal Chemistry 2015, 58 (21), 8315-8359.
[66] DUONG L. T.; CLARK S.; PICKARSKI M., et al., Effects of odanacatib on bone-turnover markers in osteoporotic postmenopausal women: a post hoc analysis of the LOFT study. Osteoporosis International 2022, 33 (10), 2165-2175.
[67] OJIMA I.; SLATER J. C.; PERA P., et al., Synthesis and biological activity of novel 3′-trifluoromethyl taxoids. Bioorganic & Medicinal Chemistry Letters 1997, 7 (2), 133-138.
[68] CORNEC A.-S.; JAMES M. J.; KOVALEVICH J., et al., Pharmacokinetic, pharmacodynamic and metabolic characterization of a brain retentive microtubule (MT)-stabilizing triazolopyrimidine. Bioorganic & Medicinal Chemistry Letters 2015, 25 (21), 4980-4982.
[69] SANI M.; VOLONTERIO A.; ZANDA M., The Trifluoroethylamine Function as Peptide Bond Replacement. ChemMedChem 2007, 2 (12), 1693-1700.
[70] ZHANG X.; ZHANG N.; CHEN G., et al., Discovery of novel HCV inhibitors: Synthesis and biological activity of 6-(indol-2-yl)pyridine-3-sulfonamides targeting hepatitis C virus NS4B. Bioorganic & Medicinal Chemistry Letters 2013, 23 (13), 3947-3953.
[71] HIRANO M.; KOMINE N.; ARATA E., et al., Recent advances of achiral and chiral diene ligands in transition-metal catalyses. Tetrahedron Letters 2019, 60 (37), 150924.
[72] ZHU Y.; LI B.; WANG C., et al., Asymmetric synthesis of CF3-containing tetrahydroquinoline via a thiourea-catalyzed cascade reaction. Organic & Biomolecular Chemistry 2017, 15 (21), 4544-4547.
[73] LIU M.; LI J.; XIAO X., et al., An efficient synthesis of optically active trifluoromethyl aldimines via asymmetric biomimetic transamination. Chemical Communications 2013, 49 (14), 1404-1406.
[74] HOLZER A. K.; HIEBLER K.; MUTTI F. G., et al., Asymmetric Biocatalytic Amination of Ketones at the Expense of NH3 and Molecular Hydrogen. Organic Letters 2015, 17 (10), 2431-2433.
[75] ZHU J.; HUANG L.; DONG W., et al., Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to N-Unprotected Ketimines: Efficient Synthesis of Cipargamin. Angewandte Chemie International Edition 2019, 58 (45), 16119-16123.
[76] ABE H.; AMII H.; UNEYAMA K., Pd-Catalyzed Asymmetric Hydrogenation of α-Fluorinated Iminoesters in Fluorinated Alcohol:  A New and Catalytic Enantioselective Synthesis of Fluoro α-Amino Acid Derivatives. Organic Letters 2001, 3 (3), 313-315.
[77] CHEN M.-W.; DUAN Y.; CHEN Q.-A., et al., Enantioselective Pd-Catalyzed Hydrogenation of Fluorinated Imines: Facile Access to Chiral Fluorinated Amines. Organic Letters 2010, 12 (21), 5075-5077.
[78] HENSELER A.; KATO M.; MORI K., et al., Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation: Facile Synthetic Access to Highly Optically Active Trifluoromethylated Amines. Angewandte Chemie International Edition 2011, 50 (35), 8180-8183.
[79] PUNNA N.; SAITO T.; KOSOBOKOV M., et al., Stereodivergent trifluoromethylation of N-sulfinylimines by fluoroform with either organic-superbase or organometallic-base. Chemical Communications 2018, 54 (34), 4294-4297.
[80] ZHU T.-Z.; SHAO P.-L.; ZHANG X., Asymmetric hydrogenation of trifluoromethyl ketones: application in the synthesis of Odanacatib and LX-1031. Organic Chemistry Frontiers 2021, 8 (14), 3705-3711.

所在学位评定分委会
化学
国内图书分类号
O62
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544134
专题理学院_化学系
推荐引用方式
GB/T 7714
王元政. 钌催化酮的直接不对称还原胺化[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032066-王元政-化学系.pdf(8285KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王元政]的文章
百度学术
百度学术中相似的文章
[王元政]的文章
必应学术
必应学术中相似的文章
[王元政]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。