中文版 | English
题名

直写单晶制备高性能有机场效应晶体管

其他题名
DIRECT WRITING OF SINGLE CRYSTALS FOR HIGH-PERFORMANCE ORGANIC FIELD EFFECT TRANSISTORS
姓名
姓名拼音
LIU Bingyang
学号
12032801
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
邓巍巍
导师单位
力学与航空航天工程系
外机构导师单位
南方科技大学
论文答辩日期
2023-05-16
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

有机场效应晶体管的溶液法制备工艺对于柔性电子产业化具有重要意义。使用单晶作为有机场效应晶体管的活性层是提高其性能的关键。然而目前制备有机半导体单晶的工艺存在晶体取向性差、难以大面积生产等问题,阻碍了有机场效应晶体管的进一步应用。

为了制备大面积有机半导体单晶,本文基于弯月面引导涂布法,提出一种直写单晶制备有机场效应晶体管的新工艺。基于芯吸理论和狭缝供液理论,设计了一种柔性直写笔。该装置可以直接接触基底,形成稳定可控的弯月面。可拓展成多路复用和刷子形态,实现单路、多路、大面积单晶制备。既能满足精细图案化需求,又能实现多路并行及大面积刷涂,提高生产效率。

弯月面及其稳定性是决定晶体形貌长程有序性和取向性的关键。本文分析弯月面内流动规律和弯月面外的蒸发沉积规律。建立固体薄膜的蒸发沉积的数学模型。基于多物理场仿真分析软件STAR-CCM+建立本工艺的数值模型,验证弯月面流动规律。

为了解蒸发结晶的动态过程,建立原位拍摄系统,实时捕捉涂布过程,分析流体流动对晶体形貌的影响。关注“弯月面-前驱膜-接触线-晶体”这一重要结构,分析前驱膜失稳和无序晶体的对应关系。通过涂布速度和基板温度的正交实验探索最优工艺参数,为制作器件提供指导。

制备有机场效应晶体管器件,最高迁移率为0.60 cm2V-1s-1分析迁移率与晶体取向角的关系,讨论使用多路复用和大面积刷涂形态时器件迁移率一致性,论证本工艺提高生产效率的能力。本文提出的柔性直写装置,为有机半导体单晶及晶体管器件的大面积、低成本、高产量制备提供理论、数值和实验基础。

其他摘要

The solution processing of organic field-effect transistors is significant for the industrialization of flexible electronics. Utilizing single crystals as the active layer of OFETs is essential to improve their performance. However, the existing methods for preparing organic semiconductor single crystals encounters obstacles such as poor crystal orientation and difficulties in achieving large-scale production, thereby impeding the further development of OFETs.

To prepare organic semiconductor single crystals on a large scale, this thesis proposes a novel process for direct-writing single crystals based on meniscus-guided coating. A flexible direct-writing pen is designed based on the Lucas-Washburn Law and slot’s liquid supply theory. The direct-writing pen enables direct contact the substrate, facilitating the formation of a stable and controllable meniscus. In addition, the direct-writing pen can be extended to multiplexed and brush-like configurations to enable large-scale fabrication of single crystals.

The meniscus and its stability play a pivotal role in determining the long-range ordered crystal with high orientation. The flow field inside the meniscus and the deposition pattern outside the meniscus was analyzed. Leveraging the multi-physics simulation software STAR-CCM+, a numerical model is established to visualize the flow field of the meniscus.

In order to comprehend the dynamic crystallization process, an in-situ observation system is implemented to capture real-time crystallization. This allows for an analysis of the influence of fluid flow on crystal morphology. The important structure of "meniscus--precursor--contact line--crystal" is focused on, and the corresponding relationship between the instability of the precursor and the disorder of the crystal is analyzed. Furthermore, an orthogonal experiment involving coating speed and substrate temperature is conducted to explore the optimal process parameters, thereby providing guidance for device fabrication.

OFET devices are fabricated and the highest mobility is 0.60 cm2V-1s-1. The relationship between mobility and crystal orientation angle is analyzed, and the consistency of device mobilities based on multiplexed configuration is discussed. This demonstrates the capability of the proposed approach to increase throughput while maintaining high consistency. The flexible direct-writing apparatus presented in this thesis establishes a theoretical, numerical, and experimental foundation for the low-cost, large-scale, and high throughput of organic semiconductor single crystals and OFET devices.

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] TSUMURA A, KOEZUKA H, ANDO T. Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film [J]. Applied Physics Letters, 1986, 49(18): 1210-1212.
[2] YAGI I, HIRAI N, MIYAMOTO Y, et al. A flexible full-color AMOLED display driven by OTFTs [J]. Journal of the Society for Information Display, 2008, 16(1): 15-20.
[3] WANG B, XU J, WANG W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array [J]. Nature, 2018, 555(7694): 83-88.
[4] ZANG Y, ZHANG F, HUANG D, et al. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection [J]. Nature Communications, 2015, 6(1): 6269.
[5] KWON J, TAKEDA Y, SHIWAKU R, et al. Three-dimensional monolithic integration in flexible printed organic transistors [J]. Nature Communications, 2019, 10(1): 54.
[6] BAUMBAUER C L, ANDERSON M G, TING J, et al. Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics [J]. Scientific Reports, 2020, 10(1): 16543.
[7] KIM J, KIM M, LEE M-S, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics [J]. Nature Communications, 2017, 8(1): 14997.
[8] XU W, MIN S-Y, HWANG H, et al. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption [J]. Science Advances, 2016, 2(6): e1501326.
[9] JIANG L, DONG H, MENG Q, et al. Millimeter-Sized Molecular Monolayer Two-Dimensional Crystals [J]. Advanced Materials, 2011, 23(18): 2059-2063.
[10] MINEMAWARI H, YAMADA T, MATSUI H, et al. Inkjet printing of single-crystal films [J]. Nature, 2011, 475(7356): 364-367.
[11] LIM J A, KIM J-H, QIU L, et al. Inkjet-Printed Single-Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers [J]. Advanced Functional Materials, 2010, 20(19): 3292-3297.
[12] LIM J A, LEE W H, LEE H S, et al. Self-Organization of Ink-jet-Printed Triisopropylsilylethynyl Pentacene via Evaporation-Induced Flows in a Drying Droplet [J]. Advanced Functional Materials, 2008, 18(2): 229-234.
[13] RIGAS G-P, PAYNE M M, ANTHONY J E, et al. Spray printing of organic semiconducting single crystals [J]. Nature Communications, 2016, 7(1): 13531.
[14] LI Y, JI D, LIU J, et al. Quick Fabrication of Large-area Organic Semiconductor Single Crystal Arrays with a Rapid Annealing Self-Solution-Shearing Method [J]. Scientific Reports, 2015, 5(1): 13195.
[15] FU B, YANG F, SUN L, et al. Challenging Bendable Organic Single Crystal and Transistor Arrays with High Mobility and Durability toward Flexible Electronics [J]. Advanced Materials, 2022, 34(39): 2203330.
[16] LI H, TEE B C K, CHA J J, et al. High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C60 Single Crystals [J]. Journal of the American Chemical Society, 2012, 134(5): 2760-2765.
[17] TIAN Y, LIU Y, PENG Z, et al. Air entrapment of a neutral drop impacting onto a flat solid surface in electric fields [J]. Journal of Fluid Mechanics, 2022, 946: A21.
[18] FRATERS A, VAN DEN BERG M, DE LOORE Y, et al. Inkjet Nozzle Failure by Heterogeneous Nucleation: Bubble Entrainment, Cavitation, and Diffusive Growth [J]. Physical Review Applied, 2019, 12(6): 064019.
[19] LOHSE D. Fundamental Fluid Dynamics Challenges in Inkjet Printing [J]. Annual Review of Fluid Mechanics, 2022, 54(1): 349-382.
[20] YANG P, ZHAI T, YU B, et al. Toward all aerosol printing of high-efficiency organic solar cells using environmentally friendly solvents in ambient air [J]. Journal of Materials Chemistry A, 2021, 9(32): 17198-17210.
[21] XIA H, YU B, CHANG K, et al. Shaping electrospray deposition profile by a quadrupole: From circular to elliptical patterns [J]. Journal of Aerosol Science, 2021, 154: 105739.
[22] CHANG K, LI Y, XIA H, et al. Organic Photovoltaics Printed via Sheet Electrospray Enabled by Quadrupole Electrodes [J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56375-56384.
[23] LI Y, CHANG K, CHANG J, et al. Printed Kirigami Organic Photovoltaics for Efficient Solar Tracking [J]. Advanced Functional Materials, 32(34): 2204004.
[24] RIVNAY J, JIMISON L H, NORTHRUP J E, et al. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films [J]. Nature Materials, 2009, 8(12): 952-958.
[25] BECERRIL H A, ROBERTS M E, LIU Z, et al. High-Performance Organic Thin-Film Transistors through Solution-Sheared Deposition of Small-Molecule Organic Semiconductors [J]. Advanced Materials, 2008, 20(13): 2588-2594.
[26] PENG B, WANG Z, CHAN P K L. A simulation-assisted solution-processing method for a large-area, high-performance C10-DNTT organic semiconductor crystal [J]. Journal of Materials Chemistry C, 2016, 4(37): 8628-8633.
[27] DING X, LIU J, HARRIS T A L. A review of the operating limits in slot die coating processes [J]. AIChE Journal, 2016, 62(7): 2508-2524.
[28] ZHANG K, WANG Z, MARSZALEK T, et al. Key role of the meniscus shape in crystallization of organic semiconductors during meniscus-guided coating [J]. Materials Horizons, 2020, 7(6): 1631-1640.
[29] WANG Z, GUO H, LI J, et al. Marangoni Effect-Controlled Growth of Oriented Film for High Performance C8-BTBT Transistors [J]. Advanced Materials Interfaces, 2019, 6(8): 1801736.
[30] LIN F-J, GUO C, CHUANG W-T, et al. Directional Solution Coating by the Chinese Brush: A Facile Approach to Improving Molecular Alignment for High-Performance Polymer TFTs [J]. Advanced Materials, 2017, 29(34): 1606987.
[31] ZHONG M, LI Y, DU G, et al. Soft Porous Blade Printing of Nonfullerene Organic Solar Cells [J]. ACS applied materials & interfaces, 2020, 12(23): 25843-25852.
[32] DU G, WANG Z, ZHAI T, et al. Flow-Enhanced Flexible Microcomb Printing of Organic Solar Cells [J]. ACS Applied Materials & Interfaces, 2022, 14(11): 13572-13583.
[33] JANG H, OH S, BAEK S, et al. Design Strategies in the Pen-Printing Technique toward Elaborated Organic Electronics [J]. The Journal of Physical Chemistry C, 2019, 123(9): 5255-5263.
[34] KANG B, MIN H, SEO U, et al. Directly drawn organic transistors by capillary pen: a new facile patterning method using capillary action for soluble organic materials [J]. Advanced Materials, 2013, 25(30): 4117-4122.
[35] WANG Y, CHEN L, WANG Q, et al. Solution-processed organic crystals written directly with a rollerball pen for field-effect transistors [J]. Organic Electronics, 2014, 15(10): 2234-2239.
[36] GIRI G, VERPLOEGEN E, MANNSFELD S C B, et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain [J]. Nature, 2011, 480(7378): 504-508.
[37] NIAZI M R, LI R, QIANG LI E, et al. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals [J]. Nature Communications, 2015, 6(1): 8598.
[38] BUCELLA S G, LUZIO A, GANN E, et al. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics [J]. Nature Communications, 2015, 6(1): 8394.
[39] PECORARIO S, SCACCABAROZZI A D, FAZZI D, et al. Stable and Solution-Processable Cumulenic sp-Carbon Wires: A New Paradigm for Organic Electronics [J]. Advanced Materials, 2022, 34(15): 2110468.
[40] ZHANG Z, PENG B, JI X, et al. Marangoni-Effect-Assisted Bar-Coating Method for High-Quality Organic Crystals with Compressive and Tensile Strains [J]. Advanced Functional Materials, 2017, 27(37): 1703443.
[41] KIM J-O, LEE J-C, KIM M-J, et al. Inorganic Polymer Micropillar-Based Solution Shearing of Large-Area Organic Semiconductor Thin Films with Pillar-Size-Dependent Crystal Size [J]. Advanced Materials, 2018, 30(29): 1800647.
[42] WANG W, WANG L, DAI G, et al. Controlled Growth of Large-Area Aligned Single-Crystalline Organic Nanoribbon Arrays for Transistors and Light-Emitting Diodes Driving [J]. Nano-micro letters, 2017, 9(4): 52.
[43] CHEN S, MA X, CAI Z, et al. A Direct Writing Approach for Organic Semiconductor Single-Crystal Patterns with Unique Orientation [J]. Advanced Materials, 2022, 34(17): 2200928.
[44] PATEL B B, DIAO Y. Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces [J]. Nanotechnology, 2018, 29(4): 044004.
[45] ZHAO W, JIE J, WEI Q, et al. A Facile Method for the Growth of Organic Semiconductor Single Crystal Arrays on Polymer Dielectric toward Flexible Field-Effect Transistors [J]. Advanced Functional Materials, 2019, 29(32): 1902494.
[46] KIM K, OH S M, HONG J, et al. Electrohydrodynamic jet printing of small-molecule semiconductor crystals on chemically patterned surface for high-performance organic field-effect transistors [J]. Materials Chemistry and Physics, 2022, 285: 126165.
[47] DENG W, ZHANG X, DONG H, et al. Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors [J]. Materials Today, 2019, 24: 17-25.
[48] DENG W, LV Y, ZHANG X, et al. High-resolution patterning of organic semiconductor single crystal arrays for high-integration organic field-effect transistors [J]. Materials Today, 2020, 40: 82-90.
[49] DIAO Y, TEE B C K, GIRI G, et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains [J]. Nature Materials, 2013, 12(7): 665-671.
[50] DIAO Y, ZHOU Y, KUROSAWA T, et al. Flow-enhanced solution printing of all-polymer solar cells [J]. Nature communications, 2015, 6: 7955.
[51] WANG G, FENG L-W, HUANG W, et al. Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems [J]. Proceedings of the National Academy of Sciences, 2020, 117(30): 17551-17557.
[52] XU J, WU H-C, ZHU C, et al. Multi-scale ordering in highly stretchable polymer semiconducting films [J]. Nature Materials, 2019, 18(6): 594-601.
[53] PARK K S, BAEK J, KOO LEE Y-E, et al. Fabrication of a wafer-scale uniform array of single-crystal organic nanowire complementary inverters by nanotransfer printing [J]. Nano Convergence, 2015, 2(1): 4.
[54] NAKAYAMA K, HIROSE Y, SOEDA J, et al. Patternable Solution-Crystallized Organic Transistors with High Charge Carrier Mobility [J]. Advanced Materials, 2011, 23(14): 1626-1629.
[55] BRISENO A L, MANNSFELD S C B, LING M M, et al. Patterning organic single-crystal transistor arrays [J]. Nature, 2006, 444(7121): 913-917.
[56] CHEN Z, DUAN S, ZHANG X, et al. Organic Semiconductor Crystal Engineering for High-Resolution Layer-Controlled 2D Crystal Arrays [J]. Advanced Materials, 2022, 34(22): 2104166.
[57] DENG W, LEI H, ZHANG X, et al. Scalable Growth of Organic Single-Crystal Films via an Orientation Filter Funnel for High-Performance Transistors with Excellent Uniformity [J]. Advanced Materials, 2022, 34(13): 2109818.
[58] GU X, SHAW L, GU K, et al. The meniscus-guided deposition of semiconducting polymers [J]. Nature Communications, 2018, 9(1): 534.
[59] LEE J-C, SEO H, LEE M, et al. Investigation of the Effect of 3D Meniscus Geometry on Fluid Dynamics and Crystallization via In Situ Optical Microscopy-Assisted Mathematical Modeling [J]. Advanced Materials, 2022, 34(1): 2105035.
[60] KIM O, NAM J. Confinement effects in dip coating [J]. Journal of Fluid Mechanics, 2017, 827: 1-30.
[61] YILDIZ O, WANG Z, BORKOWSKI M, et al. Optimized Charge Transport in Molecular Semiconductors by Control of Fluid Dynamics and Crystallization in Meniscus-Guided Coating [J]. Advanced Functional Materials, 2022, 32(2): 2107976.
[62] DINELLI F, MURGIA M, LEVY P, et al. Spatially Correlated Charge Transport in Organic Thin Film Transistors [J]. Physical Review Letters, 2004, 92(11): 116802.
[63] LANDAU L, LEVICH B. Dragging of a Liquid by a Moving Plate [M]//PELCé P. Dynamics of Curved Fronts. San Diego; Academic Press. 1988: 141-153.
[64] BERTELOOT G, PHAM C T, DAERR A, et al. Evaporation-induced flow near a contact line: Consequences on coating and contact angle [J]. EPL (Europhysics Letters), 2008, 83(1): 14003.
[65] LE BERRE M, CHEN Y, BAIGL D. From Convective Assembly to Landau−Levich Deposition of Multilayered Phospholipid Films of Controlled Thickness [J]. Langmuir, 2009, 25(5): 2554-2557.
[66] MALEKI M, REYSSAT M, RESTAGNO F, et al. Landau–Levich menisci [J]. Journal of Colloid and Interface Science, 2011, 354(1): 359-363.
[67] FAUSTINI M, LOUIS B, ALBOUY P A, et al. Preparation of Sol−Gel Films by Dip-Coating in Extreme Conditions [J]. The Journal of Physical Chemistry C, 2010, 114(17): 7637-7645.
[68] RUIZ R, PAPADIMITRATOS A, MAYER A C, et al. Thickness Dependence of Mobility in Pentacene Thin-Film Transistors [J]. Advanced Materials, 2005, 17(14): 1795-1798.
[69] GENNES P G D, BROCHARD-WYART F, QUéRé D. Dynamics of Impregnation [M]//GENNES P G D. Capillarity and Wetting Phenomena. New York; Springer. 2004: 129-133.
[70] MASOODI R, PILLAI K M. Darcy's law-based model for wicking in paper-like swelling porous media [J]. AIChE Journal, 2010, 56(9): 2257-2267.
[71] GENNES P G D, BROCHARD-WYART F, QUéRé D. Minimal Surfaces With Zero Curvature [M]//GENNES P G D. Capillarity and Wetting Phenomena. New York; Springer. 2004: 13-14.
[72] DEEGAN R, BAKAJIN O, DUPONT T, et al. Capillary Flow as the Cause of Ring Stains From Dried Liquid Drops [J]. Nature, 1997, 389: 827-829.
[73] MAMPALLIL D, ERAL H B. A review on suppression and utilization of the coffee-ring effect [J]. Advances in Colloid and Interface Science, 2018, 252: 38-54.
[74] YUNKER P J, STILL T, LOHR M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions [J]. Nature, 2011, 476(7360): 308-311.
[75] MARANGONI C. Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen [J]. Annalen der Physik, 1871, 219(7): 337-354.
[76] HU H, LARSON R G. Marangoni Effect Reverses Coffee-Ring Depositions [J]. The Journal of Physical Chemistry B, 2006, 110(14): 7090-7094.
[77] MUKAI K. Interfacial phenomena, metals processing and properties [M]//SEETHARAMAN S. Fundamentals of Metallurgy. Woodhead Publishing. 2005: 237-269.
[78] GENNES P G D, BROCHARD-WYART F, QUéRé D. Forced Wetting [M]//GENNES P G D. Capillarity and Wetting Phenomena. New York; Springer. 2004: 122-129.
[79] WANG C, DONG H, JIANG L, et al. Organic semiconductor crystals [J]. Chemical Society Reviews, 2018, 47(2): 422-500.
[80] KLENTZMAN J, AJAEV V S. The effect of evaporation on fingering instabilities [J]. Physics of Fluids, 2009, 21(12): 122101.
[81] YE Y, CHANG H-C. A spectral theory for fingering on a prewetted plane [J]. Physics of Fluids, 1999, 11(9): 2494-2515.
[82] MOUAT A P, WOOD C E, PYE J E, et al. Tuning Contact Line Dynamics and Deposition Patterns in Volatile Liquid Mixtures [J]. Physical Review Letters, 2020, 124(6): 064502.
[83] CAZABAT A M, HESLOT F, TROIAN S M, et al. Fingering instability of thin spreading films driven by temperature gradients [J]. Nature, 1990, 346(6287): 824-826.
[84] LEIZERSON I, LIPSON S G, LYUSHNIN A V. Finger Instability in Wetting−Dewetting Phenomena [J]. Langmuir, 2004, 20(2): 291-294.
[85] JUEL A. Flattened fingers [J]. Nature Physics, 2012, 8(10): 706-707.
[86] TEIXEIRA DA ROCHA C, QU G, YANG X, et al. Mitigating Meniscus Instabilities in Solution-Sheared Polymer Films for Organic Field-Effect Transistors [J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30079-30088.

所在学位评定分委会
力学
国内图书分类号
O368
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544139
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
刘炳杨. 直写单晶制备高性能有机场效应晶体管[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032801-刘炳杨-力学与航空航天(11115KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘炳杨]的文章
百度学术
百度学术中相似的文章
[刘炳杨]的文章
必应学术
必应学术中相似的文章
[刘炳杨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。