[1] TSUMURA A, KOEZUKA H, ANDO T. Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film [J]. Applied Physics Letters, 1986, 49(18): 1210-1212.
[2] YAGI I, HIRAI N, MIYAMOTO Y, et al. A flexible full-color AMOLED display driven by OTFTs [J]. Journal of the Society for Information Display, 2008, 16(1): 15-20.
[3] WANG B, XU J, WANG W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array [J]. Nature, 2018, 555(7694): 83-88.
[4] ZANG Y, ZHANG F, HUANG D, et al. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection [J]. Nature Communications, 2015, 6(1): 6269.
[5] KWON J, TAKEDA Y, SHIWAKU R, et al. Three-dimensional monolithic integration in flexible printed organic transistors [J]. Nature Communications, 2019, 10(1): 54.
[6] BAUMBAUER C L, ANDERSON M G, TING J, et al. Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics [J]. Scientific Reports, 2020, 10(1): 16543.
[7] KIM J, KIM M, LEE M-S, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics [J]. Nature Communications, 2017, 8(1): 14997.
[8] XU W, MIN S-Y, HWANG H, et al. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption [J]. Science Advances, 2016, 2(6): e1501326.
[9] JIANG L, DONG H, MENG Q, et al. Millimeter-Sized Molecular Monolayer Two-Dimensional Crystals [J]. Advanced Materials, 2011, 23(18): 2059-2063.
[10] MINEMAWARI H, YAMADA T, MATSUI H, et al. Inkjet printing of single-crystal films [J]. Nature, 2011, 475(7356): 364-367.
[11] LIM J A, KIM J-H, QIU L, et al. Inkjet-Printed Single-Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers [J]. Advanced Functional Materials, 2010, 20(19): 3292-3297.
[12] LIM J A, LEE W H, LEE H S, et al. Self-Organization of Ink-jet-Printed Triisopropylsilylethynyl Pentacene via Evaporation-Induced Flows in a Drying Droplet [J]. Advanced Functional Materials, 2008, 18(2): 229-234.
[13] RIGAS G-P, PAYNE M M, ANTHONY J E, et al. Spray printing of organic semiconducting single crystals [J]. Nature Communications, 2016, 7(1): 13531.
[14] LI Y, JI D, LIU J, et al. Quick Fabrication of Large-area Organic Semiconductor Single Crystal Arrays with a Rapid Annealing Self-Solution-Shearing Method [J]. Scientific Reports, 2015, 5(1): 13195.
[15] FU B, YANG F, SUN L, et al. Challenging Bendable Organic Single Crystal and Transistor Arrays with High Mobility and Durability toward Flexible Electronics [J]. Advanced Materials, 2022, 34(39): 2203330.
[16] LI H, TEE B C K, CHA J J, et al. High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C60 Single Crystals [J]. Journal of the American Chemical Society, 2012, 134(5): 2760-2765.
[17] TIAN Y, LIU Y, PENG Z, et al. Air entrapment of a neutral drop impacting onto a flat solid surface in electric fields [J]. Journal of Fluid Mechanics, 2022, 946: A21.
[18] FRATERS A, VAN DEN BERG M, DE LOORE Y, et al. Inkjet Nozzle Failure by Heterogeneous Nucleation: Bubble Entrainment, Cavitation, and Diffusive Growth [J]. Physical Review Applied, 2019, 12(6): 064019.
[19] LOHSE D. Fundamental Fluid Dynamics Challenges in Inkjet Printing [J]. Annual Review of Fluid Mechanics, 2022, 54(1): 349-382.
[20] YANG P, ZHAI T, YU B, et al. Toward all aerosol printing of high-efficiency organic solar cells using environmentally friendly solvents in ambient air [J]. Journal of Materials Chemistry A, 2021, 9(32): 17198-17210.
[21] XIA H, YU B, CHANG K, et al. Shaping electrospray deposition profile by a quadrupole: From circular to elliptical patterns [J]. Journal of Aerosol Science, 2021, 154: 105739.
[22] CHANG K, LI Y, XIA H, et al. Organic Photovoltaics Printed via Sheet Electrospray Enabled by Quadrupole Electrodes [J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56375-56384.
[23] LI Y, CHANG K, CHANG J, et al. Printed Kirigami Organic Photovoltaics for Efficient Solar Tracking [J]. Advanced Functional Materials, 32(34): 2204004.
[24] RIVNAY J, JIMISON L H, NORTHRUP J E, et al. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films [J]. Nature Materials, 2009, 8(12): 952-958.
[25] BECERRIL H A, ROBERTS M E, LIU Z, et al. High-Performance Organic Thin-Film Transistors through Solution-Sheared Deposition of Small-Molecule Organic Semiconductors [J]. Advanced Materials, 2008, 20(13): 2588-2594.
[26] PENG B, WANG Z, CHAN P K L. A simulation-assisted solution-processing method for a large-area, high-performance C10-DNTT organic semiconductor crystal [J]. Journal of Materials Chemistry C, 2016, 4(37): 8628-8633.
[27] DING X, LIU J, HARRIS T A L. A review of the operating limits in slot die coating processes [J]. AIChE Journal, 2016, 62(7): 2508-2524.
[28] ZHANG K, WANG Z, MARSZALEK T, et al. Key role of the meniscus shape in crystallization of organic semiconductors during meniscus-guided coating [J]. Materials Horizons, 2020, 7(6): 1631-1640.
[29] WANG Z, GUO H, LI J, et al. Marangoni Effect-Controlled Growth of Oriented Film for High Performance C8-BTBT Transistors [J]. Advanced Materials Interfaces, 2019, 6(8): 1801736.
[30] LIN F-J, GUO C, CHUANG W-T, et al. Directional Solution Coating by the Chinese Brush: A Facile Approach to Improving Molecular Alignment for High-Performance Polymer TFTs [J]. Advanced Materials, 2017, 29(34): 1606987.
[31] ZHONG M, LI Y, DU G, et al. Soft Porous Blade Printing of Nonfullerene Organic Solar Cells [J]. ACS applied materials & interfaces, 2020, 12(23): 25843-25852.
[32] DU G, WANG Z, ZHAI T, et al. Flow-Enhanced Flexible Microcomb Printing of Organic Solar Cells [J]. ACS Applied Materials & Interfaces, 2022, 14(11): 13572-13583.
[33] JANG H, OH S, BAEK S, et al. Design Strategies in the Pen-Printing Technique toward Elaborated Organic Electronics [J]. The Journal of Physical Chemistry C, 2019, 123(9): 5255-5263.
[34] KANG B, MIN H, SEO U, et al. Directly drawn organic transistors by capillary pen: a new facile patterning method using capillary action for soluble organic materials [J]. Advanced Materials, 2013, 25(30): 4117-4122.
[35] WANG Y, CHEN L, WANG Q, et al. Solution-processed organic crystals written directly with a rollerball pen for field-effect transistors [J]. Organic Electronics, 2014, 15(10): 2234-2239.
[36] GIRI G, VERPLOEGEN E, MANNSFELD S C B, et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain [J]. Nature, 2011, 480(7378): 504-508.
[37] NIAZI M R, LI R, QIANG LI E, et al. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals [J]. Nature Communications, 2015, 6(1): 8598.
[38] BUCELLA S G, LUZIO A, GANN E, et al. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics [J]. Nature Communications, 2015, 6(1): 8394.
[39] PECORARIO S, SCACCABAROZZI A D, FAZZI D, et al. Stable and Solution-Processable Cumulenic sp-Carbon Wires: A New Paradigm for Organic Electronics [J]. Advanced Materials, 2022, 34(15): 2110468.
[40] ZHANG Z, PENG B, JI X, et al. Marangoni-Effect-Assisted Bar-Coating Method for High-Quality Organic Crystals with Compressive and Tensile Strains [J]. Advanced Functional Materials, 2017, 27(37): 1703443.
[41] KIM J-O, LEE J-C, KIM M-J, et al. Inorganic Polymer Micropillar-Based Solution Shearing of Large-Area Organic Semiconductor Thin Films with Pillar-Size-Dependent Crystal Size [J]. Advanced Materials, 2018, 30(29): 1800647.
[42] WANG W, WANG L, DAI G, et al. Controlled Growth of Large-Area Aligned Single-Crystalline Organic Nanoribbon Arrays for Transistors and Light-Emitting Diodes Driving [J]. Nano-micro letters, 2017, 9(4): 52.
[43] CHEN S, MA X, CAI Z, et al. A Direct Writing Approach for Organic Semiconductor Single-Crystal Patterns with Unique Orientation [J]. Advanced Materials, 2022, 34(17): 2200928.
[44] PATEL B B, DIAO Y. Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces [J]. Nanotechnology, 2018, 29(4): 044004.
[45] ZHAO W, JIE J, WEI Q, et al. A Facile Method for the Growth of Organic Semiconductor Single Crystal Arrays on Polymer Dielectric toward Flexible Field-Effect Transistors [J]. Advanced Functional Materials, 2019, 29(32): 1902494.
[46] KIM K, OH S M, HONG J, et al. Electrohydrodynamic jet printing of small-molecule semiconductor crystals on chemically patterned surface for high-performance organic field-effect transistors [J]. Materials Chemistry and Physics, 2022, 285: 126165.
[47] DENG W, ZHANG X, DONG H, et al. Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors [J]. Materials Today, 2019, 24: 17-25.
[48] DENG W, LV Y, ZHANG X, et al. High-resolution patterning of organic semiconductor single crystal arrays for high-integration organic field-effect transistors [J]. Materials Today, 2020, 40: 82-90.
[49] DIAO Y, TEE B C K, GIRI G, et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains [J]. Nature Materials, 2013, 12(7): 665-671.
[50] DIAO Y, ZHOU Y, KUROSAWA T, et al. Flow-enhanced solution printing of all-polymer solar cells [J]. Nature communications, 2015, 6: 7955.
[51] WANG G, FENG L-W, HUANG W, et al. Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems [J]. Proceedings of the National Academy of Sciences, 2020, 117(30): 17551-17557.
[52] XU J, WU H-C, ZHU C, et al. Multi-scale ordering in highly stretchable polymer semiconducting films [J]. Nature Materials, 2019, 18(6): 594-601.
[53] PARK K S, BAEK J, KOO LEE Y-E, et al. Fabrication of a wafer-scale uniform array of single-crystal organic nanowire complementary inverters by nanotransfer printing [J]. Nano Convergence, 2015, 2(1): 4.
[54] NAKAYAMA K, HIROSE Y, SOEDA J, et al. Patternable Solution-Crystallized Organic Transistors with High Charge Carrier Mobility [J]. Advanced Materials, 2011, 23(14): 1626-1629.
[55] BRISENO A L, MANNSFELD S C B, LING M M, et al. Patterning organic single-crystal transistor arrays [J]. Nature, 2006, 444(7121): 913-917.
[56] CHEN Z, DUAN S, ZHANG X, et al. Organic Semiconductor Crystal Engineering for High-Resolution Layer-Controlled 2D Crystal Arrays [J]. Advanced Materials, 2022, 34(22): 2104166.
[57] DENG W, LEI H, ZHANG X, et al. Scalable Growth of Organic Single-Crystal Films via an Orientation Filter Funnel for High-Performance Transistors with Excellent Uniformity [J]. Advanced Materials, 2022, 34(13): 2109818.
[58] GU X, SHAW L, GU K, et al. The meniscus-guided deposition of semiconducting polymers [J]. Nature Communications, 2018, 9(1): 534.
[59] LEE J-C, SEO H, LEE M, et al. Investigation of the Effect of 3D Meniscus Geometry on Fluid Dynamics and Crystallization via In Situ Optical Microscopy-Assisted Mathematical Modeling [J]. Advanced Materials, 2022, 34(1): 2105035.
[60] KIM O, NAM J. Confinement effects in dip coating [J]. Journal of Fluid Mechanics, 2017, 827: 1-30.
[61] YILDIZ O, WANG Z, BORKOWSKI M, et al. Optimized Charge Transport in Molecular Semiconductors by Control of Fluid Dynamics and Crystallization in Meniscus-Guided Coating [J]. Advanced Functional Materials, 2022, 32(2): 2107976.
[62] DINELLI F, MURGIA M, LEVY P, et al. Spatially Correlated Charge Transport in Organic Thin Film Transistors [J]. Physical Review Letters, 2004, 92(11): 116802.
[63] LANDAU L, LEVICH B. Dragging of a Liquid by a Moving Plate [M]//PELCé P. Dynamics of Curved Fronts. San Diego; Academic Press. 1988: 141-153.
[64] BERTELOOT G, PHAM C T, DAERR A, et al. Evaporation-induced flow near a contact line: Consequences on coating and contact angle [J]. EPL (Europhysics Letters), 2008, 83(1): 14003.
[65] LE BERRE M, CHEN Y, BAIGL D. From Convective Assembly to Landau−Levich Deposition of Multilayered Phospholipid Films of Controlled Thickness [J]. Langmuir, 2009, 25(5): 2554-2557.
[66] MALEKI M, REYSSAT M, RESTAGNO F, et al. Landau–Levich menisci [J]. Journal of Colloid and Interface Science, 2011, 354(1): 359-363.
[67] FAUSTINI M, LOUIS B, ALBOUY P A, et al. Preparation of Sol−Gel Films by Dip-Coating in Extreme Conditions [J]. The Journal of Physical Chemistry C, 2010, 114(17): 7637-7645.
[68] RUIZ R, PAPADIMITRATOS A, MAYER A C, et al. Thickness Dependence of Mobility in Pentacene Thin-Film Transistors [J]. Advanced Materials, 2005, 17(14): 1795-1798.
[69] GENNES P G D, BROCHARD-WYART F, QUéRé D. Dynamics of Impregnation [M]//GENNES P G D. Capillarity and Wetting Phenomena. New York; Springer. 2004: 129-133.
[70] MASOODI R, PILLAI K M. Darcy's law-based model for wicking in paper-like swelling porous media [J]. AIChE Journal, 2010, 56(9): 2257-2267.
[71] GENNES P G D, BROCHARD-WYART F, QUéRé D. Minimal Surfaces With Zero Curvature [M]//GENNES P G D. Capillarity and Wetting Phenomena. New York; Springer. 2004: 13-14.
[72] DEEGAN R, BAKAJIN O, DUPONT T, et al. Capillary Flow as the Cause of Ring Stains From Dried Liquid Drops [J]. Nature, 1997, 389: 827-829.
[73] MAMPALLIL D, ERAL H B. A review on suppression and utilization of the coffee-ring effect [J]. Advances in Colloid and Interface Science, 2018, 252: 38-54.
[74] YUNKER P J, STILL T, LOHR M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions [J]. Nature, 2011, 476(7360): 308-311.
[75] MARANGONI C. Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen [J]. Annalen der Physik, 1871, 219(7): 337-354.
[76] HU H, LARSON R G. Marangoni Effect Reverses Coffee-Ring Depositions [J]. The Journal of Physical Chemistry B, 2006, 110(14): 7090-7094.
[77] MUKAI K. Interfacial phenomena, metals processing and properties [M]//SEETHARAMAN S. Fundamentals of Metallurgy. Woodhead Publishing. 2005: 237-269.
[78] GENNES P G D, BROCHARD-WYART F, QUéRé D. Forced Wetting [M]//GENNES P G D. Capillarity and Wetting Phenomena. New York; Springer. 2004: 122-129.
[79] WANG C, DONG H, JIANG L, et al. Organic semiconductor crystals [J]. Chemical Society Reviews, 2018, 47(2): 422-500.
[80] KLENTZMAN J, AJAEV V S. The effect of evaporation on fingering instabilities [J]. Physics of Fluids, 2009, 21(12): 122101.
[81] YE Y, CHANG H-C. A spectral theory for fingering on a prewetted plane [J]. Physics of Fluids, 1999, 11(9): 2494-2515.
[82] MOUAT A P, WOOD C E, PYE J E, et al. Tuning Contact Line Dynamics and Deposition Patterns in Volatile Liquid Mixtures [J]. Physical Review Letters, 2020, 124(6): 064502.
[83] CAZABAT A M, HESLOT F, TROIAN S M, et al. Fingering instability of thin spreading films driven by temperature gradients [J]. Nature, 1990, 346(6287): 824-826.
[84] LEIZERSON I, LIPSON S G, LYUSHNIN A V. Finger Instability in Wetting−Dewetting Phenomena [J]. Langmuir, 2004, 20(2): 291-294.
[85] JUEL A. Flattened fingers [J]. Nature Physics, 2012, 8(10): 706-707.
[86] TEIXEIRA DA ROCHA C, QU G, YANG X, et al. Mitigating Meniscus Instabilities in Solution-Sheared Polymer Films for Organic Field-Effect Transistors [J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30079-30088.
修改评论