[1] 中国商飞公司新闻中心. 全球首架C919交付中国东方航空[EB/OL]. (2022-12-09)
[2023-02-10]. http://www.comac.cc/xwzx/gsxw/202212/09/t20221209_7353393.shtml
[2] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[3] XIONG H Y, ALIPANAHI B, LEE L J, et al. The human splicing code reveals new insights into the genetic determinants of disease[J]. Science, 2015, 347(6218): 1254806.
[4] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
[5] CYBENKO G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals and Systems, 1989, 2(4): 303-314.
[6] HUMPHREYS M D. Pressure pulsations on rigid airfoils at transonic speeds[M]. NACA, 1951.
[7] LEE B H K, OHMAN L H. Unsteady pressures and forces during transonic buffeting of a supercritical airfoil[J]. Journal of Aircraft, 1984, 21(6): 439-441.
[8] LEE B H K. Oscillatory shock motion caused by transonic shock boundary-layer interaction[J]. AIAA Journal, 1990, 28(5): 942-944.
[9] LEE B H K, MURTY H, JIANG H. Role of Kutta waves on oscillatory shock motion on an airfoil[J]. AIAA Journal, 1994, 32(4): 789-796.
[10] LEE B H K. Self-sustained shock oscillations on airfoils at transonic speeds[J]. Progress in Aerospace Sciences, 2001, 37(2): 147-196.
[11] MCDEVITT J B. Supercritical flow about a thick circular-arc airfoil[R]. NACA, 1979.
[12] 李强, 操小龙, 刘毅, 等. 超临界翼型跨声速抖振载荷问题数值模拟研究[J]. 战术导弹技术, 2018 (6): 44-51.
[13] GONCALVES E, HOUDEVILLE R. Turbulence model and numerical scheme assessment for buffet computations[J]. International Journal for Numerical Methods in Fluids, 2004, 46(11): 1127-1152.
[14] 张伟伟, 高传强, 叶正寅. 机翼跨声速抖振研究进展[J]. 航空学报, 2015, 36(4): 1056-1075.
[15] CARUANA D, MIGNOSI A, CORRÈGE M, et al. Buffet and buffeting control in transonic flow[J]. Aerospace Science and Technology, 2005, 9(7): 605-616.
[16] ZHANG Y F, YANG P, LI R Z, et al. Unsteady simulation of transonic buffet of a supercritical airfoil with shock control bump[J]. Aerospace, 2021, 8(8): 203.
[17] 韩忠华, 高正红, 宋文萍, 等. 翼型研究的历史, 现状与未来发展[J]. 空气动力学学报, 2021, 39(6): 1-36.
[18] 牟让科, 杨永年. 飞机抖振问题研究进展[J]. 应用力学学报, 2001(S1): 142-150.
[19] OBERT E. Aerodynamic design of transport aircraft[M]. IOS Press, 2009.
[20] JOHNSON F T, TINOCO E N, YU N J. Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle[J]. Computers & Fluids, 2005, 34(10): 1115-1151.
[21] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43: 152-164.
[22] 周铸, 陈作斌. 基于 NS 方程的翼型气动优化设计[J]. 空气动力学学报, 2002, 20(2): 141-147.
[23] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 47-63.
[24] 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报, 2020, 41(5): 160-170.
[25] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 25-65.
[26] Tong Z, Zhang Y F, Chen H X. Multi-objective aerodynamic optimization of supercritical wing with substantial pressure constraints[C] // 53rd AIAA Aerospace Sciences Meeting. 2015: 0763.
[27] 李润泽, 张宇飞, 陈海昕. 针对超临界翼型气动修型策略的强化学习[J]. 航空学报, 2021, 42(4): 275-288.
[28] DURIEZ T, BRUNTON S L, NOACK B R. Machine learning control-taming nonlinear dynamics and turbulence[M]. Cham, Switzerland: Springer International Publishing, 2017.
[29] LEE S, HA J, ZOKHIROVA M, et al. Background information of deep learning for structural engineering[J]. Archives of Computational Methods in Engineering, 2018, 25: 121-129.
[30] BENNER P, GUGERCIN S, WILLCOX K. A survey of projection-based model reduction methods for parametric dynamical systems[J]. SIAM Review, 2015, 57(4): 483-531.
[31] 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6): 686-701.
[32] PITTS W, MCCULLOCH W S. How we know universals the perception of auditory and visual forms[J]. The Bulletin of Mathematical Biophysics, 1947, 9: 127-147.
[33] ABIODUN O I, JANTAN A, OMOLARA A E, et al. Comprehensive review of artificial neural network applications to pattern recognition[J]. IEEE Access, 2019, 7: 158820-158846.
[34] ZHAO B, HUANG B, ZHONG Y. Transfer learning with fully pretrained deep convolution networks for land-use classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1436-1440.
[35] HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106.
[36] FUKUSHIMA K. A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36: 193-202.
[37] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[38] 杨念聪, 任琼, 张成喆, 等. 基于卷积神经网络的图像特征识别研究[J]. 信息与电脑 (理论版), 2017, 14: 62-64.
[39] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[40] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C] // Proceedings of The 27th International Conference on Machine Learning (ICML-10). 2010: 807-814.
[41] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[42] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. ArXiv Preprint ArXiv:1409.1556, 2014.
[43] SHAHA M, PAWAR M. Transfer learning for image classification[C] // 2018 second International Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE, 2018: 656-660.
[44] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[45] LIU Y, CHENG M M, HU X, et al. Richer convolutional features for edge detection[C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 3000-3009.
[46] LOU G, SHI H. Face image recognition based on convolutional neural network[J]. China Communications, 2020, 17(2): 117-124.
[47] LYU P, YAO C, WU W, et al. Multi-oriented scene text detection via corner localization and region segmentation[C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7553-7563.
[48] APARNA R, CHITRALEKHA C K, CHAUDHARI S. Comparative study of CNN, VGG16 with LSTM and VGG16 with Bidirectional LSTM using kitchen activity dataset[C] // 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC). IEEE, 2021: 836-843.
[49] AZZOUZ N, BECHIKH S, BEN SAID L. Steady state IBEA assisted by MLP neural networks for expensive multi-objective optimization problems[C] // Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. 2014: 581-588.
[50] LI J, BOUHLEL M A, MARTINS J R R A. Data-based approach for fast airfoil analysis and optimization[J]. AIAA Journal, 2019, 57(2): 581-596.
[51] FU Z, BAI J, LIU N, et al. Planform parameter study and wing twist distribution optimization of a supersonic transport configuration[C] // 21st AIAA International Space Planes and Hypersonics Technologies Conference. 2017: 2198.
[52] LI J, CAI J. Massively multipoint aerodynamic shape design via surrogate-assisted gradient-based optimization[J]. AIAA Journal, 2020, 58(5): 1949-1963.
[53] YILMAZ E, GERMAN B. A convolutional neural network approach to training predictors for airfoil performance[C] // 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2017: 3660.
[54] YILMAZ E, GERMAN B. A deep learning approach to an airfoil inverse design problem[C] // 2018 Multidisciplinary Analysis and Optimization Conference. 2018: 3420.
[55] SEKAR V, JIANG Q, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5): 057103.
[56] ESPINOSA BARCENAS O U, QUIJADA PIOQUINTO J G, KURKINA E, et al. Surrogate Aerodynamic Wing Modeling Based on a Multilayer Perceptron[J]. Aerospace, 2023, 10(2): 149.
[57] LI J, ZHANG M, MARTINS J R R A, et al. Efficient aerodynamic shape optimization with deep-learning-based geometric filtering[J]. AIAA Journal, 2020, 58(10): 4243-4259.
[58] LI J, ZHANG M. Data-based approach for wing shape design optimization[J]. Aerospace Science and Technology, 2021, 112: 106639.
[59] CHEN W, CHIU K, FUGE M. Aerodynamic design optimization and shape exploration using generative adversarial networks[C] // AIAA Scitech 2019 Forum. 2019: 2351.
[60] CHEN W, RAMAMURTHY A. Deep generative model for efficient 3D airfoil parameterization and generation[C] // AIAA Scitech 2021 Forum. 2021: 1690.
[61] DU Q, LIU T, YANG L, et al. Airfoil design and surrogate modeling for performance prediction based on deep learning method[J]. Physics of Fluids, 2022, 34(1): 015111.
[62] DU X, HE P, MARTINS J R R A. A B-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization[C] // AIAA Scitech 2020 Forum. 2020: 2128.
[63] LI R, ZHANG Y, CHEN H. Physically Interpretable Feature Learning of Supercritical Airfoils Based on Variational Autoencoders[J]. AIAA Journal, 2022, 60(11): 6168-6182.
[64] WANG J, HE C, LI R, et al. Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework[J]. Physics of Fluids, 2021, 33(8): 086108.
[65] WANG J, LI R Z, HE C, et al. An inverse design method for supercritical airfoil based on conditional generative models[J]. Chinese Journal of Aeronautics, 2022, 35(3): 62-74.
[66] YANG Y J, LI R Z, ZHANG Y F, et al. Flowfield prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Journal, 2022, 60(10): 5805-5820.
[67] JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[68] MASTERS D A, TAYLOR N J, RENDALL T, et al. Review of aerofoil parameterisation methods for aerodynamic shape optimisation[C] // 53rd AIAA Aerospace Sciences Meeting. 2015: 0761.
[69] SRIPAWADKUL V, PADULO M, GUENOV M. A comparison of airfoil shape parameterization techniques for early design optimization[C] // 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference. 2010: 9050.
[70] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61.
[71] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119-139.
[72] SAIKIA S, FIDALGO E, ALEGRE E, et al. Object detection for crime scene evidence analysis using deep learning[C] // Image Analysis and Processing-ICIAP 2017: 19th International Conference, Catania, Italy, September 11-15, 2017, Proceedings, Part II 19. Springer International Publishing, 2017: 14-24.
修改评论