中文版 | English
题名

不对称碳氢官能化构建硅、硼手性及其应用研究

其他题名
ASYMMETRIC C–H FUNCTIONALIZATION FOR THE SYNTHESIS AND APPLICATION OF SILICON AND BORON CHIRAL COMPOUNDS
姓名
姓名拼音
GUO Yonghong
学号
11930731
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
何川
导师单位
化学系
外机构导师单位
南方科技大学化学系
论文答辩日期
2023-04-28
论文提交日期
2023-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

手性现象在自然界中广泛存在,如与生命活动息息相关的生物活性分子DNA、蛋白质、糖类等都与手性密切相关。手性科学在生物医药、材料科学和合成化学等领域扮演着非常重要的角色。天然存在的大多数手性化合物是碳手性化合物,这些碳手性化合物在生命的演化进程中发挥着至关重要的作用。由于手性物质的不同对映异构体对生物体的生理活性不同,因此,合成某一特定构型的化合物对人类的生产生活及生命健康意义重大。

近年来,随着元素有机化学的发展,杂原子手性化合物的构建逐渐成为手性合成化学领域的研究热点。传统获得杂原子手性化合物的方法依赖于使用当量的手性试剂通过手性源合成或利用光学拆分来实现。手性科学在近几十年里得到了快速发展,其中,不对称催化逐渐成为获得手性化合物最直接有效的途径。因此,发展催化不对称方法构建杂原子手性化合物不仅具有重要的理论意义,而且能够为合成化学、材料科学、生物医药等领域提供结构多样的手性化合物。过渡金属催化不对称碳氢键官能化反应具有步骤简洁、效率高、官能团兼容性好等优势,是构建手性分子的有力手段。基于此,本论文在前人研究工作基础之上,利用过渡金属催化不对称碳氢官能化策略,围绕“不对称催化构建硅手性、硼手性化合物及其应用研究”展开。主要内容如下:

Rh(I)和手性双膦配体催化体系下,利用不对称碳氢硅基化反应成功实现了同时具有硅手性和轴手性的六元环硅烷的高效、高对映选择性构建。该工作通过X-ray单晶衍射的绝对构型分析和Tamao-Fleming氧化实验揭示了一种新颖的硅手性到轴手性传递现象。通过对产物进行衍生化研究,合成了结构新颖的硅醇和具有CPL活性的发光分子。

利用Pd(0)催化不对称碳氢芳基化反应,高效、高对映选择性地实现了一系列硼手性N2O-BODIPY的构建。该反应成功的关键是在理论计算指导下,设计通过由位阻效应和相互作用力协同调控对映选择性的催化手性口袋配体,精准对映选择性地识别BODIPY中两个吡咯环α位的碳氢键。光学测试研究表明这些化合物具有较好的发光性质,通过对产物进行衍生化可以得到具有红移发射波长的N2O-BODIPY分子。

基于N2O-BODIPY化合物的性质特点,从绿色催化角度出发设计合成了一类新型的双功能可见光催化剂,利用低能量的红光作为光源初步探索了其在不对称氧化羟基化反应中的应用

其他摘要

Chirality exists widely in nature. For example, biological active molecules such as DNA, protein, and sugar, which are closely related to life activities, are closely related to chirality. Chiral science plays a very important role in the fields of biomedicine, material science and synthetic chemistry. Most of the naturally occurring chiral compounds are carbon chiral compounds, which play an important role in the evolution of life. Due to the different enantiomers of chiral substances having different physiological activities for organisms, the synthesis of compounds with a specific configuration is of great significance for human production, life, and health.

In recent years, with the development of element-organic chemistry, the construction of single-configuration heteroatom chiral compounds has gradually become a research hotspot in the field of chiral synthetic chemistry. The traditional method for the preparation of heteroatom stereogenic compounds relies on the use of equivalent chiral reagents through chiral source synthesis or optical resolution. Chiral science has developed rapidly in recent decades, among which asymmetric catalysis has gradually become the most direct and effective way to obtain chiral compounds. Therefore, the development of catalytic asymmetric methods to construct heteroatom stereogenic compounds not only has important theoretical significance, but also can provide chiral compounds with diverse structures for synthetic chemistry, material science, biomedicine, and other fields. Transition metal-catalyzed asymmetric hydrocarbon functionalization has the advantages of simple steps, high efficiency, and good functional group compatibility, which is a powerful means to construct chiral molecules. This thesis builds on the research work of previous researchers, uses the transition metal catalytic asymmetric hydrocarbon functionalization strategy to focus on " asymmetric catalytic construction of silicon chiral, boron chiral compounds and their applications ". The main contents are as follows:

In the presence of a Rh(I) catalyst with a chiral diphosphine ligand, a wide range of dihydrodibenzosilines containing both silicon-central and axial chiralities are conveniently constructed in excellent enantioselectivities via dehydrogenative hydrocarbon silylation. Absolute configuration analysis by single-crystal X-ray structures and Tamao-Fleming oxidation experiment revealed a novel silicon central-to-axial chirality relay phenomenon. Through the derivatization of the product, the silicanol with novel structure and the luminescent molecule with CPL activity were synthesized.

A Pd(0)-catalysed protocol for the enantioselective synthesis of boron-stereogenic N2O-BODIPYs via hydrocarbon arylation reaction was reported. This method gives access to a wide range of highly functionalized boron-stereogenic N2O-BODIPYs, including six- to nine-membered boron heterocycles, with good to excellent enantioselectivities. Key to the success of this reaction is to design a catalytic chiral pocket ligand that can precisely and enantioselectively recognize the α C-H bonds of two pyrrole rings in BODIPY by synergistically regulating enantioselectivity through steric hindrance effects and interaction forces under the guidance of theoretical calculations. Photophysical properties, derivatizations of the obtained chiroptical N2O-BODIPYs are investigated. Optical studies show that these compounds have good luminescence properties; N2O-BODIPY molecule with red-shift emission wavelength can be obtained by derivatization of the product.

Based on the characteristics of N2O-BODIPY compound, a new type of bifunctional visible light catalyst was designed and synthesized from the perspective of green catalysis, and its application in asymmetric oxidative hydroxylation was preliminarily explored using low energy red light as the light source.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] KIEŁBASŃSKI P, MIKOŁAJCZYK M. In Future Directions in Biocatalysis [M]. Matsuda, T., Ed. Elsevier Science B.V.: Amsterdam, 2007, 2: 159−203.
[2] VENDETTI FRANK P, SCHAMUS S, BAKKENIST CHRISTOPHER J, et al. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo[J]. Oncotarget, 2015, 6(42): 44289-44305.
[3] PRADERE U, GARNIER-AMBLARD E C, COATS S J, et al. Synthesis of nucleoside phosphate and phosphonate prodrugs[J]. Chemical Reviews, 2014, 114(18): 9154-9218.
[4] MONTCHAMP J-L. Phosphorus Chemistry I: Asymmetric synthesis and bioactive compounds[M]. Topics in Current Chemistry; Springer International Publishing, 2015: 360.
[5] SOFIA M J, BAO D, CHANG W, et al. Discovery of a β-D-2'-Deoxy-2'-α-fluoro-2'-β-C-methyluridine Nucleotide Prodrug (PSI-7977) for the Treatment of Hepatitis C Virus[J]. Journal of Medicinal Chemistry, 2010, 53(19): 7202-7218.
[6] CHEN J, CAO Y. Silole-containing polymers: chemistry and optoelectronic properties[J]. Macromolecular Rapid Communications, 2007, 28(17): 1714-1742.
[7] OISHI, M.; KAWAKAMI, Y. Synthesis of Stereoregular and Optically Active Polysiloxanes Containing 1,3-Dimethyl-1,3diphenyldisiloxane as a Constitutional Unit[J]. Macromolecules, 2000, 33(6), 1960−1963.
[8] GUTEKUNST W R, BARAN P S. C-H functionalization logic in total synthesis[J]. Chemical Society Reviews, 2011, 40(4): 1976-1991.
[9] SINHA S K, GUIN S, MAITI S, et al. Toolbox for distal C-H bond functionalizations in organic molecules[J]. Chemical Reviews, 2022, 122(6): 5682-5841.
[10] COUZIJN E P A, SLOOTWEG J C, EHLERS A W, et al. Stereomutation of pentavalent compounds: validating the Berry pseudorotation, redressing Ugi's turnstile rotation, and revealing the two- and three-arm turnstiles[J]. Journal of the American Chemical Society, 2010, 132(51): 18127-18140.
[11] MOBERG C. Stereomutation in Trigonal-Bipyramidal Systems: A Unified Picture[J]. Angewandte Chemie, International Edition, 2011, 50(44): 10290-10292.
[12] MELLERUP S K, WANG S. Boron-doped molecules for optoelectronics[J]. Trends in Chemistry, 2019, 1(1): 77-89.
[13] MURALI A C, NAYAK P, VENKATASUBBAIAH K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds[J]. Dalton Transactions, 2022, 51(15): 5751-5771.
[14] LI D, ZHANG H, WANG Y. Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs)[J]. Chemical Society Reviews, 2013, 42(21): 8416-8433.
[15] SHI J, RAN Z, PENG F. Promising four-coordinated organoboron emitters for organic light-emitting diodes[J]. Dyes and Pigments, 2022, 204: 110383.
[16] LOUDET A, BURGESS K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties[J]. Chemical Reviews, 2007, 107(11): 4891-4932.
[17] BOENS N, LEEN V, DEHAEN W. Fluorescent indicators based on BODIPY[J]. Chemical Society Reviews, 2012, 41(3): 1130-1172.
[18] ULRICH G, ZIESSEL R, HARRIMAN A. The chemistry of fluorescent BODIPY dyes: versatility unsurpassed[J]. Angewandte Chemie, International Edition, 2008, 47(7): 1184-1201.
[19] RANA P, SINGH N, MAJUMDAR P, et al. Evolution of BODIPY/aza-BODIPY dyes for organic photoredox/energy transfer catalysis[J]. Coordination Chemistry Reviews, 2022, 470: 214698.
[20] SANCHEZ-CARNERERO E M, MORENO F, MAROTO B L, et al. Circularly Polarized Luminescence by visible-light absorption in a chiral O-BODIPY dye: Unprecedented design of CPL organic molecules from achiral chromophores[J]. Journal of the American Chemical Society, 2014, 136(9): 3346-3349.
[21] ALNOMAN R B, RIHN S, O'CONNOR D C, et al. Circularly Polarized Luminescence from helically chiral N,N,O,O-boron-chelated dipyrromethenes[J]. Chemistry - A European Journal, 2016, 22(1): 93-96.
[22] LU H, MACK J, NYOKONG T, et al. Optically active BODIPYs[J]. Coordination Chemistry Reviews, 2016, 318: 1-15.
[23] SAIKAWA M, NAKAMURA T, UCHIDA J, et al. Synthesis of figure-of-eight helical bisBODIPY macrocycles and their chiroptical properties[J]. Chemical Communications, 2016, 52(71): 10727-10730.
[24] WU Y, WANG S, LI Z, et al. Chiral binaphthyl-linked BODIPY analogues: synthesis and spectroscopic properties[J]. Journal of Materials Chemistry C, 2016, 4(21): 4668-4674.
[25] CLARKE R, HO K L, ABDULLAH ALSIMAREE A, et al. Circularly Polarised Luminescence from helically hhiral "confused" N,N,O,C-boron-chelated dipyrromethenes (BODIPYs)[J]. ChemPhotoChem, 2017, 1(11): 513-517.
[26] GUERRERO-CORELLA A, ASENJO-PASCUAL J, PAWAR T J, et al. BODIPY as electron withdrawing group for the activation of double bonds in asymmetric cycloaddition reactions[J]. Chemical Science, 2019, 10(15): 4346-4351.
[27] MAEDA C, NAGAHATA K, SHIRAKAWA T, et al. Azahelicene-fused BODIPY analogues showing Circularly Polarized Luminescence[J]. Angewandte Chemie, International Edition, 2020, 59(20): 7813-7817.
[28] RIGOTTI T, ASENJO-PASCUAL J, MARTIN-SOMER A, et al. Boron dipyrromethene (BODIPY) as electron-withdrawing group in asymmetric copper-catalyzed
[3+2] cycloadditions for the synthesis of pyrrolidine-based biological sensors[J]. Advanced Synthesis & Catalysis, 2020, 362(6): 1345-1355.
[29] MEAZZA M, CRUZ C M, ORTUNO A M, et al. Studying the reactivity of alkyl substituted BODIPYs: first enantioselective addition of BODIPY to MBH carbonates[J]. Chemical Science, 2021, 12(12): 4503-4508.
[30] DOCEKAL V, KOBEROVA T, HRABOVSKY J, et al. Stereoselective cyclopropanation of boron dipyrromethene (BODIPY) derivatives by an organocascade reaction[J]. Advanced Synthesis & Catalysis, 2022, 364(5): 930-937.
[31] HAEFELE A, ZEDDE C, RETAILLEAU P, et al. Boron Asymmetry in a BODIPY Derivative[J]. Organic Letters, 2010, 12(8): 1672-1675.
[32] GOBO Y, MATSUOKA R, CHIBA Y, et al. Synthesis and chiroptical properties of phenanthrene-fused N2O-type BODIPYs[J]. Tetrahedron Letters, 2018, 59(47): 4149-4152.
[33] DIESEL J, CRAMER N. Generation of Heteroatom Stereocenters by Enantioselective C-H Functionalization[J]. ACS Catalysis, 2019, 9(10): 9164-9177.
[34] PRADERE U, GARNIER-AMBLARD E C, COATS S J, et al. Synthesis of nucleoside phosphate and phosphonate prodrugs[J]. Chemical Reviews, 2014, 114(18): 9154-9218.
[35] MONTCHAMP J-L. Phosphorus Chemistry I: Asymmetric synthesis and bioactive compounds[M]. Topics in Current Chemistry; Springer International Publishing, 2015: 360.
[36] PERUZZINI M, GONSALVI L. Phosphorus compounds: Advanced tools in catalysis and material sciences[M]. Catalysis by Metal Complexes; Springer: Netherlands, 2011: 37.
[37] DALKO, P. I. Comprehensive enantioselective organocatalysis: Catalysts, reactions, and applications[M]; Wiley-VCH: Weinheim, 2013: 1−3.
[38] KAMER P C J, LEEUWEN P W N M. v. Phosphorus(III)-ligands in homogeneous catalysis: design and synthesis[M]; Wiley: Hoboken, 2012.
[39] DENMARK S E, BEUTNER G L. Lewis base catalysis in organic synthesis[J]. Angewandte Chemie, International Edition, 2008, 47(9): 1560-1638.
[40] PARMAR D, SUGIONO E, RAJA S, et al. Complete field guide to asymmetric BINOL-Phosphate derived Bronsted acid and metal catalysis: History and classification by mode of activation; Bronsted acidity, hydrogen bonding, ion pairing, and metal Phosphates[J]. Chemical Reviews, 2014, 114(18): 9047-9153.
[41] YOU S-L, CAI Q, ZENG M. Chiral Bronsted acid catalyzed Friedel-Crafts alkylation reactions[J]. Chemical Society Reviews, 2009, 38(8): 2190-2201.
[42] MAHLAU M, LIST B. Asymmetric counteranion-directed catalysis: Concept,definition, and applications[J]. Angewandte Chemie, International Edition, 2013, 52(2): 518-533.
[43] BRAK K, JACOBSEN E N. Asymmetric ion-pairing catalysis[J]. Angewandte Chemie, International Edition, 2013, 52(2): 534-561.
[44] PHIPPS R J, HAMILTON G L, TOSTE F D. The progression of chiral anions from concepts to applications in asymmetric catalysis[J]. Nature Chemistry, 2012, 4(8): 603-614.
[45] DU Z-J, GUAN J, WU G-J, et al. Pd(II)-catalyzed enantioselective synthesis of P-stereogenic phosphinamides via desymmetric C-H arylation[J]. Journal of the American Chemical Society, 2015, 137(2): 632-635.
[46] GUAN J, WU G-J, HAN F-S. Pd II-catalyzed mild C-H ortho arylation and intramolecular amination oriented by a Phosphinamide group[J]. Chemistry - A European Journal, 2014, 20(12): 3301-3305.
[47] LIN Z-Q, WANG W-Z, YAN S-B, et al. Palladium-catalyzed enantioselective C-H arylation for the synthesis of P-stereogenic compounds[J]. Angewandte Chemie, International Edition, 2015, 54(21): 6265-6269.
[48] LIU L, ZHANG A-A, WANG Y, et al. Asymmetric synthesis of P-stereogenic phosphinic amides via Pd(0)-catalyzed enantioselective intramolecular C-H arylation[J]. Organic Letters, 2015, 17(9): 2046-2049.
[49] SUN Y, CRAMER N. Rhodium(III)-catalyzed enantiotopic C-H activation enables access to P-chiral cyclic Phosphinamides[J]. Angewandte Chemie, International Edition, 2017, 56(1): 364-367.
[50] SUN Y, CRAMER N. Tailored trisubstituted chiral CpxRhIII catalysts for kinetic resolutions of phosphinic amides[J]. Chemical Science, 2018, 9(11): 2981-2985.
[51] HU P, KONG L, WANG F, et al. Twofold C-H activation-based enantio- and diastereoselective C-H arylation using diarylacetylenes as rare arylating reagents[J]. Angewandte Chemie, International Edition, 2021, 60(37): 20424-20429.
[52] YAO Q-J, CHEN J-H, SONG H, et al. Cobalt/Salox-catalyzed enantioselective C-H functionalization of arylphosphinamides[J]. Angewandte Chemie, International Edition, 2022, 61(25): e202202892.
[53] CHEN J-H, TENG M-Y, HUANG F-R, et al. Cobalt/Salox-catalyzed enantioselective dehydrogenative C-H alkoxylation and amination[J]. Angewandte Chemie, International Edition, 2022, 61(38): e202210106.
[54] XU G, LI M, WANG S, et al. Efficient synthesis of P-chiral biaryl phosphonates by stereoselective intramolecular cyclization[J]. Organic Chemistry Frontiers, 2015, 2(10): 1342-1345.
[55] LIN Y, MA W-Y, SUN Q-Y, et al. Catalytic synthesis of chiral Phosphole oxides via desymmetric C-H arylation of o-Bromoaryl Phosphine oxides[J]. Synlett, 2017, 28(12): 1432-1436.
[56] LI Z, LIN Z-Q, YAN C-G, et al. Pd-catalyzed asymmetric C-H bond activation for the synthesis of P-stereogenic dibenzophospholes[J]. Organometallics, 2019, 38(20): 3916-3920.
[57] GWON D, PARK S, CHANG S. Dual role of carboxylic acid additive: mechanistic studies and implication for the asymmetric C-H amidation[J]. Tetrahedron, 2015, 71(26-27): 4504-4511.
[58] LAPOINTE D, FAGNOU K. Overview of the mechanistic work on the concerted metalation-deprotonation pathway[J]. Chemistry Letters, 2010, 39(11): 1119-1126.
[59] JANG Y-S, DIECKMANN M, CRAMER N. Cooperative effects between chiral Cpx-Iridium(III) catalysts and chiral carboxylic acids in enantioselective C-H amidations of Phosphine oxides[J]. Angewandte Chemie, International Edition, 2017, 56(47): 15088-15092.
[60] JANG Y-S, WOZNIAK L, PEDRONI J, et al. Access to P- and axially chiral biaryl Phosphine oxides by enantioselective CpxIrIII-catalyzed C-H arylations[J]. Angewandte Chemie, International Edition, 2018, 57(39): 12901-12905.
[61] LIU Z, WU J-Q, YANG S-D. Ir(III)-catalyzed direct C-H functionalization of arylphosphine oxides: A strategy for MOPType ligands synthesis[J]. Organic Letters, 2017, 19(19): 5434−5437.
[62] SONG S-Y, LI Y, KE Z, et al. Iridium-catalyzed enantioselective C-H borylation of diarylphosphinates[J]. ACS Catalysis, 2021, 11(21): 13445-13451.
[63] ZHANG C-W, HU X-Q, DAI Y-H, et al. Asymmetric C-H activation for the synthesis of P- and axially chiral biaryl Phosphine oxides by an achiral Cp*Ir catalyst with chiral carboxylic amide[J]. ACS Catalysis, 2022, 12(1): 193-199.
[64] BENTLEY R. Role of sulfur chirality in the chemical processes of biology[J]. Chemical Society Reviews, 2005, 34(7): 609-624.
[65] WALKER D P, ZAWISTOSKI M P, MCGLYNN M A, et al. Sulfoximine-substituted trifluoromethylpyrimidine analogs as inhibitors of proline-rich tyrosine kinase 2 (PYK2) show reduced hERG activity[J]. Bioorganic and Medicinal Chemistry Letters, 2009, 19(12): 3253-3258.
[66] LUECKING U, JAUTELAT R, KRUEGER M, et al. The lab oddity prevails: Discovery of pan-CDK inhibitor (R)-S-cyclopropyl-S-(4-{
[4-{[(1R,2R)-2-hydroxy-1-methylpropyl]oxy}-5-(trifluoromethyl)pyrimidin-2-yl]amino}phenyl)sulfoximide (BAY 1000394) for the Treatment of Cancer[J]. ChemMedChem, 2013, 8(7): 1067-1085.
[67] FERNANDEZ I, KHIAR N. Recent developments in the synthesis and utilization of chiral sulfoxides[J]. Chemical Reviews, 2003, 103(9): 3651-3705.
[68] GRIES J, KRUEGER J. A practical approach to N-(trifluoroacetyl)sulfilimines[J]. Synlett, 2014, 25(13): 1831-1834.
[69] DONG S, FRINGS M, CHENG H, et al. Organocatalytic kinetic resolution ofsulfoximines[J]. Journal of the American Chemical Society, 2016, 138(7): 2166-2169.
[70] WANG J, FRINGS M, BOLM C. Iron-catalyzed imidation kinetic resolution of racemic sulfoxides[J]. Chemistry - A European Journal, 2014, 20(4): 966-969.
[71] ZHU Y-C, LI Y, ZHANG B-C, et al. Palladium-catalyzed enantioselective C-H olefination of diaryl sulfoxides through parallel kinetic resolution and desymmetrization[J]. Angewandte Chemie, International Edition, 2018, 57(18): 5129-5133.
[72] ZHOU T, JIANG M-X, QIAN P-F, et al. Synthesis of chiral sulfoxides via Pd(II)-catalyzed enantioselective C-H alkynylation/kinetic resolution of 2-(arylsulfinyl)pyridines[J]. Organic Letters, 2021, 23(20): 7910-7915.
[73] KONG L, ZOU Y, LI X-X, et al. Rhodium-catalyzed enantioselective C-H alkynylation of sulfoxides in diverse patterns: desymmetrization, kinetic resolution, and parallel kinetic resolution[J]. Chemical Science, 2023, 14(2): 317-322.
[74] SUN Y, CRAMER N. Enantioselective synthesis of chiral-at-sulfur 1,2-benzothiazines by CpxRhIII-catalyzed C-H functionalization of sulfoximines[J]. Angewandte Chemie, International Edition, 2018, 57(47): 15539-15543.
[75] SHEN B, WAN B, LI X. Enantiodivergent desymmetrization in the Rhodium(III)-catalyzed annulation of sulfoximines with diazo compounds[J]. Angewandte Chemie, International Edition, 2018, 57(47): 15534-15538.
[76] OZOLS K, JANG Y-S, CRAMER N. Chiral cyclopentadienyl cobalt(III) complexes enable highly enantioselective 3d-metal-catalyzed C-H functionalizations[J]. Journal of the American Chemical Society, 2019, 141(14): 5675-5680.
[77] AUDIC B, WODRICH M D, CRAMER N. Mild complexation protocol for chiral CpxRh and Ir complexes suitable for in situ catalysis[J]. Chemical Science, 2019, 10(3): 781-787.
[78] BRAUNS M, CRAMER N. Efficient kinetic resolution of sulfur-stereogenic sulfoximines by Exploiting CpxRhIII-Catalyzed C-H Functionalization[J]. Angewandte Chemie, International Edition, 2019, 58(26): 8902-8906.
[79] LI J-Y, XIE P-P, ZHOU T, et al. Ir(III)-catalyzed asymmetric C-H activation/annulation of sulfoximines assisted by the Hydrogen-Bonding Interaction[J]. ACS Catalysis, 2022, 12(15): 9083-9091.
[80] ZHOU Y-B, ZHOU T, QIAN P-F, et al. Synthesis of sulfur-stereogenic sulfoximines via Co(III)/chiral carboxylic acid-catalyzed enantioselective C-H amidation[J]. ACS Catalysis, 2022, 12(15): 9806-9811.
[81] MUKHERJEE K, GRIMBLAT N, SAU S, et al. Kinetic resolution of sulfur-stereogenic sulfoximines by Pd(II)-MPAA catalyzed C-H arylation and olefination[J]. Chemical Science, 2021, 12(33): 14863-14870.
[82] YUAN W, HE C. Enantioselective C–H functionalization toward silicon-stereogenic silanes[J]. Synthesis, 2022, 54(08): 1939-1950.
[83] GE Y, HUANG X, KE J, et al. Transition-metal-catalyzed enantioselective C-H silylation[J]. Chem Catalysis, 2022, 2(11): 2898-2928.
[84] SHINTANI R, OTOMO H, OTA K, et al. Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzosiloles via Enantioselective C-H Bond Functionalization[J]. Journal of the American Chemical Society, 2012, 134(17): 7305-7308.
[85] SHIMIZU M, MOCHIDA K, HIYAMA T. Modular approach to silicon-bridged biaryls: palladium-catalyzed intramolecular coupling of 2-(arylsilyl)aryl triflates[J]. Angewandte Chemie, International Edition, 2008, 47(50): 9760-9764.
[86] SATO Y, TAKAGI C, SHINTANI R, et al. Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic 5,10-Dihydrophenazasilines via Enantioselective 1,5-Palladium Migration[J]. Angewandte Chemie, International Edition, 2017, 56(31): 9211-9216.
[87] LIN Y, MA W-Y, XU Z, et al. Desymmetrization-Oriented Enantioselective Synthesis of Silicon-Stereogenic Silanes by Palladium-Catalyzed C-H Olefinations[J]. Chemistry - An Asian Journal, 2019, 14(12): 2082-2085.
[88] ZHANG Q-W, AN K, LIU L-C, et al. Construction of chiral tetraorganosilicons by tandem desymmetrization of silacyclobutanes/intermolecular dehydrogenative silylation[J]. Angewandte Chemie, International Edition, 2017, 56(4): 1125-1129.
[89] ZHANG L, AN K, WANG Y, et al. A combined computational and experimental study of Rh-catalyzed C-H silylation with silacyclobutanes: Insights leading to a more efficient catalyst system[J]. Journal of the American Chemical Society, 2021, 143(9): 3571-3582.
[90] AN K, MA W, LIU L-C, et al. Rhodium hydride enabled enantioselective intermolecular C-H silylation to access acyclic stereogenic Si-H[J]. Nature Communications, 2022, 13(1): 847.
[91] ZHANG H, ZHAO D. Synthesis of silicon-stereogenic silanols involving iridium-catalyzed enantioselective C–H silylation leading to a new ligand scaffold[J]. ACS Catalysis, 2021, 11(17): 10748-10753.
[92] KUNINOBU Y, YAMAUCHI K, TAMURA N, et al. Rhodium-catalyzed asymmetric synthesis of spirosilabifluorene derivatives[J]. Angewandte Chemie, International Edition, 2013, 52(5): 1520-1522.
[93] MURAI M, TAKEUCHI Y, YAMAUCHI K, et al. Rhodium-catalyzed synthesis of chiral spiro-9-silabifluorenes by dehydrogenative silylation: Mechanistic insights into the construction of tetraorganosilicon stereocenters[J]. Chemistry - A European Journal, 2016, 22(17): 6048-6058.
[94] MU D, YUAN W, CHEN S, et al. Streamlined construction of silicon-stereogenic silanes by tandem enantioselective C-H silylation/alkene hydrosilylation[J]. Journal of the American Chemical Society, 2020, 142(31): 13459-13468.
[95] WU Y, WANG P. Silicon-stereogenic monohydrosilane: Synthesis and applications[J]. Angewandte Chemie, International Edition, 2022: e202205382.
[96] OESTREICH M. Chirality transfer from silicon to carbon[J]. Chemistry - A European Journal, 2005, 12(1): 30-37.
[97] SELIGER J, OESTREICH M. Making the silylation of alcohols chiral: Asymmetric protection of hydroxy groups[J]. Chemistry - A European Journal, 2019, 25(40): 9358-9365.
[98] KLARE H F T, OESTREICH M. Chiral recognition with silicon-stereogenic silanes: remarkable selectivity factors in the kinetic resolution of donor-functionalized alcohols[J]. Angewandte Chemie, International Edition, 2007, 46(48): 9335-9338.
[99] KARATAS B, RENDLER S, FROEHLICH R, et al. Kinetic resolution of donor-functionalised tertiary alcohols by Cu-H-catalysed stereoselective silylation using a strained silicon-stereogenic silane[J]. Organic & Biomolecular Chemistry, 2008, 6(8): 1435-1440.
[100]RENDLER S, OESTREICH M. Kinetic resolution and desymmetrization by stereoselective silylation of alcohols[J]. Angewandte Chemie, International Edition, 2008, 47(2): 248-250.
[101]RENDLER S, OESTREICH M. Conclusive evidence for an SN2-Si mechanism in the B(C6F5)3-catalyzed hydrosilylation of carbonyl compounds: implications for the related hydrogenation[J]. Angewandte Chemie, International Edition, 2008, 47(32): 5997-6000.
[102]RENDLER S, PLEFKA O, KARATAS B, et al. Stereoselective alcohol silylation by dehydrogenative Si-O coupling: Scope, limitations, and mechanism of the Cu-H-catalyzed non-enzymatic kinetic resolution with silicon-stereogenic silanes[J]. Chemistry - A European Journal, 2008, 14(36): 11512-11528.
[103]STEVES A, OESTREICH M. Facile preparation of CF3-substituted carbinols with an azine donor and subsequent kinetic resolution through stereoselective Si-O coupling[J]. Organic & Biomolecular Chemistry, 2009, 7(21): 4464-4469.
[104]WEICKGENANNT A, MOHR J, OESTREICH M. Catalytic enantioselective dehydrogenative Si-O coupling of oxime ether-functionalized alcohols[J]. Tetrahedron, 2012, 68(17): 3468-3479.
[105]METSAENEN T T, HROBARIK P, KLARE H F T, et al. Insight into the Mechanism of Carbonyl Hydrosilylation Catalyzed by Brookhart's Cationic Iridium(III) Pincer Complex[J]. Journal of the American Chemical Society, 2014, 136(19): 6912-6915.
[106]DONG X, WEICKGENANNT A, OESTREICH M. Broad-spectrum kinetic resolution of alcohols enabled by Cu-H-catalysed dehydrogenative coupling with hydrosilanes[J]. Nature Communications, 2017, 8(1): 15547.
[107]RENDLER S, AUER G, OESTREICH M. Kinetic resolution of chiral secondary alcohols by dehydrogenative coupling with recyclable silicon-stereogenic silanes[J].Angewandte Chemie, International Edition, 2005, 44(46): 7620-7624.
[108]SOMMER L H, FRYE C L, PARKER G A, et al. Stereochemistry of asymmetric silicon. I. Relative and absolute configurations of optically active α-naphthylphenylmethylsilanes[J]. Journal of the American Chemical Society, 1964, 86(16): 3271-3276.
[109]SOMMER L H, ROSBOROUGH K T. Stereochemistry of asymmetric silicon. XVII. Synthesis, resolution, and stereochemistry of the 1,2,2,2-tetraphenyl-1-methyldisilane system[J]. Journal of the American Chemical Society, 1969, 91(25): 7067-7076.
[110]CORRIU R J P, OULD-KADA S, LANNEAU G. Methylphenyltriphenylgermyl-silanes fonctionnels optiquement actifs: I. synthese et stereochimie[J]. Journal of Organometallic Chemistry, 1983, 248(1): 23-37.
[111]JANKOWSKI P, SCHAUMANN E, WICHA J, et al. Facile synthesis of enantiomerically pure tert-butyl(methyl)phenyl-silanes[J]. Tetrahedron: Asymmetry, 1999, 10(3): 519-526.
[112]TRZOSS M, SHAO J, BIENZ S. Preparation of a `Si-centered' chiral auxiliary by resolution[J]. Tetrahedron: Asymmetry, 2004, 15(9): 1501-1505.
[113]CORRIU R J P, MOREAU J J E. Asymmetric synthesis at silicon: II. alcoholysis of prochiral organosilicon compounds catalysed by rhodium complexes[J]. Journal of Organometallic Chemistry, 1976, 120(3): 337-346.
[114]KOBAYASHI K, KATO T, MASUDA S. Asymmetric synthesis of silicon compounds using chiral 5,6-dimethoxy-1,3,2-dioxasilacycloheptane derivatives[J]. Chemistry Letters, 1987, 16(1): 101-104.
[115]JUNG M E, HOGAN K T. Chirality transfer from silicon to carbon: use of optically pure cyclic silanes with a binaphthalene chiral unit[J]. Tetrahedron Letters, 1988, 29(48): 6199-6202.
[116]KOBAYASHI K, KATO T, UNNO M, et al. Asymmetric synthesis of organosilicon compounds using a C2 chiral auxiliary[J]. Bulletin of the Chemical Society of Japan, 1997, 70(6): 1393-1401.
[117]OKA N, NAKAMURA M, SOEDA N, et al. Stereocontrolled synthesis of tertiary silanes via optically pure 1,3,2-oxazasilolidine derivatives[J]. Journal of Organometallic Chemistry, 2009, 694(14): 2171-2178.
[118]GUO J, WANG H, XING S. Cobalt-Catalyzed asymmetric synthesis of gem-bis(silyl)alkanes by double hydrosilylation of aliphatic terminal alkynes[J]. Chem, 2019, 5(4): 881-895.
[119]SCHMIDT D R, O'MALLE S J L, LEIGHTON J L. Catalytic asymmetric silane alcoholysis: practical access to chiral silanes[J]. Journal of the American Chemical Society, 2003, 125(5): 1190-1191.
[120]ZHU J, CHEN S, HE C. Catalytic enantioselective dehydrogenative Si-O coupling to access chiroptical silicon-stereogenic siloxanes and alkoxysilanes[J]. Journal of theAmerican Chemical Society, 2021, 143(14): 5301-5307.
[121]YUAN W, ZHU X, XU Y, et al. Synthesis of Si-stereogenic silanols by catalytic asymmetric hydrolytic oxidation[J]. Angewandte Chemie, International Edition, 2022, 61(31): e202204912.
[122]YANG W, LIU L, GUO J, et al. Enantioselective hydroxylation of dihydrosilanes to Si-chiral silanols catalyzed by in situ generated copper(II) species[J]. Angewandte Chemie, International Edition, 2022, 61(32): e202205743.
[123]OHTA T, ITO M, TSUNETO A, et al. Asymmetric synthesis of silanes with a stereogenic centre at silicon via hydrosilylation of symmetric ketones with prochiral diaryl silanes catalysed by binap–Rh I complexes[J]. Journal of the Chemical Society, Chemical Communications. 1994, 21: 2525-2526.
[124]IGAWA K, YOSHIHIRO D, ICHIKAWA N, et al. Catalytic enantioselective synthesis of alkenylhydrosilanes[J]. Angewandte Chemie, International Edition, 2012, 51(51): 12745-12748.
[125]WEN H, WAN X, HUANG Z. Asymmetric synthesis of silicon-stereogenic vinylhy-drosilanes by cobalt-catalyzed regio- and enantioselective alkyne hydrosilylation with dihydrosilanes[J]. Angewandte Chemie, International Edition, 2018, 57(21): 6319-6323.
[126]ZHAN G, TENG H -L, LUO Y, et al. Enantioselective construction of silicon-stereogenic silanes by scandium-catalyzed intermolecular alkene hydrosilylation[J]. Angewandte Chemie, International Edition, 2018, 57(38): 12342-12346.
[127]XIE J -L, XU Z, ZHOU H -Q, et al. Palladium-catalyzed hydrosilylation of ynones to access silicon-stereogenic silylenones by stereospecific aromatic interaction-assisted Si−H activation. Science China Chemistry, 2021, 64(5): 761-769.
[128]HUANG Y -H, WU Y, ZHU Z, et al. Enantioselective synthesis of silicon-stereogenic monohydrosilanes by rhodium-catalyzed intramolecular hydrosilylation[J]. Angewandte Chemie, International Edition, 2022, 61(1): e202113052.
[129]LU W, ZHAO Y, MENG F. Cobalt-catalyzed sequential site- and stereoselective hydrosilylation of 1,3- and 1,4-enynes[J]. Journal of the American Chemical Society, 2022, 144(12): 5233-5240.
[130]YASUTOMI Y, SUEMATSU H, KATSUKI T. Iridium(III)-catalyzed enantioselective Si−H bond insertion and formation of an enantioenriched silicon center[J]. Journal of the American Chemical Society, 2010, 132(13): 4510-4511.
[131]NAKAGAWA Y, CHANTHAMATH S, FUJISAWA I. Ru(II)-Pheox-catalyzed Si−H insertion reaction: construction of enantioenriched carbon and silicon centers[J]. Chemical Communications, 2017, 53(26): 3753-3756.
[132]JAGANNATHAN J R, FETTINGER J C, SHAW J T, et al. Enantioselective Si-H insertion reactions of diarylcarbenes for the synthesis of silicon-stereogenic silanes[J]. Journal of the American Chemical Society, 2020, 142(27): 11674-11679.
[133]KURIHARA Y, NISHIKAWA M, YAMANOI Y, et al. Synthesis of optically active tertiary silanes via Pd-catalyzed enantioselective arylation of secondary silanes[J]. Chemical Communications, 2012, 48(94): 11564-11566.
[134]CHEN L, HUANG J -B, XU Z, et al. Palladium-catalyzed Si–C bond-forming silylation of aryl iodides with hydrosilanes: an enhanced enantioselective synthesis of silicon-stereogenic silanes by desymmetrization[J]. RSC Advances, 2016, 6(71): 67113-67117.
[135]YANG J-J, XU Z, NIE Y -X, et al. Long-distance chirality transfer from P-ligand to prochiral dihydrosilanes via Pd(II) aryl iodide complex in Pd-catalyzed silylation of aryl iodide: a DFT study[J]. Journal of Organic Chemistry, 2020, 85(22): 14360-14368.
[136]MA W, LIU L-C, AN K, et al. Rhodium-catalyzed synthesis of chiral monohydrosilanes by intramolecular C-H functionalization of dihydrosilanes[J]. Angewandte Chemie, International Edition, 2021, 60(8): 4245-4251.
[137]YUAN W, YOU L, LIN W, et al. Asymmetric synthesis of silicon-stereogenic monohydrosilanes by dehydrogenative C-H silylation[J]. Organic Letters, 2021, 23(4): 1367-1372.
[138]CHEN S, MU D, MAI P L, et al. Enantioselective construction of six- and seven-membered triorgano-substituted silicon-stereogenic heterocycles[J]. Nature Communications, 2021, 12(1): 1249.
[139]CHEN S, ZHU J, KE J, et al. Enantioselective intermolecular C-H silylation of heteroarenes for the synthesis of acyclic Si-stereogenic silanes[J]. Angewandte Chemie, International Edition, 2022, 61(21): e202117820.
[140]HE J, WASA M, CHAN K S L, et al. Palladium-catalyzed transformations of alkyl C−H bonds [J]. Chemical Reviews, 2017, 117(13): 8754-8786.
[141]MURAI M, TAKESHIMA H, MORITA H, et al. Acceleration effects of phosphine ligands on the rhodium-catalyzed dehydrogen-ative silylation and germylation of unactivated C(sp3)−H bonds[J]. Journal of Organic Chemistry, 2015, 80(11): 5407-5414.
[142]FRATH D, MASSUE J, ULRICH G, ZIESSEL R. Luminescent materials: Locking π-conjugated and heterocyclic ligands with boron(III)[J]. Angewandte Chemie, International Edition, 2014, 53(9): 2290-2310.
[143]MELLERUP S K, WANG S. Boron-based stimuli responsive materials[J]. Chemical Society Reviews, 2019, 48(13): 3537-3549.
[144]CHEN X, TAN D, YANG D-T. Multiple-boron-nitrogen (multi-BN) doped π-conjugated systems for optoelectronics[J]. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2022, 10(37):13499-13532.
[145]LEONORI D, AGGARWAL V K. Stereospecific Couplings of Secondary and Tertiary Boronic Esters[J]. Angewandte Chemie, International Edition, 2015, 54(4): 1082-1096.
[146]WANG C-Y, DEROSA J, BISCOE M R. Configurationally stable, enantioenrichedorganometallic nucleophiles in stereospecific Pd-catalyzed cross-coupling reactions: an alternative approach to asymmetric synthesis[J]. Chemical Science, 2015, 6(9): 5105-5113.
[147]FYFE J W B, WATSON A J B. Recent developments in organoboron chemistry: Old dogs, new tricks[J]. Chem, 2017, 3(1): 31-55.
[148]SANDFORD C, AGGARWAL V, K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters[J]. Chemical Communications, 2017, 53(40): 5481-5494.
[149]WANG H, JING C, NOBLE A. Stereospecific 1,2-migrations of boronate complexes induced by electrophiles[J]. Angewandte Chemie, International Edition, 2020, 59(39):16859-16872.
[150]ZHANG G, ZHANG Z, HOU M, et al. Construction of boron-stereogenic compounds via enantioselective Cu-catalyzed desymmetric B-H bond insertion reaction[J]. Nature Communications, 2022, 13(1): 2624.
[151]SAINT-DENIS T G, ZHU R -Y, CHEN G, et al. Enantioselective C(sp3)‒H bond activation by chiral transition metal catalysts[J]. Science, 2018, 359(6377):759.
[152]RICHTER S C, OESTREICH M. Emerging Strategies for C-H Silylation[J]. Trends in Chemistry, 2020, 2(1): 13-27.
[153]CHENG C, HARTWIG J F. Catalytic silylation of unactivated C−H bonds[J]. Chemical Reviews, 2015, 115(17): 8946-8975.
[154]HARTWIG, J. F. Borylation and Silylation of C–H Bonds: A Platform for Diverse C–H Bond Functionalizations[J]. Accounts of Chemical Research, 2012, 45(6): 864–873.
[155]DENMARK S E, SWEIS R F. In Metal-Catalyzed Cross-Coupling Reactions, 2 nd ed.; De Meijere A, Diederich F, Eds[M]. Wiley-VCH: Weinheim, 2004; 1: 163−216.
[156]RAMESH R, REDDY D S. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds[J]. Journal of Medicinal Chemistry, 2018, 61(9): 3779 – 3798.
[157]LEE T, HARTWIG J F. Rhodium-Catalyzed Enantioselective Silylation of Cyclopropyl C−H Bonds[J]. Angewandte Chemie, International Edition, 2016, 55(30), 8723 – 8727.
[158]SU B, HARTWIG J F. Ir-Catalyzed Enantioselective, Intramolecular Silylation of Methyl C–H Bonds[J]. Journal of the American Chemical Society, 2017, 139(35), 12137 – 12140.
[159]OESTREICH M. Silicon-stereogenic silanes in asymmetric catalysis[J]. Synlett, 2007, 2007(11): 1629-1643.
[160]XU L-W, LI L, LAI G-Q, et al. The recent synthesis and application of silicon-stereogenic silanes: A renewed and significant challenge in asymmetric synthesis[J]. Chemical Society Reviews, 2011, 40(3): 1777-1790.
[161]BAUER J O, STROHMANN C. Stereocontrol in Nucleophilic Substitution Reactionsat Silicon: The Role of Permutation in Generating Silicon-Centered Chirality[J]. Journal of the American Chemical Society, 2015, 137(13): 4304-4307.
[162]IGAWA K, TOMOOKA K. Chiral silicon molecules, in organosilicon chemistry: Novel approaches and reactions; T. Hiyama, M. Oestreich, Eds[M]. Wiley: Weinheim, Germany, 2019, 495-532.
[163]WEICKGENANNT A, MEWALD M, OESTREICH, M. Asymmetric Si-O coupling of alcohols[J]. Organic & Biomolecular Chemistry, 2010, 8(7): 1497-1504.
[164]SHINTANI, R. Recent progress in catalytic enantioselective desymmetrization of prochiral organosilanes for the synthesis of silicon-stereogenic compounds[J]. Synlett, 2018, 29(04): 388-396.
[165]ROSINI C, FRANZINI L, RAFFAELLI A, et al. Synthesis and applications of binaphthylic C2-symmetry derivatives as chiral auxiliaries in enantioselective reactions[J]. Synthesis, 1992, 1992(6): 503-517.
[166]CLAYDEN J, MORAN W J, EDWARDS P J, et al. The challenge of atropisomerism in drug discovery[J]. Angewandte Chemie, International Edition, 2009, 48(35): 6398-6401.
[167]KOZLOWSKI M C, MORGAN B J, LINTON E C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling[J]. Chemical Society Reviews, 2009, 38(11): 3193-3207.
[168]BRINGMANN G, GULDER T, GULDER T A M, et al. Atroposelective total synthesis of axially chiral biaryl natural products[J]. Chemical Reviews, 2011, 111(2): 563-639.
[169]LAPLANTE S R, EDWARDS P J, FADER L D, et al. Revealing Atropisomer Axial Chirality in Drug Discovery[J]. ChemMedChem, 2011, 6(3): 505-513.
[170]SMYTH J E, BUTLER N M, KELLER P A. A twist of nature - the significance of atropisomers in biological systems[J]. Natural Product Reports, 2015, 32(11): 1562-1583.
[171]WENCEL-DELORD J, PANOSSIAN A, LEROUX F R, et al. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls[J]. Chemical Society Reviews, 2015, 44(11): 3418-3430.
[172]WANG Y-B, TAN B. Construction of axially chiral compounds via asymmetric organocatalysis[J]. Accounts of Chemical Research, 2018, 51(2): 534-547.
[173]WATSON A A, WILLIS A C, WILD S B. Atropisomerism in (±)-7-methyl- and -phenyl-substituted dinaphtho
[2,1-b;1',2'-d]phospholes and dinaphth
[2,1-b;1',2'-d]arsoles[J]. Journal of Organometallic Chemistry, 1993, 445(1-2): 71-78.
[174]GLADIALI S, DORE A, FABBRI D, et al. Crystal structure, dynamic behavior and reactivity of dinaphtho
[2,1-b:1',2'-d]phospholes and related atropisomeric phosphacyclic derivatives[J]. Journal of Organic Chemistry, 1994, 59(21): 6363-6371.
[175]TICHY M, RIDVAN L, HOLY P, et al. Axially chiral dilactams. Synthesis, racemization barriers and crystal structures[J]. Tetrahedron: Asymmetry, 1998, 9(2):227-234.
[176]SUPERCHI S, CASARINI D, LAURITA A, et al. Induction of a preferred twist in a biphenyl core by stereogenic centers: a novel approach to the absolute configuration of 1,2- and 1,3-diols[J]. Angewandte Chemie, International Edition, 2001, 40(2): 451-454.
[177]SAUDAN L A, BERNARDINELLI G, KUNDIG E P. Diastereoselective synthesis of (5R,7R)- and (5R,7S)-5,7-dimethyl-6,7-dihydro-5H-dibenz[c,e]azepines[J]. Synlett, 2000, 2000(4): 483-486.
[178]PIRA S L, WALLACE T W, GRAHAM J P. Enantioselective route to 5-methyl- and 5,7-dimethyl-6,7-dihydro-5H-dibenz[c,e]azepine: Secondary amines with switchable axial chirality[J]. Organic Letters, 2009, 11(7): 1663-1666.
[179]CHEETHAM C A, MASSEY R S, PIRA S L, et al. Atroposelective formation of dibenz[c,e]azepines via intramolecular direct arylation with center-axis chirality transfer[J]. Organic & Biomolecular Chemistry, 2011, 9(6): 1831-1838.
[180]POSTIKOVA S, SABBAH M, WIGHTMAN D, et al. Developments in Meyers' lactamization methodology: En route to bi(hetero)aryl structures with defined axial chirality[J]. Journal of Organic Chemistry, 2013, 78(16): 8191-8197.
[181]YANG T, GUO X, YIN Q, et al. Intramolecular asymmetric reductive amination: synthesis of enantioenriched dibenz[c,e]azepines[J]. Chemical Science, 2019, 10(8): 2473-2477.
[182]ZHANG Y, LIU Y-Q, HU L A, et al. Asymmetric reductive amination/ring-closing cascade: direct synthesis of enantioenriched biaryl-bridged NH lactams[J]. Organic Letters, 2020, 22(16): 6479-6483.
[183]BROSSI, A. Bioactive alkaloids. 4. Results of recent investigations with colchicine and physostigmine[J]. Journal of Medicinal Chemistry, 1990, 33(9): 2311-2319.
[184]SIMMONS E M, HARTWIG J F. Catalytic functionalization of unactivated primary C-H bonds directed by an alcohol[J]. Nature, 2012, 483(7387): 70-73.
[185]SHINTANI R, MACIVER E E, TAMAKUNI F, et al. Rhodium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzooxasilines via Enantioselective Transmetalation[J]. Journal of the American Chemical Society, 2012, 134(41): 16955-16958.
[186]CHANG X, MA P-L, CHEN H-C, et al. Asymmetric synthesis and application of chiral spirosilabiindanes[J]. Angewandte Chemie, International Edition, 2020, 59(23): 8937-8940.
[187]BRINGMANN, G. TASLER S, ENDRESS H, et al. Murrastifoline-F: first total synthesis, atropo-enantiomer resolution, and stereoanalysis of an axially chiral N,C-coupled biaryl alkaloid[J]. Journal of the American Chemical Society, 2001, 123(12): 2703–2711.
[188]HUGHES C C, PRIETO-DAVO A, JENSEN P R, et al. The Marinopyrroles, antibioticsof an unprecedented structure class from a marine streptomyces sp[J]. Organic Letters, 2008, 10(4): 629–631.
[189]BARBARINO M, CESARI D, INTRUGLIO R, et al. Possible repurposing of pyrvinium pamoate for the treatment of mesothelioma: a pre-clinical assessment[J]. Journal of Cellular Physiology, 2018, 233(9): 7391–7401.
[190]LIU J, LI H Q, SPANNENBERG A, et al. Selective palladium-catalyzed aminocarbonylation of olefins to branched amides[J]. Angewandte Chemie, International Edition, 2016, 55(43): 13544–13548.
[191]MILLET A, DAILLER D, LARINI P, et al. Ligand-controlled α- and βarylation of acyclic N-Boc amines[J]. Angewandte Chemie, International Edition, 2014, 53(10): 2678–2682.
[192]FAIGL F, MÁTRAVÖLGYI B, SZÖELLŐSY Á, et al. Synthesis of atropisomeric 1-Phenylpyrrole-derived amino alcohols: New chiral ligands[J]. Chirality, 2012, 24(7): 532–542.
[193]BOCK L, ADAMS R. The stereochemistry of N-Phenylpyrroles. The preparation and resolution of N-2-carboxyphenyl-2,5-dimethyl-3- carboxypyrrole. XIII[J]. Journal of the American Chemical Society, 1931, 53(1):374–376.
[194]ZHANG L, ZHANG J, MA J, et al. Highly atroposelective synthesis of arylpyrroles by catalytic asymmetric Paal–Knorr reaction[J]. Journal of the American Chemical Society, 2017, 139(5): 1714–1717.
[195]ZHANG L, XIANG S-H, WANG J, et al. Phosphoric acid-catalyzed atroposelective construction of axially chiral arylpyrroles[J]. Nature Communications, 2019, 10(1): 1-10.
[196]CHEN Y, YEKTA S, YUDIN A K. Modified BINOL ligands in asymmetric catalysis[J]. Chemical Reviews, 2003, 103(8): 3155-3211.
[197]SHIBASAKI M, MATSUNAGA S. Design and application of linked-BINOL chiral ligands in bifunctional asymmetric catalysis[J]. Chemical Society Reviews, 2006, 35(3): 269-279.
[198]ROKADE B V, GUIRY P J. Axially chiral P,N-ligands: Some recent twists and turns[J]. ACS Catalysis, 2018, 8(1): 624-643.
[199]ZHANG D, WANG Q. Palladium catalyzed asymmetric Suzuki-Miyaura coupling reactions to axially chiral biaryl compounds: Chiral ligands and recent advances[J]. Coordination Chemistry Reviews, 2015, 286: 1-16.
[200]LIAO G, ZHOU T, YAO Q-J, et al. Recent advances in the synthesis of axially chiral biaryls via transition metal-catalysed asymmetric C-H functionalization[J]. Chemical Communications, 2019, 55(59): 8514-8523.
[201]DOHI T, MARUYAMA A, TAKENAGE N, et al. A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of Phenols[J]. Angewandte Chemie, International Edition, 2008, 47(20): 3787-3790.
[202]CHUNG Y K, GU G C. Phosphine-catalyzed enantioselective synthesis of oxygen heterocycles[J]. Angewandte Chemie, International Edition, 2009, 48(12): 2225-2227.
[203]XU B, ZHU S-F, XIE X-L, et al. Asymmetric N-H insertion reaction cooperatively catalyzed by rhodium and chiral spiro phosphoric acids[J]. Angewandte Chemie, International Edition, 2011, 50(48): 11483-11486.
[204]ADAM W, MITCHELL C M, SAHA-MöLLER C R, et al. Host−Guest chemistry in a Urea Matrix: Catalytic and selective oxidation of triorganosilanes to the corresponding silanols by methyltrioxorhenium and the Urea/Hydrogen Peroxide Adduct[J]. Journal of the American Chemical Society, 1999, 121(10): 2097-2103.
[205]JOLLIFFE J D, ARMSTRONG R J, SMITH M D. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation[J]. Nature Chemistry, 2017, 9(6): 558-562.
[206]MORI M, IMMA H, NAKAI T. Asymmetric catalytic cyanosilylation of aldehydes using a chiral binaphthol-titanium complex[J]. Tetrahedron Letters, 1997, 38(35): 6229-6232.
[207]POP F, ZIGON N, AVARVARI N. Main-group-based electro- and photoactive chiral materials[J]. Chemical Reviews, 2019 119(14): 8435–8478.
[208]KAMKAEW A, LIM S H, LEE H B, et al. BODIPY dyes in photodynamic therapy[J]. Chemical Society Reviews, 2013, 42(1): 77–88.
[209]KOLEMEN S, AKKAYA E U. Reaction-based BODIPY probes for selective bio-imaging[J]. Coordination Chemistry Reviews, 2018, 354: 121–134.
[210]BOENS N, VERBELEN B, ORTIZ M J, et al. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core[J]. Coordination Chemistry Reviews, 2019, 399: 213024.
[211]PODDAR M, MISRA R. Recent advances of BODIPY based derivatives for optoelectronic applications[J]. Coordination Chemistry Reviews, 2020, 421: 213462.
[212]VEDEJS E, FIELDS S C, HAYASHI R, et al. Asymmetric memory at labile, stereogenic boron: enolate alkylation of oxazaborolidinones[J]. Journal of the American Chemical Society, 1999, 121(11): 2460-2470.
[213]IMAMOTO T, MORISHITA H. An enantiomerically pure tetracoordinate boron compound: stereochemistry of substitution reactions at the chirogenic boron atom[J]. Journal of the American Chemical Society, 2000, 122(26): 6329-6330.
[214]WANG L-Y, LIU Z-F, TENG K-X, et al. Circularly polarized luminescence from helical N,O-boron-chelated dipyrromethene (BODIPY) derivatives[J]. Chemical Communications, 2022, 58(23): 3807-3810.
[215]COURTIS A M, SANTOS S A, GUAN Y, et al. Monoalkoxy BODIPYs-A fluorophore class for bioimaging[J]. Bioconjugate Chemistry, 2014, 25(6): 1043-51.
[216]UMEDA N, TAKAHASHI H, KAMIYA M, et al. Boron dipyrromethene as a fluorescent caging group for single-photon uncaging with long-wavelength visiblelight[J]. ACS Chemical Biology, 2014, 9(10): 2242-2246.
[217]SHARMA A K, NAIR M, CHAUHAN P, et al. Visible-light-triggered uncaging of carbonyl sulfide for hydrogen sulfide (H2S) release[J]. Organic Letters, 2017, 19(18): 4822-4825.
[218]IKEDA C, MARUYAMA T, NABESHIMA T. Convenient and highly efficient synthesis of boron-dipyrrins bearing an arylboronate center[J]. Tetrahedron Letters, 2009, 50(26): 3349-3351.
[219]LU H, MACK J, YANG Y, et al. Structural modification strategies for the rational design of red/NIR region BODIPYs[J]. Chemical Society Reviews, 2014, 43(13): 4778-4823.
[220]CHEN N, ZHANG W, CHEN S, et al. Sterically protected N2O-type benzopyrromethene boron complexes from boronic acids with intense red/Near-Infrared fluorescence[J]. Organic Letters, 2017, 19(8): 2026-2029.
[221]LIU Y, NIU L Y, LIU X L, et al. Synthesis of N,O,B-chelated dipyrromethenes through an unexpected intramolecular cyclisation: Enhanced Near-Infrared emission in the aggregate/solid state[J]. Chemistry - A European Journal, 2018, 24(51), 13549-13555.
[222]CHEN K, DONG Y, ZHAO X, et al. BODIPY derivatives as triplet photosensitizers and related intersystem crossing mechanisms[J]. Frontiers in Chemistry, 2019, 7: 821.
[223]ZHAO J, XU K, YANG W, et al. The triplet excited state of BODIPY: formation, modulation and application[J]. Chemical Society Reviews, 2015, 44(24): 8904-8939.
[224]SAGET T, CRAMER N. Enantioselective C-H arylation strategy for functionalized dibenzazepinones with quaternary stereocenters[J]. Angewandte Chemie, International Edition, 2013, 52(30): 7865 –7868.
[225]YANG L, NEUBURGER M, BAUDOIN O. Chiral bifunctional phosphine-carboxylate ligands for Palladium(0)-catalyzed enantioselective C-H arylation[J]. Angewandte Chemie, International Edition, 2018, 57(5): 1394-1398.
[226]VYHIVSKYI O, KUDASHEV A, MIYAKOSHI T, et al. Chiral catalysts for Pd(0) -catalyzed enantioselective C-H activation[J]. Chemistry-A European Journal, 2021, 27(4): 1231-1257.
[227]FALIVENE L, CREDENDINO R, POATER A, et al. A web tool for analyzing catalytic pockets with topographic steric maps[J]. Organometallics, 2016, 35(13): 2286-2293.
[228]FALIVENE L, CAO Z, PETTA A, et al. Towards the online computer-aided design of catalytic pockets[J]. Nature Chemistry, 2019, 11(10): 872-879.
[229]ZHANG H, CHEN X, LAN J, et al. Silver-mediated direct C-H amination of BODIPYs for screening endoplasmic reticulum-targeting reagents[J]. Chemical Communications, 2018, 54(26): 3219-3222.
[230]MASSON G, KOENIG B, Chemical Photocatalysis - Do It Right![J] European Journal of Organic Chemistry, 2020, 2020(10): 1191-1192.
[231]CHATANI S, KLOXIN C J, BOWMAN C N. The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties[J]. Polymer Chemistry, 2014, 5(7): 2187-2201.
[232]HARI D P, KOENIG B. Synthetic applications of eosin Y in photoredox catalysis[J]. Chemical Communications, 2014, 50(51): 6688-6699.
[233]TEPLY F. Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots[J]. Collection of Czechoslovak Chemical Communications, 2011, 76(7): 859-917.
[234]RAVELLI D, FAGNONI M, ALBINI A. Photoorganocatalysis. What for?[J] Chemical Society Reviews, 2013, 42(1): 97-113.
[235]CAVEDON C, SEEBERGER P H, PIEBER B. Photochemical Strategies for Carbon-Heteroatom Bond Formation[J]. European Journal of Organic Chemistry, 2020, 2020(10): 1379-1392.
[236]PIBIRI I, BUSCEMI S, PALUMBO PICCIONELLO A, et al. Photochemically produced singlet oxygen: Applications and perspectives[J]. ChemPhotoChem, 2018, 2(7): 535-547.
[237]YOGO T, URANO Y, ISHITSUKA Y, et al. Highly efficient and photostable photosensitizer based on BODIPY chromophore[J]. Journal of the American Chemical Society, 2005, 127(35): 12162-12163.
[238]SINGH P K, MAJUMDAR P, SINGH S P. Advances in BODIPY photocleavable protecting groups[J]. Coordination Chemistry Reviews, 2021, 449: 214193.
[239]YOON T P, JACOBSEN E N. Privileged chiral catalysts[J]. Science, 2003, 299(5613): 1691-1693.
[240]FISCHER J, MELE L, SERIER-BRAULT H, et al. Controlling Photooxygenation with a Bifunctional Quinine-BODIPY Catalyst: towards Asymmetric Hydroxylation of β-Dicarbonyl Compounds[J]. European Journal of Organic Chemistry, 2019, 2019(37): 6352-6358.
[241]GE Y, O'SHEA D F. Azadipyrromethenes: from traditional dye chemistry to leading edge applications[J]. Chemical Society Reviews, 2016, 45(14): 3846-3864.
[242]SAWAZAKI T, SHIMIZU Y, OISAKI K, et al. Convergent and functional-group-tolerant synthesis of B-Organo BODIPYs[J]. Organic Letters, 2018, 20(24): 7767-7770.
[243]DING W, LU L-Q, ZHOU Q-Q, et al. Bifunctional photocatalysts for enantioselective aerobic oxidation of β-ketoesters[J]. Journal of the American Chemical Society, 2017, 139(1): 63-66.

所在学位评定分委会
生物学
国内图书分类号
O62
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544146
专题理学院_化学系
推荐引用方式
GB/T 7714
郭永红. 不对称碳氢官能化构建硅、硼手性及其应用研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930731-郭永红-化学系.pdf(13365KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郭永红]的文章
百度学术
百度学术中相似的文章
[郭永红]的文章
必应学术
必应学术中相似的文章
[郭永红]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。