[1] BJöRNSON E, ÖZDOGAN ff, LARSSON E G. Intelligent reflecting surface versus decode-and-forward: how large surfaces are needed to beat relaying?[J]. IEEE Wireless Communications Letters, 2020, 9(2): 244-248.
[2] WU Q, ZHANG S, ZHENG B, et al. Intelligent reflecting surface aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021.
[3] CAI W, LI H, LI M, et al. Practical modeling and beamforming for intelligent reflecting surface aided wideband systems[J]. IEEE Communications Letters, 2020, 24(7): 1568-1571.
[4] ÖZDOGAN Ö, BJÖRNSON E, LARSSON E G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling[J]. IEEE Wireless Communications Letters, 2019, 9(5): 581-585.
[5] WANG P, FANG J, DUAN H, et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J]. IEEE Signal Processing Letters, 2020, 27: 905-909.
[6] ZHANG Z, ZHANG C, JIANG C, et al. Improving physical layer security for reconfigurable intelligent surface aided NOMA 6G networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4451-4463.
[7] XU S, LIU J, RODRIGUES T K, et al. Envisioning intelligent reflecting surface empowered space-air-ground integrated network[J]. IEEE Network, 2021, 35(6): 225-232.
[8] BASHARAT S, HASSAN S A, MAHMOOD A, et al. Reconfigurable intelligent surfaceassisted backscatter communication: A new frontier for enabling 6G IoT networks[J]. IEEE Wireless Communications, 2022.
[9] WYMEERSCH H, HE J, DENIS B, et al. Radio localization and mapping with reconfigurable intelligent surfaces: Challenges, opportunities, and research directions[J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 52-61.
[10] ALWAZANI H, KAMMOUN A, CHAABAN A, et al. Intelligent reflecting surface-assisted multi-user MISO communication: Channel estimation and beamforming design[J]. IEEE Open Journal of the Communications Society, 2020, 1: 661-680.
[11] CHEN J, LIANG Y C, PEI Y, et al. Intelligent reflecting surface: A programmable wireless environment for physical layer security[J]. IEEE Access, 2019, 7: 82599-82612.
[12] ZHOU G, PAN C, REN H, et al. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[J]. IEEE Transactions on Signal Processing, 2020, 68: 5092-5106.
[13] HE J, WYMEERSCH H, KONG L, et al. Large intelligent surface for positioning in millimeter wave MIMO systems[C]//2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE, 2020: 1-5.
[14]FAQIRI R, SAIGRE-TARDIF C, ALEXANDROPOULOS G C, et al. PhysFad: Physics-based end-to-end channel modeling of RIS-parametrized environments with adjustable fading [J]. IEEE Transactions on Wireless Communications, 2022.
[15] WU Q, ZHANG R. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2019, 68(3):1838-1851.
[16] KHALILI A, ZARGARI S, WU Q, et al. Multi-objective resource allocation for IRS-aided SWIPT[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1324-1328.
[17] TANG X, WANG D, ZHANG R, et al. Jamming mitigation via aerial reconfigurable intelligent surface: Passive beamforming and deployment optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6232-6237.
[18] HE M, XU W, ZHAO C. RIS-assisted broad coverage for mmWave massive MIMO system[C]//2021 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2021: 1-6.
[19] HONG S, PAN C, REN H, et al. Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface[J]. IEEE Transactions on Communications, 2020, 68(12): 7851-7866.
[20] HU J, ZHANG H, DI B, et al. Reconfigurable intelligent surface based RF sensing: Design, optimization, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2700-2716.
[21] AUBRY A, DE MAIO A, ROSAMILIA M. Reconfigurable intelligent surfaces for N-LOS radar surveillance[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10735-10749.
[22] CHEN H T, TAYLOR A J, YU N. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401.
[23] ODEYEMI K O, OWOLAWI P A, OLAKANMI O O. Reconfigurable intelligent surface assisted mobile network with randomly moving user over Fisher-Snedecor fading channel[J]. Physical Communication, 2020, 43: 101186.
[24] ELMOSSALLAMY M A, ZHANG H, SONG L, et al. Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 990-1002.
[25] HUANG C, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157-4170.
[26] ZHANG Y, ZHANG J, DI RENZO M, et al. Performance analysis of RIS-aided systems with practical phase shift and amplitude response[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4501-4511.
[27] HAN Y, TANG W, JIN S, et al. Large intelligent surface-assisted wireless communication exploiting statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8238-8242.
[28] DU H, ZHANG J, CHENG J, et al. Millimeter wave communications with reconfigurable intelligent surfaces: Performance analysis and optimization[J]. IEEE Transactions on Communications, 2021, 69(4): 2752-2768.
[29] HUANG C, YANG Z, ALEXANDROPOULOS G C, et al. Multi-hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1663-1677.
[30] CUI M, ZHANG G, ZHANG R. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410-1414.
[31] HUANG C, HU S, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118-125.
[32] LIU Y, LIU X, MU X, et al. Reconfigurable intelligent surfaces: Principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1546-1577.
[33] ABOAGYE S, NDJIONGUE A R, NGATCHED T M, et al. RIS-assisted visible light communication systems: A tutorial[J]. IEEE Communications Surveys & Tutorials, 2022.
[34] HUANG Z, ZHENG B, ZHANG R. Transforming fading channel from fast to slow: IRS-assisted high-mobility communication[C]//ICC 2021-IEEE International Conference on Communications. IEEE, 2021: 1-6.
[35] BASAR E. Reconfigurable intelligent surfaces for Doppler effect and multi-path fading mitigation[J]. frontiers in Communications and Networks, 2021, 2: 672857.
[36] HUANG C, MO R, YUEN C. Reconfigurable intelligent surface assisted multi-user MISO systems exploiting deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1839-1850.
[37] WANG P, FANG J, DAI L, et al. Joint transceiver and large intelligent surface design for massive MIMO mmWave systems[J]. IEEE Transactions on Wireless Communications, 2020, 20(2): 1052-1064.
[38] PAN C, REN H, WANG K, et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5218-5233.
[39] GUO H, LIANG Y C, CHEN J, et al. Weighted sum-rate maximization for intelligent reflecting surface enhanced wireless networks[C]//2019 IEEE Global Communications Conference (GLOBECOM). IEEE, 2019: 1-6.
[40] WU Q, ZHANG R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394-5409.
[41] DI B, ZHANG H, SONG L, et al. Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1809-1822.
[42] HUANG C, ALEXANDROPOULOS G C, ZAPPONE A, et al. Energy efficient multi-user MISO communication using low resolution large intelligent surfaces[C]//2018 IEEE Globecom Workshops (GC Wkshps). IEEE, 2018: 1-6.
[43] ZHANG H, DI B, BIAN K, et al. Toward ubiquitous sensing and localization with reconfigurable intelligent surfaces[J]. Proceedings of the IEEE, 2022, 110(9): 1401-1422.
[44] WILD T, BRAUN V, VISWANATHAN H. Joint design of communication and sensing for beyond 5G and 6G systems[J]. IEEE Access, 2021, 9: 30845-30857.
[45] ZHANG H, DI B, SONG L, et al. Reconfigurable intelligent surface-empowered 6G[M]. Springer, 2021.
[46] YANG Z, CHEN M, SAAD W, et al. Energy-efficient wireless communications with distributed reconfigurable intelligent surfaces[J]. IEEE Transactions on Wireless Communications, 2021, 21(1): 665-679.
[47] TARIQ F, KHANDAKER M R, WONG K K, et al. A speculative study on 6G[J]. IEEE Wireless Communications, 2020, 27(4): 118-125.
[48] WITRISAL K, MEISSNER P, LEITINGER E, et al. High-accuracy localization for assisted living: 5G systems will turn multi-path channels from foe to friend[J]. IEEE Signal Processing Magazine, 2016, 33(2): 59-70.
[49] PADEN B, ČÁP M, YONG S Z, et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 33-55.
[50] WANG P, DI B, ZHANG H, et al. Cellular V2X communications in unlicensed spectrum: Harmonious coexistence with VANET in 5G systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5212-5224.
[51] WANG H, ZHANG D, WANG Y, et al. RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices[J]. IEEE Transactions on Mobile Computing, 2016, 16(2): 511-526.
[52] SHAH S A, FIORANELLI F. RF sensing technologies for assisted daily living in healthcare: A comprehensive review[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(11): 26-44.
[53] LU W, DENG B, FANG Q, et al. Intelligent reflecting surface-enhanced target detection in MIMO radar[J]. IEEE Sensors Letters, 2021, 5(2): 1-4.
[54] BUZZI S, GROSSI E, LOPS M, et al. Radar target detection aided by reconfigurable intelligent surfaces[J]. IEEE Signal Processing Letters, 2021, 28: 1315-1319.
[55] BUZZI S, GROSSI E, LOPS M, et al. Foundations of MIMO radar detection aided by reconfigurable intelligent surfaces[J]. IEEE Transactions on Signal Processing, 2022, 70: 1749-1763.
[56] WU Q, ZHANG R. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1735-1748.
[57] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450-2525.
[58] YU N, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.
[59] HUM S V, PERRUISSEAU-CARRIER J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review[J]. IEEE Transactions on Antennas and Propagation, 2013, 62(1): 183-198.
[60] DAJER M, MA Z, PIAZZI L, et al. Reconfigurable intelligent surface: Design the channel–A new opportunity for future wireless networks[J]. Digital Communications and Networks, 2022, 8(2): 87-104.
[61] DAI L, WANG B, WANG M, et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results[J]. IEEE Access, 2020, 8: 45913-45923.
[62] CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218-e218.
[63] QIAN K, YAO L, ZHANG X, et al. MilliMirror: 3D printed reflecting surface for millimeter wave coverage expansion[C]//Proceedings of the 28th Annual International Conference on Mobile Computing And Networking. 2022: 15-28.
[64] STORN R. On the usage of differential evolution for function optimization[C]//Proceedings of north american fuzzy information processing. Ieee, 1996: 519-523.
[65] SARKER R, MOHAMMADIAN M, YAO X, et al. Evolutionary computation: A gentle introduction[J]. Evolutionary Optimization, 2002: 27-53.
[66] SCHAFFER J D. Multiple objective optimization with vector evaluated genetic algorithms[C]//Proceedings of the first international conference on genetic algorithms and their applications. Psychology Press, 2014: 93-100.
[67] HE C, TIAN Y, JIN Y, et al. A radial space division based evolutionary algorithm for many objective optimization[J]. Applied Soft Computing, 2017, 61: 603-621.
[68] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[69] CHENG R, JIN Y, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791.
[70] ZHANG Q, LI H. MOEA/D: A multi-objective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[71] COELLO C C, LECHUGA M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]//Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600): volume 2. IEEE, 2002: 1051-1056.
[72] RAY T, MAMUN M M, SINGH H K. A simple evolutionary algorithm for multi-modal multi objective optimization[C]//2022 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2022: 1-8.
[73] LIN Q, LIN W, ZHU Z, et al. Multi-modal multi-objective evolutionary optimization with dual clustering in decision and objective spaces[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(1): 130-144.
[74] DEB K, TIWARI S. Omni-Optimizer: A procedure for single and multi-objective optimization[C]//EMO: volume 3410. Springer, 2005: 47-61.
[75] LIU Y, ISHIBUCHI H, NOJIMA Y, et al. A double-niched evolutionary algorithm and its behavior on polygon-based problems[C]//International Conference on Parallel Problem Solving from Nature. Springer, 2018: 262-273.
[76] TANABE R, ISHIBUCHI H. A decomposition-based evolutionary algorithm for multi-modal multi-objective optimization[C]//International conference on parallel problem solving from nature. Springer, 2018: 249-261.
[77] YUE C, QU B, LIANG J. A multi-objective particle swarm optimizer using ring topology for solving multi-modal multi-objective problems[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(5): 805-817.
[78] GLIBOVETS N, GULAYEVA N M. A review of niching genetic algorithms for multi-modal function optimization[J]. Cybernetics and Systems Analysis, 2013, 49: 815-820.
[79] DU W, REN Z, CHEN A, et al. A multi-modal evolutionary algorithm with multi-niche cooperation[J]. Expert Systems with Applications, 2023: 119668.
[80] SU C, WU X, LUO T, et al. Adaptive niche-genetic algorithm based on backpropagation neural network for atmospheric turbulence forecasting[J]. Applied Optics, 2020, 59(12): 3699-3705.
[81] BÄCK T, FOGEL D B, MICHALEWICZ Z. Handbook of evolutionary computation[J]. Release, 1997, 97(1): B1.
[82] DARWEN P, YAO X. Every niching method has its niche: Fitness sharing and implicit sharing compared[C]//Parallel Problem Solving from Nature—PPSN IV: International Conference on Evolutionary Computation—The 4th International Conference on Parallel Problem Solving from Nature Berlin, Germany, September 22–26, 1996 Proceedings 4. Springer, 1996: 398-407.
[83] ZHANG W, HE H, ZHANG S. A novel multi-stage hybrid model with enhanced multi population niche genetic algorithm: An application in credit scoring[J]. Expert Systems with Applications, 2019, 121: 221-232.
[84] WU Q, ZHANG R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2019, 58(1): 106-112.
[85] GUO H, LIANG Y C, CHEN J, et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3064-3076.
[86] YU X, XU D, SCHOBER R. MISO wireless communication systems via intelligent reflecting surfaces[C]//2019 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2019: 735-740.
[87] BAKKOURI I, AFDEL K. Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images[J]. Multimedia Tools and Applications, 2020, 79(29): 20483-20518.
[88] BAKKOURI I, AFDEL K. MLCA2F: Multi-Level context attentional feature fusion for COVID-19 lesion segmentation from CT scans[J]. Signal, Image and Video Processing, 2022: 1-8.
[89] ZHOU A, QU B Y, LI H, et al. Multi-objective evolutionary algorithms: A survey of the state of the art[J]. Swarm and Evolutionary Computation, 2011, 1(1): 32-49.
[90] MIETTINEN K. Nonlinear multi-objective optimization: volume 12[M]. Springer Science & Business Media, 2012.
[91] SEMENKIN E, SEMENKINA M. Self-configuring genetic algorithm with modified uniform crossover operator[C]//International Conference in Swarm Intelligence. Springer, 2012: 414-421.
[92] KRAMER O. Genetic algorithms[M]//Genetic Algorithm Essentials. Springer, 2017: 11-19.
[93] TSE D, VISWANATH P. Fundamentals of wireless communication[M]. Cambridge university press, 2005.
[94] JUSTESEN P D. Multi-objective optimization using evolutionary algorithms[J]. University of Aarhus, Department of Computer Science, Denmark, 2009, 33.
[95] WHILE L, HINGSTON P, BARONE L, et al. A faster algorithm for calculating hypervolume[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 29-38.
[96] ZHOU A, JIN Y, ZHANG Q, et al. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion[C]//2006 IEEE International Conference on Evolutionary Computation. IEEE, 2006: 892-899.
[97] HE C, CHENG R, ZHANG C, et al. Evolutionary large-scale multi-objective optimization for ratio error estimation of voltage transformers[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(5): 868-881.
[98] GONG Y J, CHEN W N, ZHAN Z H, et al. Distributed evolutionary algorithms and their models: A survey of the state-of-the-art[J]. Applied Soft Computing, 2015, 34: 286-300.
[99] GOPI S, KALYANI S, HANZO L. Intelligent reflecting surface assisted beam index-modulation for millimeter wave communication[J]. IEEE Transactions on Wireless Communications, 2020, 20(2): 983-996.
[100] ALEXANDROPOULOS G C, KATSANOS K, WEN M, et al. Safeguarding MIMO communications with reconfigurable metasurfaces and artificial noise[C]//ICC 2021-IEEE International Conference on Communications. IEEE, 2021: 1-6.
[101] BASAR E, POOR H V. Present and future of reconfigurable intelligent surface-empowered communications [perspectives][J]. IEEE Signal Processing Magazine, 2021, 38(6): 146-152.
[102] ZHAO J, CHENG Q, WANG X K, et al. Controlling the bandwidth of terahertz low-scattering metasurfaces[J]. Advanced Optical Materials, 2016, 4(11): 1773-1779.
[103] KHAWAJA W, OZDEMIR O, YAPICI Y, et al. Coverage enhancement for NLOS mmWave links using passive reflectors[J]. IEEE Open Journal of the Communications Society, 2020, 1: 263-281.
[104] WOODFORD T, ZHANG X, CHAI E, et al. Mosaic: leveraging diverse reflector geometries for omnidirectional around-corner automotive radar[C]//Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services. 2022: 155-167.
[105] SCHEINER N, KRAUS F, WEI F, et al. Seeing around street corners: Non-line-of-sight detection and tracking in-the-wild using doppler radar[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 2068-2077.
[106] SOLOMITCKII D, BARNETO C B, TURUNEN M, et al. Millimeter-wave automotive radar scheme with passive reflector for blind corner conditions[C]//2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020: 1-5.
[107] TANG W, CHEN M Z, CHEN X, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2020, 20(1): 421-439.
[108] PREUSS M. Niching the CMA-ES via nearest-better clustering[C]//Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation. 2010: 1711-1718.
[109] PENG Z, LI T, PAN C, et al. Analysis and optimization for RIS-aided multi-pair communications relying on statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3897-3901.
[110] DUBEY S K, MANDAL D. Digitally controlled steered dual beam pattern synthesis of a rectangular planar array antenna in a range of azimuth plane using evolutionary algorithms[J]. Progress In Electromagnetics Research C, 2021, 114: 185-203.
修改评论