中文版 | English
题名

基于深度学习的超临界翼型设计

其他题名
SUPERCRITICAL AIRFOIL DESIGN BASED ON DEEP LEARNING
姓名
姓名拼音
WANG Zhihao
学号
12032409
学位类型
硕士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
梁煜,单肖文
导师单位
力学与航空航天工程系;前沿与交叉科学研究院
论文答辩日期
2023-05-10
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,深度学习在航空领域得到广泛应用。传统代理模型方法仅能利用少量气动性能参数,而深度学习可以充分利用大量原始流场数据,从而预测出流场的特征,弥补传统方法的不足。本文将深度学习方法与飞行器设计方法相结合,实现对超临界翼型的性能预测和反向设计。此外,宽体客机的机翼设计对抖振边界和阻力发散边界提出了更高的要求,本文以这两种性能约束作为参考指标。翼型的压力分布可以反映流场和性能特征,为进一步基于抖振和阻力发散特性的性能预测及反向设计提供支持,因此,本文引入压力分布作为流场和性能的物理描述。

本文探究了翼型设计中采样策略对深度学习模型预测效果的影响。首先从几何形状均匀分布与抖振和阻力发散性能均匀分布两个角度出发,设计了两种采样方法,分别建立了训练集,并在两训练集的交集中建立了测试集。针对两种不同的样本集,分别采用多层感知机模型和VGG16卷积神经网络模型实现了翼型的双向设计。结果显示,采样策略仅能保证目标空间的均匀性,而性能均匀采样在预测性能空间边界特征方面优于几何均匀采样。

正向设计时,基于多层感知机模型预测给定翼型和迎角的压力分布。采用NURBS方法描述翼型,并采用离散格式表示压力分布。结果表明,两个训练集得到的模型都能取得较高的预测精度。其中,几何均匀集训练的模型在预测压力分布时具有更高的精度,性能均匀集训练的模型仅能预测压力分布的变化趋势。这说明几何均匀集训练的模型能够更好地捕捉翼型几何形状对压力分布的影响。

反向设计时,基于VGG16卷积神经网络预测给定迎角和压力分布的相应翼型。采用与正向设计中相同的NURBS方法表示翼型,并通过符号距离函数(SDF)将压力分布处理为图片。结果表明,性能均匀集训练的模型在预测几何时具有更高的精度。这说明性能均匀集训练的模型能够更好地还原压力分布对应的翼型几何形状。

综上所述,不同均匀采样策略建立的数据集均具有良好的泛化性,而输入空间的均匀性更有利于提高模型的预测精度。本文展示了深度学习在翼型设计优化领域的有效性和优势,有助于指导翼型设计。

其他摘要

In recent years, deep learning has been widely used in the field of aviation. Deep learning can utilize much more original flow field data than traditional surrogate model methods do. When predicting the characteristics of the flow field, deep learning can compensate for the shortcomings of traditional methods. In this paper, the deep learning method is combined with the aircraft design method to realize the performance prediction and reverse design of the supercritical airfoil. In addition, the wing design of wide-body passenger aircraft requires buffeting boundary and drag divergence boundary with high quality. This paper takes these two performance constraints into consideration in airfoil design. By contrast, the pressure distribution of the airfoil reflects the flow field and performance characteristics, supporting performance prediction and reverse design based on the buffeting and drag divergence characteristics. Therefore, the pressure distribution is used to describe the flow field.

This paper explores the influence of sampling strategies in airfoil design on the prediction performance of deep learning models. Firstly, two sampling methods are designed base on the uniform distribution of geometry and the performance of uniform distribution of buffeting and drag divergence. The training set is established for above two methods, respectively. The test set is established in the intersection of the two sample sets. For two different sample sets, the multi-layer perceptron model and the VGG16 convolutional neural network model are built to realize the bidirectional design of the airfoil. The results show that the sampling strategy can only guarantee the uniformity of the target space. In addition, the performance uniform sampling is better than the geometric uniform sampling in predicting the boundary characteristics of the performance space.

In forward design, the pressure distribution for a given airfoil and angle of attack is predicted based on a multi-layer perceptron model. The airfoil is described by NURBS method, and the pressure distribution is represented by a discrete format. The results show that the models obtained from the two training sets can achieve high prediction accuracy. In addition, the model trained by the geometric uniform set has higher accuracy in predicting the pressure distribution, while the model trained by the performance uniform set can only predict the change trend of the pressure distribution. Therefore, the model trained by the geometrically uniform set can better reflect the influence of the airfoil geometry on the pressure distribution.

In reverse design, the airfoil is predicted for given angle of attack and pressure distribution based on the VGG16 convolutional neural network. The airfoil is represented using the same NURBS method as in the forward design, and the pressure distribution is processed as a picture by signed distance function (SDF). The results show that the model trained on the uniform set of performance has higher accuracy in predicting geometry, better restoring the airfoil geometry corresponding to the pressure distribution.

In summary, the data sets established by different uniform sampling strategies have good generalization, and the uniformity of the input space is more conducive to improving the prediction accuracy of the model. This paper demonstrates the effectiveness and advantages of deep learning in the field of airfoil design optimization to help guide airfoil design.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] 中国商飞公司新闻中心. 全球首架C919交付中国东方航空[EB/OL]. (2022-12-09)
[2023-02-10]. http://www.comac.cc/xwzx/gsxw/202212/09/t20221209_7353393.shtml
[2] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[3] XIONG H Y, ALIPANAHI B, LEE L J, et al. The human splicing code reveals new insights into the genetic determinants of disease[J]. Science, 2015, 347(6218): 1254806.
[4] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
[5] CYBENKO G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals and Systems, 1989, 2(4): 303-314.
[6] HUMPHREYS M D. Pressure pulsations on rigid airfoils at transonic speeds[M]. NACA, 1951.
[7] LEE B H K, OHMAN L H. Unsteady pressures and forces during transonic buffeting of a supercritical airfoil[J]. Journal of Aircraft, 1984, 21(6): 439-441.
[8] LEE B H K. Oscillatory shock motion caused by transonic shock boundary-layer interaction[J]. AIAA Journal, 1990, 28(5): 942-944.
[9] LEE B H K, MURTY H, JIANG H. Role of Kutta waves on oscillatory shock motion on an airfoil[J]. AIAA Journal, 1994, 32(4): 789-796.
[10] LEE B H K. Self-sustained shock oscillations on airfoils at transonic speeds[J]. Progress in Aerospace Sciences, 2001, 37(2): 147-196.
[11] MCDEVITT J B. Supercritical flow about a thick circular-arc airfoil[R]. NACA, 1979.
[12] 李强, 操小龙, 刘毅, 等. 超临界翼型跨声速抖振载荷问题数值模拟研究[J]. 战术导弹技术, 2018 (6): 44-51.
[13] GONCALVES E, HOUDEVILLE R. Turbulence model and numerical scheme assessment for buffet computations[J]. International Journal for Numerical Methods in Fluids, 2004, 46(11): 1127-1152.
[14] 张伟伟, 高传强, 叶正寅. 机翼跨声速抖振研究进展[J]. 航空学报, 2015, 36(4): 1056-1075.
[15] CARUANA D, MIGNOSI A, CORRÈGE M, et al. Buffet and buffeting control in transonic flow[J]. Aerospace Science and Technology, 2005, 9(7): 605-616.
[16] ZHANG Y F, YANG P, LI R Z, et al. Unsteady simulation of transonic buffet of a supercritical airfoil with shock control bump[J]. Aerospace, 2021, 8(8): 203.
[17] 韩忠华, 高正红, 宋文萍, 等. 翼型研究的历史, 现状与未来发展[J]. 空气动力学学报, 2021, 39(6): 1-36.
[18] 牟让科, 杨永年. 飞机抖振问题研究进展[J]. 应用力学学报, 2001(S1): 142-150.
[19] OBERT E. Aerodynamic design of transport aircraft[M]. IOS Press, 2009.
[20] JOHNSON F T, TINOCO E N, YU N J. Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle[J]. Computers & Fluids, 2005, 34(10): 1115-1151.
[21] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43: 152-164.
[22] 周铸, 陈作斌. 基于 NS 方程的翼型气动优化设计[J]. 空气动力学学报, 2002, 20(2): 141-147.
[23] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 47-63.
[24] 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报, 2020, 41(5): 160-170.
[25] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 25-65.
[26] Tong Z, Zhang Y F, Chen H X. Multi-objective aerodynamic optimization of supercritical wing with substantial pressure constraints[C] // 53rd AIAA Aerospace Sciences Meeting. 2015: 0763.
[27] 李润泽, 张宇飞, 陈海昕. 针对超临界翼型气动修型策略的强化学习[J]. 航空学报, 2021, 42(4): 275-288.
[28] DURIEZ T, BRUNTON S L, NOACK B R. Machine learning control-taming nonlinear dynamics and turbulence[M]. Cham, Switzerland: Springer International Publishing, 2017.
[29] LEE S, HA J, ZOKHIROVA M, et al. Background information of deep learning for structural engineering[J]. Archives of Computational Methods in Engineering, 2018, 25: 121-129.
[30] BENNER P, GUGERCIN S, WILLCOX K. A survey of projection-based model reduction methods for parametric dynamical systems[J]. SIAM Review, 2015, 57(4): 483-531.
[31] 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6): 686-701.
[32] PITTS W, MCCULLOCH W S. How we know universals the perception of auditory and visual forms[J]. The Bulletin of Mathematical Biophysics, 1947, 9: 127-147.
[33] ABIODUN O I, JANTAN A, OMOLARA A E, et al. Comprehensive review of artificial neural network applications to pattern recognition[J]. IEEE Access, 2019, 7: 158820-158846.
[34] ZHAO B, HUANG B, ZHONG Y. Transfer learning with fully pretrained deep convolution networks for land-use classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1436-1440.
[35] HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106.
[36] FUKUSHIMA K. A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36: 193-202.
[37] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[38] 杨念聪, 任琼, 张成喆, 等. 基于卷积神经网络的图像特征识别研究[J]. 信息与电脑 (理论版), 2017, 14: 62-64.
[39] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[40] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C] // Proceedings of The 27th International Conference on Machine Learning (ICML-10). 2010: 807-814.
[41] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[42] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. ArXiv Preprint ArXiv:1409.1556, 2014.
[43] SHAHA M, PAWAR M. Transfer learning for image classification[C] // 2018 second International Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE, 2018: 656-660.
[44] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[45] LIU Y, CHENG M M, HU X, et al. Richer convolutional features for edge detection[C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 3000-3009.
[46] LOU G, SHI H. Face image recognition based on convolutional neural network[J]. China Communications, 2020, 17(2): 117-124.
[47] LYU P, YAO C, WU W, et al. Multi-oriented scene text detection via corner localization and region segmentation[C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7553-7563.
[48] APARNA R, CHITRALEKHA C K, CHAUDHARI S. Comparative study of CNN, VGG16 with LSTM and VGG16 with Bidirectional LSTM using kitchen activity dataset[C] // 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC). IEEE, 2021: 836-843.
[49] AZZOUZ N, BECHIKH S, BEN SAID L. Steady state IBEA assisted by MLP neural networks for expensive multi-objective optimization problems[C] // Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. 2014: 581-588.
[50] LI J, BOUHLEL M A, MARTINS J R R A. Data-based approach for fast airfoil analysis and optimization[J]. AIAA Journal, 2019, 57(2): 581-596.
[51] FU Z, BAI J, LIU N, et al. Planform parameter study and wing twist distribution optimization of a supersonic transport configuration[C] // 21st AIAA International Space Planes and Hypersonics Technologies Conference. 2017: 2198.
[52] LI J, CAI J. Massively multipoint aerodynamic shape design via surrogate-assisted gradient-based optimization[J]. AIAA Journal, 2020, 58(5): 1949-1963.
[53] YILMAZ E, GERMAN B. A convolutional neural network approach to training predictors for airfoil performance[C] // 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2017: 3660.
[54] YILMAZ E, GERMAN B. A deep learning approach to an airfoil inverse design problem[C] // 2018 Multidisciplinary Analysis and Optimization Conference. 2018: 3420.
[55] SEKAR V, JIANG Q, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5): 057103.
[56] ESPINOSA BARCENAS O U, QUIJADA PIOQUINTO J G, KURKINA E, et al. Surrogate Aerodynamic Wing Modeling Based on a Multilayer Perceptron[J]. Aerospace, 2023, 10(2): 149.
[57] LI J, ZHANG M, MARTINS J R R A, et al. Efficient aerodynamic shape optimization with deep-learning-based geometric filtering[J]. AIAA Journal, 2020, 58(10): 4243-4259.
[58] LI J, ZHANG M. Data-based approach for wing shape design optimization[J]. Aerospace Science and Technology, 2021, 112: 106639.
[59] CHEN W, CHIU K, FUGE M. Aerodynamic design optimization and shape exploration using generative adversarial networks[C] // AIAA Scitech 2019 Forum. 2019: 2351.
[60] CHEN W, RAMAMURTHY A. Deep generative model for efficient 3D airfoil parameterization and generation[C] // AIAA Scitech 2021 Forum. 2021: 1690.
[61] DU Q, LIU T, YANG L, et al. Airfoil design and surrogate modeling for performance prediction based on deep learning method[J]. Physics of Fluids, 2022, 34(1): 015111.
[62] DU X, HE P, MARTINS J R R A. A B-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization[C] // AIAA Scitech 2020 Forum. 2020: 2128.
[63] LI R, ZHANG Y, CHEN H. Physically Interpretable Feature Learning of Supercritical Airfoils Based on Variational Autoencoders[J]. AIAA Journal, 2022, 60(11): 6168-6182.
[64] WANG J, HE C, LI R, et al. Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework[J]. Physics of Fluids, 2021, 33(8): 086108.
[65] WANG J, LI R Z, HE C, et al. An inverse design method for supercritical airfoil based on conditional generative models[J]. Chinese Journal of Aeronautics, 2022, 35(3): 62-74.
[66] YANG Y J, LI R Z, ZHANG Y F, et al. Flowfield prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Journal, 2022, 60(10): 5805-5820.
[67] JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[68] MASTERS D A, TAYLOR N J, RENDALL T, et al. Review of aerofoil parameterisation methods for aerodynamic shape optimisation[C] // 53rd AIAA Aerospace Sciences Meeting. 2015: 0761.
[69] SRIPAWADKUL V, PADULO M, GUENOV M. A comparison of airfoil shape parameterization techniques for early design optimization[C] // 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference. 2010: 9050.
[70] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61.
[71] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119-139.
[72] SAIKIA S, FIDALGO E, ALEGRE E, et al. Object detection for crime scene evidence analysis using deep learning[C] // Image Analysis and Processing-ICIAP 2017: 19th International Conference, Catania, Italy, September 11-15, 2017, Proceedings, Part II 19. Springer International Publishing, 2017: 14-24.

所在学位评定分委会
力学
国内图书分类号
V221.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544144
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
王志浩. 基于深度学习的超临界翼型设计[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032409-王志浩-力学与航空航天(10628KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王志浩]的文章
百度学术
百度学术中相似的文章
[王志浩]的文章
必应学术
必应学术中相似的文章
[王志浩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。