[1] KIEŁBASŃSKI P, MIKOŁAJCZYK M. In Future Directions in Biocatalysis [M]. Matsuda, T., Ed. Elsevier Science B.V.: Amsterdam, 2007, 2: 159−203.
[2] VENDETTI FRANK P, SCHAMUS S, BAKKENIST CHRISTOPHER J, et al. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo[J]. Oncotarget, 2015, 6(42): 44289-44305.
[3] PRADERE U, GARNIER-AMBLARD E C, COATS S J, et al. Synthesis of nucleoside phosphate and phosphonate prodrugs[J]. Chemical Reviews, 2014, 114(18): 9154-9218.
[4] MONTCHAMP J-L. Phosphorus Chemistry I: Asymmetric synthesis and bioactive compounds[M]. Topics in Current Chemistry; Springer International Publishing, 2015: 360.
[5] SOFIA M J, BAO D, CHANG W, et al. Discovery of a β-D-2'-Deoxy-2'-α-fluoro-2'-β-C-methyluridine Nucleotide Prodrug (PSI-7977) for the Treatment of Hepatitis C Virus[J]. Journal of Medicinal Chemistry, 2010, 53(19): 7202-7218.
[6] CHEN J, CAO Y. Silole-containing polymers: chemistry and optoelectronic properties[J]. Macromolecular Rapid Communications, 2007, 28(17): 1714-1742.
[7] OISHI, M.; KAWAKAMI, Y. Synthesis of Stereoregular and Optically Active Polysiloxanes Containing 1,3-Dimethyl-1,3diphenyldisiloxane as a Constitutional Unit[J]. Macromolecules, 2000, 33(6), 1960−1963.
[8] GUTEKUNST W R, BARAN P S. C-H functionalization logic in total synthesis[J]. Chemical Society Reviews, 2011, 40(4): 1976-1991.
[9] SINHA S K, GUIN S, MAITI S, et al. Toolbox for distal C-H bond functionalizations in organic molecules[J]. Chemical Reviews, 2022, 122(6): 5682-5841.
[10] COUZIJN E P A, SLOOTWEG J C, EHLERS A W, et al. Stereomutation of pentavalent compounds: validating the Berry pseudorotation, redressing Ugi's turnstile rotation, and revealing the two- and three-arm turnstiles[J]. Journal of the American Chemical Society, 2010, 132(51): 18127-18140.
[11] MOBERG C. Stereomutation in Trigonal-Bipyramidal Systems: A Unified Picture[J]. Angewandte Chemie, International Edition, 2011, 50(44): 10290-10292.
[12] MELLERUP S K, WANG S. Boron-doped molecules for optoelectronics[J]. Trends in Chemistry, 2019, 1(1): 77-89.
[13] MURALI A C, NAYAK P, VENKATASUBBAIAH K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds[J]. Dalton Transactions, 2022, 51(15): 5751-5771.
[14] LI D, ZHANG H, WANG Y. Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs)[J]. Chemical Society Reviews, 2013, 42(21): 8416-8433.
[15] SHI J, RAN Z, PENG F. Promising four-coordinated organoboron emitters for organic light-emitting diodes[J]. Dyes and Pigments, 2022, 204: 110383.
[16] LOUDET A, BURGESS K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties[J]. Chemical Reviews, 2007, 107(11): 4891-4932.
[17] BOENS N, LEEN V, DEHAEN W. Fluorescent indicators based on BODIPY[J]. Chemical Society Reviews, 2012, 41(3): 1130-1172.
[18] ULRICH G, ZIESSEL R, HARRIMAN A. The chemistry of fluorescent BODIPY dyes: versatility unsurpassed[J]. Angewandte Chemie, International Edition, 2008, 47(7): 1184-1201.
[19] RANA P, SINGH N, MAJUMDAR P, et al. Evolution of BODIPY/aza-BODIPY dyes for organic photoredox/energy transfer catalysis[J]. Coordination Chemistry Reviews, 2022, 470: 214698.
[20] SANCHEZ-CARNERERO E M, MORENO F, MAROTO B L, et al. Circularly Polarized Luminescence by visible-light absorption in a chiral O-BODIPY dye: Unprecedented design of CPL organic molecules from achiral chromophores[J]. Journal of the American Chemical Society, 2014, 136(9): 3346-3349.
[21] ALNOMAN R B, RIHN S, O'CONNOR D C, et al. Circularly Polarized Luminescence from helically chiral N,N,O,O-boron-chelated dipyrromethenes[J]. Chemistry - A European Journal, 2016, 22(1): 93-96.
[22] LU H, MACK J, NYOKONG T, et al. Optically active BODIPYs[J]. Coordination Chemistry Reviews, 2016, 318: 1-15.
[23] SAIKAWA M, NAKAMURA T, UCHIDA J, et al. Synthesis of figure-of-eight helical bisBODIPY macrocycles and their chiroptical properties[J]. Chemical Communications, 2016, 52(71): 10727-10730.
[24] WU Y, WANG S, LI Z, et al. Chiral binaphthyl-linked BODIPY analogues: synthesis and spectroscopic properties[J]. Journal of Materials Chemistry C, 2016, 4(21): 4668-4674.
[25] CLARKE R, HO K L, ABDULLAH ALSIMAREE A, et al. Circularly Polarised Luminescence from helically hhiral "confused" N,N,O,C-boron-chelated dipyrromethenes (BODIPYs)[J]. ChemPhotoChem, 2017, 1(11): 513-517.
[26] GUERRERO-CORELLA A, ASENJO-PASCUAL J, PAWAR T J, et al. BODIPY as electron withdrawing group for the activation of double bonds in asymmetric cycloaddition reactions[J]. Chemical Science, 2019, 10(15): 4346-4351.
[27] MAEDA C, NAGAHATA K, SHIRAKAWA T, et al. Azahelicene-fused BODIPY analogues showing Circularly Polarized Luminescence[J]. Angewandte Chemie, International Edition, 2020, 59(20): 7813-7817.
[28] RIGOTTI T, ASENJO-PASCUAL J, MARTIN-SOMER A, et al. Boron dipyrromethene (BODIPY) as electron-withdrawing group in asymmetric copper-catalyzed
[3+2] cycloadditions for the synthesis of pyrrolidine-based biological sensors[J]. Advanced Synthesis & Catalysis, 2020, 362(6): 1345-1355.
[29] MEAZZA M, CRUZ C M, ORTUNO A M, et al. Studying the reactivity of alkyl substituted BODIPYs: first enantioselective addition of BODIPY to MBH carbonates[J]. Chemical Science, 2021, 12(12): 4503-4508.
[30] DOCEKAL V, KOBEROVA T, HRABOVSKY J, et al. Stereoselective cyclopropanation of boron dipyrromethene (BODIPY) derivatives by an organocascade reaction[J]. Advanced Synthesis & Catalysis, 2022, 364(5): 930-937.
[31] HAEFELE A, ZEDDE C, RETAILLEAU P, et al. Boron Asymmetry in a BODIPY Derivative[J]. Organic Letters, 2010, 12(8): 1672-1675.
[32] GOBO Y, MATSUOKA R, CHIBA Y, et al. Synthesis and chiroptical properties of phenanthrene-fused N2O-type BODIPYs[J]. Tetrahedron Letters, 2018, 59(47): 4149-4152.
[33] DIESEL J, CRAMER N. Generation of Heteroatom Stereocenters by Enantioselective C-H Functionalization[J]. ACS Catalysis, 2019, 9(10): 9164-9177.
[34] PRADERE U, GARNIER-AMBLARD E C, COATS S J, et al. Synthesis of nucleoside phosphate and phosphonate prodrugs[J]. Chemical Reviews, 2014, 114(18): 9154-9218.
[35] MONTCHAMP J-L. Phosphorus Chemistry I: Asymmetric synthesis and bioactive compounds[M]. Topics in Current Chemistry; Springer International Publishing, 2015: 360.
[36] PERUZZINI M, GONSALVI L. Phosphorus compounds: Advanced tools in catalysis and material sciences[M]. Catalysis by Metal Complexes; Springer: Netherlands, 2011: 37.
[37] DALKO, P. I. Comprehensive enantioselective organocatalysis: Catalysts, reactions, and applications[M]; Wiley-VCH: Weinheim, 2013: 1−3.
[38] KAMER P C J, LEEUWEN P W N M. v. Phosphorus(III)-ligands in homogeneous catalysis: design and synthesis[M]; Wiley: Hoboken, 2012.
[39] DENMARK S E, BEUTNER G L. Lewis base catalysis in organic synthesis[J]. Angewandte Chemie, International Edition, 2008, 47(9): 1560-1638.
[40] PARMAR D, SUGIONO E, RAJA S, et al. Complete field guide to asymmetric BINOL-Phosphate derived Bronsted acid and metal catalysis: History and classification by mode of activation; Bronsted acidity, hydrogen bonding, ion pairing, and metal Phosphates[J]. Chemical Reviews, 2014, 114(18): 9047-9153.
[41] YOU S-L, CAI Q, ZENG M. Chiral Bronsted acid catalyzed Friedel-Crafts alkylation reactions[J]. Chemical Society Reviews, 2009, 38(8): 2190-2201.
[42] MAHLAU M, LIST B. Asymmetric counteranion-directed catalysis: Concept,definition, and applications[J]. Angewandte Chemie, International Edition, 2013, 52(2): 518-533.
[43] BRAK K, JACOBSEN E N. Asymmetric ion-pairing catalysis[J]. Angewandte Chemie, International Edition, 2013, 52(2): 534-561.
[44] PHIPPS R J, HAMILTON G L, TOSTE F D. The progression of chiral anions from concepts to applications in asymmetric catalysis[J]. Nature Chemistry, 2012, 4(8): 603-614.
[45] DU Z-J, GUAN J, WU G-J, et al. Pd(II)-catalyzed enantioselective synthesis of P-stereogenic phosphinamides via desymmetric C-H arylation[J]. Journal of the American Chemical Society, 2015, 137(2): 632-635.
[46] GUAN J, WU G-J, HAN F-S. Pd II-catalyzed mild C-H ortho arylation and intramolecular amination oriented by a Phosphinamide group[J]. Chemistry - A European Journal, 2014, 20(12): 3301-3305.
[47] LIN Z-Q, WANG W-Z, YAN S-B, et al. Palladium-catalyzed enantioselective C-H arylation for the synthesis of P-stereogenic compounds[J]. Angewandte Chemie, International Edition, 2015, 54(21): 6265-6269.
[48] LIU L, ZHANG A-A, WANG Y, et al. Asymmetric synthesis of P-stereogenic phosphinic amides via Pd(0)-catalyzed enantioselective intramolecular C-H arylation[J]. Organic Letters, 2015, 17(9): 2046-2049.
[49] SUN Y, CRAMER N. Rhodium(III)-catalyzed enantiotopic C-H activation enables access to P-chiral cyclic Phosphinamides[J]. Angewandte Chemie, International Edition, 2017, 56(1): 364-367.
[50] SUN Y, CRAMER N. Tailored trisubstituted chiral CpxRhIII catalysts for kinetic resolutions of phosphinic amides[J]. Chemical Science, 2018, 9(11): 2981-2985.
[51] HU P, KONG L, WANG F, et al. Twofold C-H activation-based enantio- and diastereoselective C-H arylation using diarylacetylenes as rare arylating reagents[J]. Angewandte Chemie, International Edition, 2021, 60(37): 20424-20429.
[52] YAO Q-J, CHEN J-H, SONG H, et al. Cobalt/Salox-catalyzed enantioselective C-H functionalization of arylphosphinamides[J]. Angewandte Chemie, International Edition, 2022, 61(25): e202202892.
[53] CHEN J-H, TENG M-Y, HUANG F-R, et al. Cobalt/Salox-catalyzed enantioselective dehydrogenative C-H alkoxylation and amination[J]. Angewandte Chemie, International Edition, 2022, 61(38): e202210106.
[54] XU G, LI M, WANG S, et al. Efficient synthesis of P-chiral biaryl phosphonates by stereoselective intramolecular cyclization[J]. Organic Chemistry Frontiers, 2015, 2(10): 1342-1345.
[55] LIN Y, MA W-Y, SUN Q-Y, et al. Catalytic synthesis of chiral Phosphole oxides via desymmetric C-H arylation of o-Bromoaryl Phosphine oxides[J]. Synlett, 2017, 28(12): 1432-1436.
[56] LI Z, LIN Z-Q, YAN C-G, et al. Pd-catalyzed asymmetric C-H bond activation for the synthesis of P-stereogenic dibenzophospholes[J]. Organometallics, 2019, 38(20): 3916-3920.
[57] GWON D, PARK S, CHANG S. Dual role of carboxylic acid additive: mechanistic studies and implication for the asymmetric C-H amidation[J]. Tetrahedron, 2015, 71(26-27): 4504-4511.
[58] LAPOINTE D, FAGNOU K. Overview of the mechanistic work on the concerted metalation-deprotonation pathway[J]. Chemistry Letters, 2010, 39(11): 1119-1126.
[59] JANG Y-S, DIECKMANN M, CRAMER N. Cooperative effects between chiral Cpx-Iridium(III) catalysts and chiral carboxylic acids in enantioselective C-H amidations of Phosphine oxides[J]. Angewandte Chemie, International Edition, 2017, 56(47): 15088-15092.
[60] JANG Y-S, WOZNIAK L, PEDRONI J, et al. Access to P- and axially chiral biaryl Phosphine oxides by enantioselective CpxIrIII-catalyzed C-H arylations[J]. Angewandte Chemie, International Edition, 2018, 57(39): 12901-12905.
[61] LIU Z, WU J-Q, YANG S-D. Ir(III)-catalyzed direct C-H functionalization of arylphosphine oxides: A strategy for MOPType ligands synthesis[J]. Organic Letters, 2017, 19(19): 5434−5437.
[62] SONG S-Y, LI Y, KE Z, et al. Iridium-catalyzed enantioselective C-H borylation of diarylphosphinates[J]. ACS Catalysis, 2021, 11(21): 13445-13451.
[63] ZHANG C-W, HU X-Q, DAI Y-H, et al. Asymmetric C-H activation for the synthesis of P- and axially chiral biaryl Phosphine oxides by an achiral Cp*Ir catalyst with chiral carboxylic amide[J]. ACS Catalysis, 2022, 12(1): 193-199.
[64] BENTLEY R. Role of sulfur chirality in the chemical processes of biology[J]. Chemical Society Reviews, 2005, 34(7): 609-624.
[65] WALKER D P, ZAWISTOSKI M P, MCGLYNN M A, et al. Sulfoximine-substituted trifluoromethylpyrimidine analogs as inhibitors of proline-rich tyrosine kinase 2 (PYK2) show reduced hERG activity[J]. Bioorganic and Medicinal Chemistry Letters, 2009, 19(12): 3253-3258.
[66] LUECKING U, JAUTELAT R, KRUEGER M, et al. The lab oddity prevails: Discovery of pan-CDK inhibitor (R)-S-cyclopropyl-S-(4-{
[4-{[(1R,2R)-2-hydroxy-1-methylpropyl]oxy}-5-(trifluoromethyl)pyrimidin-2-yl]amino}phenyl)sulfoximide (BAY 1000394) for the Treatment of Cancer[J]. ChemMedChem, 2013, 8(7): 1067-1085.
[67] FERNANDEZ I, KHIAR N. Recent developments in the synthesis and utilization of chiral sulfoxides[J]. Chemical Reviews, 2003, 103(9): 3651-3705.
[68] GRIES J, KRUEGER J. A practical approach to N-(trifluoroacetyl)sulfilimines[J]. Synlett, 2014, 25(13): 1831-1834.
[69] DONG S, FRINGS M, CHENG H, et al. Organocatalytic kinetic resolution ofsulfoximines[J]. Journal of the American Chemical Society, 2016, 138(7): 2166-2169.
[70] WANG J, FRINGS M, BOLM C. Iron-catalyzed imidation kinetic resolution of racemic sulfoxides[J]. Chemistry - A European Journal, 2014, 20(4): 966-969.
[71] ZHU Y-C, LI Y, ZHANG B-C, et al. Palladium-catalyzed enantioselective C-H olefination of diaryl sulfoxides through parallel kinetic resolution and desymmetrization[J]. Angewandte Chemie, International Edition, 2018, 57(18): 5129-5133.
[72] ZHOU T, JIANG M-X, QIAN P-F, et al. Synthesis of chiral sulfoxides via Pd(II)-catalyzed enantioselective C-H alkynylation/kinetic resolution of 2-(arylsulfinyl)pyridines[J]. Organic Letters, 2021, 23(20): 7910-7915.
[73] KONG L, ZOU Y, LI X-X, et al. Rhodium-catalyzed enantioselective C-H alkynylation of sulfoxides in diverse patterns: desymmetrization, kinetic resolution, and parallel kinetic resolution[J]. Chemical Science, 2023, 14(2): 317-322.
[74] SUN Y, CRAMER N. Enantioselective synthesis of chiral-at-sulfur 1,2-benzothiazines by CpxRhIII-catalyzed C-H functionalization of sulfoximines[J]. Angewandte Chemie, International Edition, 2018, 57(47): 15539-15543.
[75] SHEN B, WAN B, LI X. Enantiodivergent desymmetrization in the Rhodium(III)-catalyzed annulation of sulfoximines with diazo compounds[J]. Angewandte Chemie, International Edition, 2018, 57(47): 15534-15538.
[76] OZOLS K, JANG Y-S, CRAMER N. Chiral cyclopentadienyl cobalt(III) complexes enable highly enantioselective 3d-metal-catalyzed C-H functionalizations[J]. Journal of the American Chemical Society, 2019, 141(14): 5675-5680.
[77] AUDIC B, WODRICH M D, CRAMER N. Mild complexation protocol for chiral CpxRh and Ir complexes suitable for in situ catalysis[J]. Chemical Science, 2019, 10(3): 781-787.
[78] BRAUNS M, CRAMER N. Efficient kinetic resolution of sulfur-stereogenic sulfoximines by Exploiting CpxRhIII-Catalyzed C-H Functionalization[J]. Angewandte Chemie, International Edition, 2019, 58(26): 8902-8906.
[79] LI J-Y, XIE P-P, ZHOU T, et al. Ir(III)-catalyzed asymmetric C-H activation/annulation of sulfoximines assisted by the Hydrogen-Bonding Interaction[J]. ACS Catalysis, 2022, 12(15): 9083-9091.
[80] ZHOU Y-B, ZHOU T, QIAN P-F, et al. Synthesis of sulfur-stereogenic sulfoximines via Co(III)/chiral carboxylic acid-catalyzed enantioselective C-H amidation[J]. ACS Catalysis, 2022, 12(15): 9806-9811.
[81] MUKHERJEE K, GRIMBLAT N, SAU S, et al. Kinetic resolution of sulfur-stereogenic sulfoximines by Pd(II)-MPAA catalyzed C-H arylation and olefination[J]. Chemical Science, 2021, 12(33): 14863-14870.
[82] YUAN W, HE C. Enantioselective C–H functionalization toward silicon-stereogenic silanes[J]. Synthesis, 2022, 54(08): 1939-1950.
[83] GE Y, HUANG X, KE J, et al. Transition-metal-catalyzed enantioselective C-H silylation[J]. Chem Catalysis, 2022, 2(11): 2898-2928.
[84] SHINTANI R, OTOMO H, OTA K, et al. Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzosiloles via Enantioselective C-H Bond Functionalization[J]. Journal of the American Chemical Society, 2012, 134(17): 7305-7308.
[85] SHIMIZU M, MOCHIDA K, HIYAMA T. Modular approach to silicon-bridged biaryls: palladium-catalyzed intramolecular coupling of 2-(arylsilyl)aryl triflates[J]. Angewandte Chemie, International Edition, 2008, 47(50): 9760-9764.
[86] SATO Y, TAKAGI C, SHINTANI R, et al. Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic 5,10-Dihydrophenazasilines via Enantioselective 1,5-Palladium Migration[J]. Angewandte Chemie, International Edition, 2017, 56(31): 9211-9216.
[87] LIN Y, MA W-Y, XU Z, et al. Desymmetrization-Oriented Enantioselective Synthesis of Silicon-Stereogenic Silanes by Palladium-Catalyzed C-H Olefinations[J]. Chemistry - An Asian Journal, 2019, 14(12): 2082-2085.
[88] ZHANG Q-W, AN K, LIU L-C, et al. Construction of chiral tetraorganosilicons by tandem desymmetrization of silacyclobutanes/intermolecular dehydrogenative silylation[J]. Angewandte Chemie, International Edition, 2017, 56(4): 1125-1129.
[89] ZHANG L, AN K, WANG Y, et al. A combined computational and experimental study of Rh-catalyzed C-H silylation with silacyclobutanes: Insights leading to a more efficient catalyst system[J]. Journal of the American Chemical Society, 2021, 143(9): 3571-3582.
[90] AN K, MA W, LIU L-C, et al. Rhodium hydride enabled enantioselective intermolecular C-H silylation to access acyclic stereogenic Si-H[J]. Nature Communications, 2022, 13(1): 847.
[91] ZHANG H, ZHAO D. Synthesis of silicon-stereogenic silanols involving iridium-catalyzed enantioselective C–H silylation leading to a new ligand scaffold[J]. ACS Catalysis, 2021, 11(17): 10748-10753.
[92] KUNINOBU Y, YAMAUCHI K, TAMURA N, et al. Rhodium-catalyzed asymmetric synthesis of spirosilabifluorene derivatives[J]. Angewandte Chemie, International Edition, 2013, 52(5): 1520-1522.
[93] MURAI M, TAKEUCHI Y, YAMAUCHI K, et al. Rhodium-catalyzed synthesis of chiral spiro-9-silabifluorenes by dehydrogenative silylation: Mechanistic insights into the construction of tetraorganosilicon stereocenters[J]. Chemistry - A European Journal, 2016, 22(17): 6048-6058.
[94] MU D, YUAN W, CHEN S, et al. Streamlined construction of silicon-stereogenic silanes by tandem enantioselective C-H silylation/alkene hydrosilylation[J]. Journal of the American Chemical Society, 2020, 142(31): 13459-13468.
[95] WU Y, WANG P. Silicon-stereogenic monohydrosilane: Synthesis and applications[J]. Angewandte Chemie, International Edition, 2022: e202205382.
[96] OESTREICH M. Chirality transfer from silicon to carbon[J]. Chemistry - A European Journal, 2005, 12(1): 30-37.
[97] SELIGER J, OESTREICH M. Making the silylation of alcohols chiral: Asymmetric protection of hydroxy groups[J]. Chemistry - A European Journal, 2019, 25(40): 9358-9365.
[98] KLARE H F T, OESTREICH M. Chiral recognition with silicon-stereogenic silanes: remarkable selectivity factors in the kinetic resolution of donor-functionalized alcohols[J]. Angewandte Chemie, International Edition, 2007, 46(48): 9335-9338.
[99] KARATAS B, RENDLER S, FROEHLICH R, et al. Kinetic resolution of donor-functionalised tertiary alcohols by Cu-H-catalysed stereoselective silylation using a strained silicon-stereogenic silane[J]. Organic & Biomolecular Chemistry, 2008, 6(8): 1435-1440.
[100]RENDLER S, OESTREICH M. Kinetic resolution and desymmetrization by stereoselective silylation of alcohols[J]. Angewandte Chemie, International Edition, 2008, 47(2): 248-250.
[101]RENDLER S, OESTREICH M. Conclusive evidence for an SN2-Si mechanism in the B(C6F5)3-catalyzed hydrosilylation of carbonyl compounds: implications for the related hydrogenation[J]. Angewandte Chemie, International Edition, 2008, 47(32): 5997-6000.
[102]RENDLER S, PLEFKA O, KARATAS B, et al. Stereoselective alcohol silylation by dehydrogenative Si-O coupling: Scope, limitations, and mechanism of the Cu-H-catalyzed non-enzymatic kinetic resolution with silicon-stereogenic silanes[J]. Chemistry - A European Journal, 2008, 14(36): 11512-11528.
[103]STEVES A, OESTREICH M. Facile preparation of CF3-substituted carbinols with an azine donor and subsequent kinetic resolution through stereoselective Si-O coupling[J]. Organic & Biomolecular Chemistry, 2009, 7(21): 4464-4469.
[104]WEICKGENANNT A, MOHR J, OESTREICH M. Catalytic enantioselective dehydrogenative Si-O coupling of oxime ether-functionalized alcohols[J]. Tetrahedron, 2012, 68(17): 3468-3479.
[105]METSAENEN T T, HROBARIK P, KLARE H F T, et al. Insight into the Mechanism of Carbonyl Hydrosilylation Catalyzed by Brookhart's Cationic Iridium(III) Pincer Complex[J]. Journal of the American Chemical Society, 2014, 136(19): 6912-6915.
[106]DONG X, WEICKGENANNT A, OESTREICH M. Broad-spectrum kinetic resolution of alcohols enabled by Cu-H-catalysed dehydrogenative coupling with hydrosilanes[J]. Nature Communications, 2017, 8(1): 15547.
[107]RENDLER S, AUER G, OESTREICH M. Kinetic resolution of chiral secondary alcohols by dehydrogenative coupling with recyclable silicon-stereogenic silanes[J].Angewandte Chemie, International Edition, 2005, 44(46): 7620-7624.
[108]SOMMER L H, FRYE C L, PARKER G A, et al. Stereochemistry of asymmetric silicon. I. Relative and absolute configurations of optically active α-naphthylphenylmethylsilanes[J]. Journal of the American Chemical Society, 1964, 86(16): 3271-3276.
[109]SOMMER L H, ROSBOROUGH K T. Stereochemistry of asymmetric silicon. XVII. Synthesis, resolution, and stereochemistry of the 1,2,2,2-tetraphenyl-1-methyldisilane system[J]. Journal of the American Chemical Society, 1969, 91(25): 7067-7076.
[110]CORRIU R J P, OULD-KADA S, LANNEAU G. Methylphenyltriphenylgermyl-silanes fonctionnels optiquement actifs: I. synthese et stereochimie[J]. Journal of Organometallic Chemistry, 1983, 248(1): 23-37.
[111]JANKOWSKI P, SCHAUMANN E, WICHA J, et al. Facile synthesis of enantiomerically pure tert-butyl(methyl)phenyl-silanes[J]. Tetrahedron: Asymmetry, 1999, 10(3): 519-526.
[112]TRZOSS M, SHAO J, BIENZ S. Preparation of a `Si-centered' chiral auxiliary by resolution[J]. Tetrahedron: Asymmetry, 2004, 15(9): 1501-1505.
[113]CORRIU R J P, MOREAU J J E. Asymmetric synthesis at silicon: II. alcoholysis of prochiral organosilicon compounds catalysed by rhodium complexes[J]. Journal of Organometallic Chemistry, 1976, 120(3): 337-346.
[114]KOBAYASHI K, KATO T, MASUDA S. Asymmetric synthesis of silicon compounds using chiral 5,6-dimethoxy-1,3,2-dioxasilacycloheptane derivatives[J]. Chemistry Letters, 1987, 16(1): 101-104.
[115]JUNG M E, HOGAN K T. Chirality transfer from silicon to carbon: use of optically pure cyclic silanes with a binaphthalene chiral unit[J]. Tetrahedron Letters, 1988, 29(48): 6199-6202.
[116]KOBAYASHI K, KATO T, UNNO M, et al. Asymmetric synthesis of organosilicon compounds using a C2 chiral auxiliary[J]. Bulletin of the Chemical Society of Japan, 1997, 70(6): 1393-1401.
[117]OKA N, NAKAMURA M, SOEDA N, et al. Stereocontrolled synthesis of tertiary silanes via optically pure 1,3,2-oxazasilolidine derivatives[J]. Journal of Organometallic Chemistry, 2009, 694(14): 2171-2178.
[118]GUO J, WANG H, XING S. Cobalt-Catalyzed asymmetric synthesis of gem-bis(silyl)alkanes by double hydrosilylation of aliphatic terminal alkynes[J]. Chem, 2019, 5(4): 881-895.
[119]SCHMIDT D R, O'MALLE S J L, LEIGHTON J L. Catalytic asymmetric silane alcoholysis: practical access to chiral silanes[J]. Journal of the American Chemical Society, 2003, 125(5): 1190-1191.
[120]ZHU J, CHEN S, HE C. Catalytic enantioselective dehydrogenative Si-O coupling to access chiroptical silicon-stereogenic siloxanes and alkoxysilanes[J]. Journal of theAmerican Chemical Society, 2021, 143(14): 5301-5307.
[121]YUAN W, ZHU X, XU Y, et al. Synthesis of Si-stereogenic silanols by catalytic asymmetric hydrolytic oxidation[J]. Angewandte Chemie, International Edition, 2022, 61(31): e202204912.
[122]YANG W, LIU L, GUO J, et al. Enantioselective hydroxylation of dihydrosilanes to Si-chiral silanols catalyzed by in situ generated copper(II) species[J]. Angewandte Chemie, International Edition, 2022, 61(32): e202205743.
[123]OHTA T, ITO M, TSUNETO A, et al. Asymmetric synthesis of silanes with a stereogenic centre at silicon via hydrosilylation of symmetric ketones with prochiral diaryl silanes catalysed by binap–Rh I complexes[J]. Journal of the Chemical Society, Chemical Communications. 1994, 21: 2525-2526.
[124]IGAWA K, YOSHIHIRO D, ICHIKAWA N, et al. Catalytic enantioselective synthesis of alkenylhydrosilanes[J]. Angewandte Chemie, International Edition, 2012, 51(51): 12745-12748.
[125]WEN H, WAN X, HUANG Z. Asymmetric synthesis of silicon-stereogenic vinylhy-drosilanes by cobalt-catalyzed regio- and enantioselective alkyne hydrosilylation with dihydrosilanes[J]. Angewandte Chemie, International Edition, 2018, 57(21): 6319-6323.
[126]ZHAN G, TENG H -L, LUO Y, et al. Enantioselective construction of silicon-stereogenic silanes by scandium-catalyzed intermolecular alkene hydrosilylation[J]. Angewandte Chemie, International Edition, 2018, 57(38): 12342-12346.
[127]XIE J -L, XU Z, ZHOU H -Q, et al. Palladium-catalyzed hydrosilylation of ynones to access silicon-stereogenic silylenones by stereospecific aromatic interaction-assisted Si−H activation. Science China Chemistry, 2021, 64(5): 761-769.
[128]HUANG Y -H, WU Y, ZHU Z, et al. Enantioselective synthesis of silicon-stereogenic monohydrosilanes by rhodium-catalyzed intramolecular hydrosilylation[J]. Angewandte Chemie, International Edition, 2022, 61(1): e202113052.
[129]LU W, ZHAO Y, MENG F. Cobalt-catalyzed sequential site- and stereoselective hydrosilylation of 1,3- and 1,4-enynes[J]. Journal of the American Chemical Society, 2022, 144(12): 5233-5240.
[130]YASUTOMI Y, SUEMATSU H, KATSUKI T. Iridium(III)-catalyzed enantioselective Si−H bond insertion and formation of an enantioenriched silicon center[J]. Journal of the American Chemical Society, 2010, 132(13): 4510-4511.
[131]NAKAGAWA Y, CHANTHAMATH S, FUJISAWA I. Ru(II)-Pheox-catalyzed Si−H insertion reaction: construction of enantioenriched carbon and silicon centers[J]. Chemical Communications, 2017, 53(26): 3753-3756.
[132]JAGANNATHAN J R, FETTINGER J C, SHAW J T, et al. Enantioselective Si-H insertion reactions of diarylcarbenes for the synthesis of silicon-stereogenic silanes[J]. Journal of the American Chemical Society, 2020, 142(27): 11674-11679.
[133]KURIHARA Y, NISHIKAWA M, YAMANOI Y, et al. Synthesis of optically active tertiary silanes via Pd-catalyzed enantioselective arylation of secondary silanes[J]. Chemical Communications, 2012, 48(94): 11564-11566.
[134]CHEN L, HUANG J -B, XU Z, et al. Palladium-catalyzed Si–C bond-forming silylation of aryl iodides with hydrosilanes: an enhanced enantioselective synthesis of silicon-stereogenic silanes by desymmetrization[J]. RSC Advances, 2016, 6(71): 67113-67117.
[135]YANG J-J, XU Z, NIE Y -X, et al. Long-distance chirality transfer from P-ligand to prochiral dihydrosilanes via Pd(II) aryl iodide complex in Pd-catalyzed silylation of aryl iodide: a DFT study[J]. Journal of Organic Chemistry, 2020, 85(22): 14360-14368.
[136]MA W, LIU L-C, AN K, et al. Rhodium-catalyzed synthesis of chiral monohydrosilanes by intramolecular C-H functionalization of dihydrosilanes[J]. Angewandte Chemie, International Edition, 2021, 60(8): 4245-4251.
[137]YUAN W, YOU L, LIN W, et al. Asymmetric synthesis of silicon-stereogenic monohydrosilanes by dehydrogenative C-H silylation[J]. Organic Letters, 2021, 23(4): 1367-1372.
[138]CHEN S, MU D, MAI P L, et al. Enantioselective construction of six- and seven-membered triorgano-substituted silicon-stereogenic heterocycles[J]. Nature Communications, 2021, 12(1): 1249.
[139]CHEN S, ZHU J, KE J, et al. Enantioselective intermolecular C-H silylation of heteroarenes for the synthesis of acyclic Si-stereogenic silanes[J]. Angewandte Chemie, International Edition, 2022, 61(21): e202117820.
[140]HE J, WASA M, CHAN K S L, et al. Palladium-catalyzed transformations of alkyl C−H bonds [J]. Chemical Reviews, 2017, 117(13): 8754-8786.
[141]MURAI M, TAKESHIMA H, MORITA H, et al. Acceleration effects of phosphine ligands on the rhodium-catalyzed dehydrogen-ative silylation and germylation of unactivated C(sp3)−H bonds[J]. Journal of Organic Chemistry, 2015, 80(11): 5407-5414.
[142]FRATH D, MASSUE J, ULRICH G, ZIESSEL R. Luminescent materials: Locking π-conjugated and heterocyclic ligands with boron(III)[J]. Angewandte Chemie, International Edition, 2014, 53(9): 2290-2310.
[143]MELLERUP S K, WANG S. Boron-based stimuli responsive materials[J]. Chemical Society Reviews, 2019, 48(13): 3537-3549.
[144]CHEN X, TAN D, YANG D-T. Multiple-boron-nitrogen (multi-BN) doped π-conjugated systems for optoelectronics[J]. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2022, 10(37):13499-13532.
[145]LEONORI D, AGGARWAL V K. Stereospecific Couplings of Secondary and Tertiary Boronic Esters[J]. Angewandte Chemie, International Edition, 2015, 54(4): 1082-1096.
[146]WANG C-Y, DEROSA J, BISCOE M R. Configurationally stable, enantioenrichedorganometallic nucleophiles in stereospecific Pd-catalyzed cross-coupling reactions: an alternative approach to asymmetric synthesis[J]. Chemical Science, 2015, 6(9): 5105-5113.
[147]FYFE J W B, WATSON A J B. Recent developments in organoboron chemistry: Old dogs, new tricks[J]. Chem, 2017, 3(1): 31-55.
[148]SANDFORD C, AGGARWAL V, K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters[J]. Chemical Communications, 2017, 53(40): 5481-5494.
[149]WANG H, JING C, NOBLE A. Stereospecific 1,2-migrations of boronate complexes induced by electrophiles[J]. Angewandte Chemie, International Edition, 2020, 59(39):16859-16872.
[150]ZHANG G, ZHANG Z, HOU M, et al. Construction of boron-stereogenic compounds via enantioselective Cu-catalyzed desymmetric B-H bond insertion reaction[J]. Nature Communications, 2022, 13(1): 2624.
[151]SAINT-DENIS T G, ZHU R -Y, CHEN G, et al. Enantioselective C(sp3)‒H bond activation by chiral transition metal catalysts[J]. Science, 2018, 359(6377):759.
[152]RICHTER S C, OESTREICH M. Emerging Strategies for C-H Silylation[J]. Trends in Chemistry, 2020, 2(1): 13-27.
[153]CHENG C, HARTWIG J F. Catalytic silylation of unactivated C−H bonds[J]. Chemical Reviews, 2015, 115(17): 8946-8975.
[154]HARTWIG, J. F. Borylation and Silylation of C–H Bonds: A Platform for Diverse C–H Bond Functionalizations[J]. Accounts of Chemical Research, 2012, 45(6): 864–873.
[155]DENMARK S E, SWEIS R F. In Metal-Catalyzed Cross-Coupling Reactions, 2 nd ed.; De Meijere A, Diederich F, Eds[M]. Wiley-VCH: Weinheim, 2004; 1: 163−216.
[156]RAMESH R, REDDY D S. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds[J]. Journal of Medicinal Chemistry, 2018, 61(9): 3779 – 3798.
[157]LEE T, HARTWIG J F. Rhodium-Catalyzed Enantioselective Silylation of Cyclopropyl C−H Bonds[J]. Angewandte Chemie, International Edition, 2016, 55(30), 8723 – 8727.
[158]SU B, HARTWIG J F. Ir-Catalyzed Enantioselective, Intramolecular Silylation of Methyl C–H Bonds[J]. Journal of the American Chemical Society, 2017, 139(35), 12137 – 12140.
[159]OESTREICH M. Silicon-stereogenic silanes in asymmetric catalysis[J]. Synlett, 2007, 2007(11): 1629-1643.
[160]XU L-W, LI L, LAI G-Q, et al. The recent synthesis and application of silicon-stereogenic silanes: A renewed and significant challenge in asymmetric synthesis[J]. Chemical Society Reviews, 2011, 40(3): 1777-1790.
[161]BAUER J O, STROHMANN C. Stereocontrol in Nucleophilic Substitution Reactionsat Silicon: The Role of Permutation in Generating Silicon-Centered Chirality[J]. Journal of the American Chemical Society, 2015, 137(13): 4304-4307.
[162]IGAWA K, TOMOOKA K. Chiral silicon molecules, in organosilicon chemistry: Novel approaches and reactions; T. Hiyama, M. Oestreich, Eds[M]. Wiley: Weinheim, Germany, 2019, 495-532.
[163]WEICKGENANNT A, MEWALD M, OESTREICH, M. Asymmetric Si-O coupling of alcohols[J]. Organic & Biomolecular Chemistry, 2010, 8(7): 1497-1504.
[164]SHINTANI, R. Recent progress in catalytic enantioselective desymmetrization of prochiral organosilanes for the synthesis of silicon-stereogenic compounds[J]. Synlett, 2018, 29(04): 388-396.
[165]ROSINI C, FRANZINI L, RAFFAELLI A, et al. Synthesis and applications of binaphthylic C2-symmetry derivatives as chiral auxiliaries in enantioselective reactions[J]. Synthesis, 1992, 1992(6): 503-517.
[166]CLAYDEN J, MORAN W J, EDWARDS P J, et al. The challenge of atropisomerism in drug discovery[J]. Angewandte Chemie, International Edition, 2009, 48(35): 6398-6401.
[167]KOZLOWSKI M C, MORGAN B J, LINTON E C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling[J]. Chemical Society Reviews, 2009, 38(11): 3193-3207.
[168]BRINGMANN G, GULDER T, GULDER T A M, et al. Atroposelective total synthesis of axially chiral biaryl natural products[J]. Chemical Reviews, 2011, 111(2): 563-639.
[169]LAPLANTE S R, EDWARDS P J, FADER L D, et al. Revealing Atropisomer Axial Chirality in Drug Discovery[J]. ChemMedChem, 2011, 6(3): 505-513.
[170]SMYTH J E, BUTLER N M, KELLER P A. A twist of nature - the significance of atropisomers in biological systems[J]. Natural Product Reports, 2015, 32(11): 1562-1583.
[171]WENCEL-DELORD J, PANOSSIAN A, LEROUX F R, et al. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls[J]. Chemical Society Reviews, 2015, 44(11): 3418-3430.
[172]WANG Y-B, TAN B. Construction of axially chiral compounds via asymmetric organocatalysis[J]. Accounts of Chemical Research, 2018, 51(2): 534-547.
[173]WATSON A A, WILLIS A C, WILD S B. Atropisomerism in (±)-7-methyl- and -phenyl-substituted dinaphtho
[2,1-b;1',2'-d]phospholes and dinaphth
[2,1-b;1',2'-d]arsoles[J]. Journal of Organometallic Chemistry, 1993, 445(1-2): 71-78.
[174]GLADIALI S, DORE A, FABBRI D, et al. Crystal structure, dynamic behavior and reactivity of dinaphtho
[2,1-b:1',2'-d]phospholes and related atropisomeric phosphacyclic derivatives[J]. Journal of Organic Chemistry, 1994, 59(21): 6363-6371.
[175]TICHY M, RIDVAN L, HOLY P, et al. Axially chiral dilactams. Synthesis, racemization barriers and crystal structures[J]. Tetrahedron: Asymmetry, 1998, 9(2):227-234.
[176]SUPERCHI S, CASARINI D, LAURITA A, et al. Induction of a preferred twist in a biphenyl core by stereogenic centers: a novel approach to the absolute configuration of 1,2- and 1,3-diols[J]. Angewandte Chemie, International Edition, 2001, 40(2): 451-454.
[177]SAUDAN L A, BERNARDINELLI G, KUNDIG E P. Diastereoselective synthesis of (5R,7R)- and (5R,7S)-5,7-dimethyl-6,7-dihydro-5H-dibenz[c,e]azepines[J]. Synlett, 2000, 2000(4): 483-486.
[178]PIRA S L, WALLACE T W, GRAHAM J P. Enantioselective route to 5-methyl- and 5,7-dimethyl-6,7-dihydro-5H-dibenz[c,e]azepine: Secondary amines with switchable axial chirality[J]. Organic Letters, 2009, 11(7): 1663-1666.
[179]CHEETHAM C A, MASSEY R S, PIRA S L, et al. Atroposelective formation of dibenz[c,e]azepines via intramolecular direct arylation with center-axis chirality transfer[J]. Organic & Biomolecular Chemistry, 2011, 9(6): 1831-1838.
[180]POSTIKOVA S, SABBAH M, WIGHTMAN D, et al. Developments in Meyers' lactamization methodology: En route to bi(hetero)aryl structures with defined axial chirality[J]. Journal of Organic Chemistry, 2013, 78(16): 8191-8197.
[181]YANG T, GUO X, YIN Q, et al. Intramolecular asymmetric reductive amination: synthesis of enantioenriched dibenz[c,e]azepines[J]. Chemical Science, 2019, 10(8): 2473-2477.
[182]ZHANG Y, LIU Y-Q, HU L A, et al. Asymmetric reductive amination/ring-closing cascade: direct synthesis of enantioenriched biaryl-bridged NH lactams[J]. Organic Letters, 2020, 22(16): 6479-6483.
[183]BROSSI, A. Bioactive alkaloids. 4. Results of recent investigations with colchicine and physostigmine[J]. Journal of Medicinal Chemistry, 1990, 33(9): 2311-2319.
[184]SIMMONS E M, HARTWIG J F. Catalytic functionalization of unactivated primary C-H bonds directed by an alcohol[J]. Nature, 2012, 483(7387): 70-73.
[185]SHINTANI R, MACIVER E E, TAMAKUNI F, et al. Rhodium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzooxasilines via Enantioselective Transmetalation[J]. Journal of the American Chemical Society, 2012, 134(41): 16955-16958.
[186]CHANG X, MA P-L, CHEN H-C, et al. Asymmetric synthesis and application of chiral spirosilabiindanes[J]. Angewandte Chemie, International Edition, 2020, 59(23): 8937-8940.
[187]BRINGMANN, G. TASLER S, ENDRESS H, et al. Murrastifoline-F: first total synthesis, atropo-enantiomer resolution, and stereoanalysis of an axially chiral N,C-coupled biaryl alkaloid[J]. Journal of the American Chemical Society, 2001, 123(12): 2703–2711.
[188]HUGHES C C, PRIETO-DAVO A, JENSEN P R, et al. The Marinopyrroles, antibioticsof an unprecedented structure class from a marine streptomyces sp[J]. Organic Letters, 2008, 10(4): 629–631.
[189]BARBARINO M, CESARI D, INTRUGLIO R, et al. Possible repurposing of pyrvinium pamoate for the treatment of mesothelioma: a pre-clinical assessment[J]. Journal of Cellular Physiology, 2018, 233(9): 7391–7401.
[190]LIU J, LI H Q, SPANNENBERG A, et al. Selective palladium-catalyzed aminocarbonylation of olefins to branched amides[J]. Angewandte Chemie, International Edition, 2016, 55(43): 13544–13548.
[191]MILLET A, DAILLER D, LARINI P, et al. Ligand-controlled α- and βarylation of acyclic N-Boc amines[J]. Angewandte Chemie, International Edition, 2014, 53(10): 2678–2682.
[192]FAIGL F, MÁTRAVÖLGYI B, SZÖELLŐSY Á, et al. Synthesis of atropisomeric 1-Phenylpyrrole-derived amino alcohols: New chiral ligands[J]. Chirality, 2012, 24(7): 532–542.
[193]BOCK L, ADAMS R. The stereochemistry of N-Phenylpyrroles. The preparation and resolution of N-2-carboxyphenyl-2,5-dimethyl-3- carboxypyrrole. XIII[J]. Journal of the American Chemical Society, 1931, 53(1):374–376.
[194]ZHANG L, ZHANG J, MA J, et al. Highly atroposelective synthesis of arylpyrroles by catalytic asymmetric Paal–Knorr reaction[J]. Journal of the American Chemical Society, 2017, 139(5): 1714–1717.
[195]ZHANG L, XIANG S-H, WANG J, et al. Phosphoric acid-catalyzed atroposelective construction of axially chiral arylpyrroles[J]. Nature Communications, 2019, 10(1): 1-10.
[196]CHEN Y, YEKTA S, YUDIN A K. Modified BINOL ligands in asymmetric catalysis[J]. Chemical Reviews, 2003, 103(8): 3155-3211.
[197]SHIBASAKI M, MATSUNAGA S. Design and application of linked-BINOL chiral ligands in bifunctional asymmetric catalysis[J]. Chemical Society Reviews, 2006, 35(3): 269-279.
[198]ROKADE B V, GUIRY P J. Axially chiral P,N-ligands: Some recent twists and turns[J]. ACS Catalysis, 2018, 8(1): 624-643.
[199]ZHANG D, WANG Q. Palladium catalyzed asymmetric Suzuki-Miyaura coupling reactions to axially chiral biaryl compounds: Chiral ligands and recent advances[J]. Coordination Chemistry Reviews, 2015, 286: 1-16.
[200]LIAO G, ZHOU T, YAO Q-J, et al. Recent advances in the synthesis of axially chiral biaryls via transition metal-catalysed asymmetric C-H functionalization[J]. Chemical Communications, 2019, 55(59): 8514-8523.
[201]DOHI T, MARUYAMA A, TAKENAGE N, et al. A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of Phenols[J]. Angewandte Chemie, International Edition, 2008, 47(20): 3787-3790.
[202]CHUNG Y K, GU G C. Phosphine-catalyzed enantioselective synthesis of oxygen heterocycles[J]. Angewandte Chemie, International Edition, 2009, 48(12): 2225-2227.
[203]XU B, ZHU S-F, XIE X-L, et al. Asymmetric N-H insertion reaction cooperatively catalyzed by rhodium and chiral spiro phosphoric acids[J]. Angewandte Chemie, International Edition, 2011, 50(48): 11483-11486.
[204]ADAM W, MITCHELL C M, SAHA-MöLLER C R, et al. Host−Guest chemistry in a Urea Matrix: Catalytic and selective oxidation of triorganosilanes to the corresponding silanols by methyltrioxorhenium and the Urea/Hydrogen Peroxide Adduct[J]. Journal of the American Chemical Society, 1999, 121(10): 2097-2103.
[205]JOLLIFFE J D, ARMSTRONG R J, SMITH M D. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation[J]. Nature Chemistry, 2017, 9(6): 558-562.
[206]MORI M, IMMA H, NAKAI T. Asymmetric catalytic cyanosilylation of aldehydes using a chiral binaphthol-titanium complex[J]. Tetrahedron Letters, 1997, 38(35): 6229-6232.
[207]POP F, ZIGON N, AVARVARI N. Main-group-based electro- and photoactive chiral materials[J]. Chemical Reviews, 2019 119(14): 8435–8478.
[208]KAMKAEW A, LIM S H, LEE H B, et al. BODIPY dyes in photodynamic therapy[J]. Chemical Society Reviews, 2013, 42(1): 77–88.
[209]KOLEMEN S, AKKAYA E U. Reaction-based BODIPY probes for selective bio-imaging[J]. Coordination Chemistry Reviews, 2018, 354: 121–134.
[210]BOENS N, VERBELEN B, ORTIZ M J, et al. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core[J]. Coordination Chemistry Reviews, 2019, 399: 213024.
[211]PODDAR M, MISRA R. Recent advances of BODIPY based derivatives for optoelectronic applications[J]. Coordination Chemistry Reviews, 2020, 421: 213462.
[212]VEDEJS E, FIELDS S C, HAYASHI R, et al. Asymmetric memory at labile, stereogenic boron: enolate alkylation of oxazaborolidinones[J]. Journal of the American Chemical Society, 1999, 121(11): 2460-2470.
[213]IMAMOTO T, MORISHITA H. An enantiomerically pure tetracoordinate boron compound: stereochemistry of substitution reactions at the chirogenic boron atom[J]. Journal of the American Chemical Society, 2000, 122(26): 6329-6330.
[214]WANG L-Y, LIU Z-F, TENG K-X, et al. Circularly polarized luminescence from helical N,O-boron-chelated dipyrromethene (BODIPY) derivatives[J]. Chemical Communications, 2022, 58(23): 3807-3810.
[215]COURTIS A M, SANTOS S A, GUAN Y, et al. Monoalkoxy BODIPYs-A fluorophore class for bioimaging[J]. Bioconjugate Chemistry, 2014, 25(6): 1043-51.
[216]UMEDA N, TAKAHASHI H, KAMIYA M, et al. Boron dipyrromethene as a fluorescent caging group for single-photon uncaging with long-wavelength visiblelight[J]. ACS Chemical Biology, 2014, 9(10): 2242-2246.
[217]SHARMA A K, NAIR M, CHAUHAN P, et al. Visible-light-triggered uncaging of carbonyl sulfide for hydrogen sulfide (H2S) release[J]. Organic Letters, 2017, 19(18): 4822-4825.
[218]IKEDA C, MARUYAMA T, NABESHIMA T. Convenient and highly efficient synthesis of boron-dipyrrins bearing an arylboronate center[J]. Tetrahedron Letters, 2009, 50(26): 3349-3351.
[219]LU H, MACK J, YANG Y, et al. Structural modification strategies for the rational design of red/NIR region BODIPYs[J]. Chemical Society Reviews, 2014, 43(13): 4778-4823.
[220]CHEN N, ZHANG W, CHEN S, et al. Sterically protected N2O-type benzopyrromethene boron complexes from boronic acids with intense red/Near-Infrared fluorescence[J]. Organic Letters, 2017, 19(8): 2026-2029.
[221]LIU Y, NIU L Y, LIU X L, et al. Synthesis of N,O,B-chelated dipyrromethenes through an unexpected intramolecular cyclisation: Enhanced Near-Infrared emission in the aggregate/solid state[J]. Chemistry - A European Journal, 2018, 24(51), 13549-13555.
[222]CHEN K, DONG Y, ZHAO X, et al. BODIPY derivatives as triplet photosensitizers and related intersystem crossing mechanisms[J]. Frontiers in Chemistry, 2019, 7: 821.
[223]ZHAO J, XU K, YANG W, et al. The triplet excited state of BODIPY: formation, modulation and application[J]. Chemical Society Reviews, 2015, 44(24): 8904-8939.
[224]SAGET T, CRAMER N. Enantioselective C-H arylation strategy for functionalized dibenzazepinones with quaternary stereocenters[J]. Angewandte Chemie, International Edition, 2013, 52(30): 7865 –7868.
[225]YANG L, NEUBURGER M, BAUDOIN O. Chiral bifunctional phosphine-carboxylate ligands for Palladium(0)-catalyzed enantioselective C-H arylation[J]. Angewandte Chemie, International Edition, 2018, 57(5): 1394-1398.
[226]VYHIVSKYI O, KUDASHEV A, MIYAKOSHI T, et al. Chiral catalysts for Pd(0) -catalyzed enantioselective C-H activation[J]. Chemistry-A European Journal, 2021, 27(4): 1231-1257.
[227]FALIVENE L, CREDENDINO R, POATER A, et al. A web tool for analyzing catalytic pockets with topographic steric maps[J]. Organometallics, 2016, 35(13): 2286-2293.
[228]FALIVENE L, CAO Z, PETTA A, et al. Towards the online computer-aided design of catalytic pockets[J]. Nature Chemistry, 2019, 11(10): 872-879.
[229]ZHANG H, CHEN X, LAN J, et al. Silver-mediated direct C-H amination of BODIPYs for screening endoplasmic reticulum-targeting reagents[J]. Chemical Communications, 2018, 54(26): 3219-3222.
[230]MASSON G, KOENIG B, Chemical Photocatalysis - Do It Right![J] European Journal of Organic Chemistry, 2020, 2020(10): 1191-1192.
[231]CHATANI S, KLOXIN C J, BOWMAN C N. The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties[J]. Polymer Chemistry, 2014, 5(7): 2187-2201.
[232]HARI D P, KOENIG B. Synthetic applications of eosin Y in photoredox catalysis[J]. Chemical Communications, 2014, 50(51): 6688-6699.
[233]TEPLY F. Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots[J]. Collection of Czechoslovak Chemical Communications, 2011, 76(7): 859-917.
[234]RAVELLI D, FAGNONI M, ALBINI A. Photoorganocatalysis. What for?[J] Chemical Society Reviews, 2013, 42(1): 97-113.
[235]CAVEDON C, SEEBERGER P H, PIEBER B. Photochemical Strategies for Carbon-Heteroatom Bond Formation[J]. European Journal of Organic Chemistry, 2020, 2020(10): 1379-1392.
[236]PIBIRI I, BUSCEMI S, PALUMBO PICCIONELLO A, et al. Photochemically produced singlet oxygen: Applications and perspectives[J]. ChemPhotoChem, 2018, 2(7): 535-547.
[237]YOGO T, URANO Y, ISHITSUKA Y, et al. Highly efficient and photostable photosensitizer based on BODIPY chromophore[J]. Journal of the American Chemical Society, 2005, 127(35): 12162-12163.
[238]SINGH P K, MAJUMDAR P, SINGH S P. Advances in BODIPY photocleavable protecting groups[J]. Coordination Chemistry Reviews, 2021, 449: 214193.
[239]YOON T P, JACOBSEN E N. Privileged chiral catalysts[J]. Science, 2003, 299(5613): 1691-1693.
[240]FISCHER J, MELE L, SERIER-BRAULT H, et al. Controlling Photooxygenation with a Bifunctional Quinine-BODIPY Catalyst: towards Asymmetric Hydroxylation of β-Dicarbonyl Compounds[J]. European Journal of Organic Chemistry, 2019, 2019(37): 6352-6358.
[241]GE Y, O'SHEA D F. Azadipyrromethenes: from traditional dye chemistry to leading edge applications[J]. Chemical Society Reviews, 2016, 45(14): 3846-3864.
[242]SAWAZAKI T, SHIMIZU Y, OISAKI K, et al. Convergent and functional-group-tolerant synthesis of B-Organo BODIPYs[J]. Organic Letters, 2018, 20(24): 7767-7770.
[243]DING W, LU L-Q, ZHOU Q-Q, et al. Bifunctional photocatalysts for enantioselective aerobic oxidation of β-ketoesters[J]. Journal of the American Chemical Society, 2017, 139(1): 63-66.
修改评论