中文版 | English
题名

钙钛矿氮化物 LnWN3(Ln=La, Pr, Nd) 的高温高压制备与研究

其他题名
HIGH PRESSURE AND HIGH TEMPERATURE SYNTHESIS AND CHARACTERIZATION OF PEROVSHITE NITRIDES LnWN3(Ln=La, Pr, Nd)
姓名
姓名拼音
XU Wenwen
学号
12032017
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
王善民
导师单位
物理系
论文答辩日期
2023-05-30
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

钙钛矿氮化物拥有奇特的晶体结构且具有潜在的丰富物理性质。然而,由于氮的高电子亲和能,常压下制备钙钛矿氮化物样品非常困难,导致钙钛矿氮化物的晶体结构尚存在一定的争议,基本物性的研究还不全面。因此,我们基于三种新型钙钛矿氮化物LaWN3-δPrWN3-δNdWN3-δ展开研究。首先利用高温高压法制备了高质量的LaWN3-δPrWN3-δNdWN3-δ样品,结合X射线衍射、中子衍射和电子衍射,解析得到三种样品的晶体结构均为Pna21空间群,并伴随一定的N空位,导致前两者的成分分别为LaWN2.60PrWN2.59。基于高质量的钙钛矿氮化物样品,我们开展了基本物性的系统研究。发现常压下三者均呈现半导体性质并具有良好的导电性,其中LaWN2.60PrWN2.59还表现出优异的力学性能与热稳定性。高压下PrWN2.59发生结构相变,从半导体变成半金属。

结合理论计算,发现LaWN3-δ通过姜-泰勒(SOJT)效应形成强W-N杂化使其结构产生畸变并打开带隙。通过比较引入N空位后的R3cPna21-LaWN3-δ的形成能,发现N空位所引起的电子掺杂有利于LaWN3-δ的结构由R3cPna21转变,从而使Pna21-LaWN2.60结构稳定。同时,N空位的存在也导致了LaWN3-δ的带隙减小,铁电性受到压制,使Pna21-LaWN2.60具有良好的电导率且未表现出铁电性。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] ZENG Z, XU Y, ZHANG Z, et al. Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications [J]. Chem Soc Rev, 2020, 49(4): 1109-43.
[2] ZHU H, ZHANG P, DAI S. Recent advances of lanthanum-based perovskite oxides for catalysis [J]. ACS Catalysis, 2015, 5: Medium: ED; Size: p. 6370-85.
[3] LIU D, LUO D, IQBAL A N, et al. Strain analysis and engineering in halide perovskite photovoltaics [J]. Nature Materials, 2021, 20(10): 1337-46.
[4] LI W, WANG Z, DESCHLER F, et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites [J]. Nature Reviews Materials, 2017, 2(3): 16099.
[5] YANG Q, LIU G, LIU Y. Perovskite-Type Oxides as the Catalyst Precursors for Preparing Supported Metallic Nanocatalysts: A Review [J]. Industrial & Engineering Chemistry Research, 2018, 57(1): 1-17.
[6] 王广建, 秦永宁, 马智, et al. 钙钛矿型复合氧化物材料 [J]. 化学通报, 2005, (02): 117-22.
[7] GARCIA V, BIBES M. Ferroelectric tunnel junctions for information storage and processing [J]. Nat Commun, 2014, 5: 4289.
[8] LEE D, YANG S M, KIM T H, et al. Multilevel Data Storage Memory Using Deterministic Polarization Control [J]. Advanced Materials, 2012, 24(3): 402-6.
[9] BUTLER K T, FROST J M, WALSH A. Ferroelectric materials for solar energy conversion: photoferroics revisited [J]. Energy & Environmental Science, 2015, 8(3): 838-48.
[10] NECHACHE R, HARNAGEA C, LI S, et al. Bandgap tuning of multiferroic oxide solar cells [J]. Nature Photonics, 2015, 9(1): 61-7.
[11] BHALLA A S, GUO R, ROY R. The perovskite structure – a review of its role in ceramic science and technology [J]. Material Research Innovations, 2000, 4: 3-26.
[12] SARMIENTO-PéREZ R, CERQUEIRA T F T, KOERBEL S, et al. Prediction of Stable Nitride Perovskites [J]. ChemInform, 2015, 46.
[13] FANG Y W, FISHER C A J, KUWABARA A, et al. Lattice dynamics and ferroelectric properties of the nitride perovskite LaWN3 [J]. Physical Review B, 2017, 95(1): 014111.
[14] GAO P, GRäTZEL M, NAZEERUDDIN M K. Organohalide lead perovskites for photovoltaic applications [J]. Energy & Environmental Science, 2014, 7(8): 2448-63.
[15] YIN W-J, WENG B, GE J, et al. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics [J]. Energy & Environmental Science, 2019.
[16] VIETEN J, BULFIN B, HUCK P D, et al. Materials design of perovskite solid solutions for thermochemical applications [J]. Energy & Environmental Science, 2019.
[17] TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system [J]. Chemical Science, 2016, 7: 4548 - 56.
[18] GOODENOUGH J B, ZHOU J S. Localized to Itinerant Electronic Transitions in Transition-Metal Oxides with the Perovskite Structure [J]. Chemistry of Materials, 1998, 10(10): 2980-93.
[19] LI C H, SOH K C K, WU P. Formability of ABO3 perovskites [J]. Journal of Alloys and Compounds, 2004, 372(1): 40-8.
[20] LI C, LU X, DING W, et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites [J]. Acta crystallographica Section B, Structural science, 2008, 64 Pt 6: 702-7.
[21] SAHA R, SUNDARESAN A, RAO C N R. Novel features of multiferroic and magnetoelectric ferrites and chromites exhibiting magnetically driven ferroelectricity [J]. Materials Horizons, 2014, 1(1): 20-31.
[22] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (Version 55) [J]. Progress in Photovoltaics: Research and Applications, 2020, 28(1): 3-15.
[23] ADDABBO T, BERTOCCI F, FORT A D, et al. Gas sensing properties and modeling of YCoO3 based perovskite materials [J]. Sens Actuators B, 2015, 221: 1137-55.
[24] PELLERIN M, GLAIS E, LECUYER T, et al. LaAlO3:Cr3+, Sm3+: Nano-perovskite with persistent luminescence for in vivo optical imaging [J]. Journal of Luminescence, 2018, 202: 83-8.
[25] SHI Z, GUO J, CHEN Y, et al. Lead-Free Organic–Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives [J]. Advanced Materials, 2017, 29(16): 1605005.
[26] CHEN G, ZHU Y, CHEN H M, et al. An Amorphous Nickel–Iron-Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction [J]. Advanced Materials, 2019, 31(28): 1900883.
[27] KOSTOPOULOU A, KYMAKIS E, STRATAKIS E. Perovskite nanostructures for photovoltaic and energy storage devices [J]. Journal of Materials Chemistry A, 2018, 6(21): 9765-98.
[28] FAN Z, SUN K, WANG J. Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites [J]. Journal of Materials Chemistry A, 2015, 3(37): 18809-28.
[29] ZAKUTAYEV A. Design of nitride semiconductors for solar energy conversion [J]. Journal of Materials Chemistry A, 2016, 4(18): 6742-54.
[30] FU R, ZHOU W, LI Q, et al. Stability Challenges for Perovskite Solar Cells [J]. ChemNanoMat, 2019, 5(3): 253-65.
[31] WANG R, MUJAHID M, DUAN Y, et al. A Review of Perovskites Solar Cell Stability [J]. Advanced Functional Materials, 2019, 29(47): 1808843.
[32] MORIKAWA T, ASAHI R, OHWAKI T, et al. Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping [J]. Japanese Journal of Applied Physics, 2001.
[33] HITOKI G, TAKATA T, KONDO J N, et al. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤ 500 nm) [J]. Cheminform, 2002, 33(16): 1698-9.
[34] FUERTES A. Synthesis and properties of functional oxynitrides – from photocatalysts to CMR materials [J]. Dalton Transactions, 2010, 39(26): 5942-8.
[35] WANG L, XIE R J, SUEHIRO T, et al. Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives [J]. Chem Rev, 2018, 118(4): 1951-2009.
[36] SUN W, BARTEL C J, ARCA E, et al. A map of the inorganic ternary metal nitrides [J]. Nature Materials, 2019, 18(7): 732-9.
[37] GREENAWAY A L, MELAMED C L, TELLEKAMP M B, et al. Ternary Nitride Materials: Fundamentals and Emerging Device Applications [J]. Annual Review of Materials Research, 2021, 51(1): 591-618.
[38] SUN W, HOLDER A, ORVANANOS B, et al. Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides [J]. Chemistry of Materials, 2017, 29.
[39] BACHER P, ANTOINE P, MARCHAND R, et al. Time-of-flight neutron diffraction study of the structure of the perovskite-type oxynitride LaWO0.6N2.4 [J]. Journal of Solid State Chemistry, 1988, 77(1): 67-71.
[40] PORS F, BACHER P, MARCHAND R, et al. Neutron diffraction structural study of the SrTaO2N oxynitride perovskite and of the Ba1-xSrxTaO2N solid solution [J]. 1987.
[41] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A, 1976, 32(5): 751-67.
[42] INGOLD C K. The Nature of the Chemical Bond and the Structure of Molecules and Crystals [J]. Nature, 1940, 145(3678): 644-5.
[43] BUGARIS D E, IBERS J A. Syntheses and characterization of some solid-state actinide (Th, U, Np) compounds [J]. Dalton Transactions, 2010, 39(26): 5949-64.
[44] MARCHAND R, PORS F, LAURENT Y S. Préparation et caractérisation de nouveaux oxynitrures à structure perovskite, F, 1986 [C].
[45] GRINS J, KäLL P-O, SVENSSON G. Synthesis and structural characterisation of MnWN2 prepared by ammonolysis of MnWO4 [J]. Journal of Materials Chemistry, 1995, 5(4): 571-5.
[46] FUERTES A. Synthetic approaches in oxynitride chemistry [J]. Progress in Solid State Chemistry, 2018, 51: 63-70.
[47] FUERTES A. Nitride tuning of transition metal perovskites [J]. APL Materials, 2020, 8: 020903.
[48] BRESE N E, DISALVO F J. Synthesis of the First Thorium-Containing Nitride Perovskite, TaThN3 [J]. Journal of Solid State Chemistry, 1995, 120(2): 378-80.
[49] SARMIENTO-PéREZ R, CERQUEIRA T F T, KöRBEL S, et al. Prediction of Stable Nitride Perovskites [J]. Chemistry of Materials, 2015, 27: 5957-63.
[50] HONG X. Nitride perovskite becomes polar [J]. Science, 2021, 374(6574): 1445-6.
[51] KLOß S D, WEIDEMANN M L, ATTFIELD J P. Preparation of Bulk-Phase Nitride Perovskite LaReN3 and Topotactic Reduction to LaNiO2-Type LaReN2 [J]. Angewandte Chemie International Edition, 2021, 60(41): 22260-4.
[52] TALLEY K R, PERKINS C L, DIERCKS D R, et al. Synthesis of LaWN3 nitride perovskite with polar symmetry [J]. Science, 2021, 374(6574): 1488-91.
[53] SHERBONDY R, SMAHA R W, BARTEL C J, et al. High-Throughput Selection and Experimental Realization of Two New Ce-Based Nitride Perovskites: CeMoN3 and CeWN3 [J]. Chemistry of Materials, 2022, 34(15): 6883-93.
[54] CLARKE S J, HARDSTONE K A, MICHIE C W, et al. High-Temperature Synthesis and Structures of Perovskite and n = 1 Ruddlesden—Popper Tantalum Oxynitrides [J]. ChemInform, 2002, 33(40): 4-.
[55] SERGHIOU G, JI G, ODLING N, et al. Creating Reactivity with Unstable Endmembers using Pressure and Temperature: Synthesis of Bulk Cubic Mg0.4Fe0.6N [J]. Angewandte Chemie International Edition, 2015, 54(50): 15109-12.
[56] KLOß S D, HAFFNER A, MANUEL P, et al. Preparation of iron(IV) nitridoferrate Ca4FeN4 through azide-mediated oxidation under high-pressure conditions [J]. Nature Communications, 2021, 12(1): 571.
[57] ZAKUTAYEV, ANDRIY. Design of nitride semiconductors for solar energy conversion [J]. Jmaterchema, 2016: 10.1039.C5TA09446A.
[58] 经福谦. 动高压原理与技术 [M]. 动高压原理与技术, 2006.
[59] 龚自正, 谢鸿森, YING-WEI F. 我国动高压物理应用于地球科学的研究进展 [J]. 高压物理学报, 2013, 27(2): 20.
[60] 杜建国, 谢鸿森. 从原子到地球:高压地球科学研究进展 [M]. 从原子到地球:高压地球科学研究进展, 2007.
[61] 李帅锜, 贺端威, 张佳威. 大腔体静高压技术的发展及应用 [J]. 物理, 2022, 51(4): 11.
[62] 韩铁鑫, 高志鹏, 何瑞琦, et al. 压电材料Na_(0.5)K_(0.5)NbO_(3)高压相变的拉曼光谱研究 [J]. 光散射学报, 2022, 34(3): 6.
[63] JIFENG L, YONGHAO H, BENCHEN T, et al. Electrical resistivity of a novel oxadiazole derivative as a function of pressure and temperature using a diamond anvil cell [J]. 中国物理, 2005.
[64] 温振兴. 优质立方氮化硼单晶的静态高温高压合成工艺研究 [D]; 山东建筑大学, 2014.
[65] 肖宏宇. 优质克拉级金刚石大单晶的高温高压合成 [J]. 吉林大学.
[66] 姚明光, 张华, 刘冰冰. 一种具有高断裂韧性的复合超硬材料的合成方法 [Z]. 2018
[67] MAO H-K, CHEN X-J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90.
[68] BASSETT W A. Diamond anvil cell, 50th birthday [J]. High Pressure Research, 2009, 29: 163 - 86.
[69] 周晓玲, 陈斌. 纳米金属的塑性形变和细晶强化 [J]. 高压物理学报, 2020, 34(6): 7.
[70] YAGI T, SUZUKI T, AKIMOTO S-I. Static compression of wüstite (Fe0.98O) to 120 GPa [J]. Journal of Geophysical Research, 1985, 90: 8784-8.
[71] MAO H K, WU Y, HEMLEY R J, et al. High-pressure phase transition and equation of state of CsI [J]. Physical Review Letters, 1990, 64(15): 1749-52.
[72] MAO H K, BELL P M. High-pressure physics: the 1-megabar mark on the ruby r1 static pressure scale [J]. Science, 1976, 191(4229): 851-2.
[73] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3(1): 1163.
[74] BOEHLER R, HANTSETTERS K D. New anvil design in diamond-cells [J]. 2004.
[75] SINOGEIKIN S V, SMITH J S, ROD E, et al. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells [J]. Rev Sci Instrum, 2015, 86(7): 072209.
[76] 刘志国, 千正男. 高压技术 : High pressure technology [M]. 高压技术 : High pressure technology, 2012.
[77] 吉林大学固体物理教研室高压合成组. 人造金刚石 [M]. 人造金刚石, 1975.
[78] LIEBERMANN R C. Multi-anvil, high pressure apparatus: a half-century of development and progress [J]. High Pressure Research, 2011, 31(4): 493-532.
[79] PLATEN B V. A multiple piston, high pressure, high temperature apparatus [J]. 1962.
[80] LIEBERMANN R C. Multi-anvil, high pressure apparatus: a half-century of development and progress: High Pressure Research: Vol 31, No 4 [J]. High Pressure Research, 2011.
[81] LV S J, HONG S M, YUAN C S, et al. Selenium and tellurium: Elemental catalysts for conversion of graphite to diamond under high pressure and temperature [J]. Applied Physics Letters, 2009, 95(24): 51.
[82] 彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(01): 51-6.
[83] 中国材料研究学会超硬材料及制品专业委员会. 中国超硬材料与制品50周年精选文集 [M]. 中国超硬材料与制品50周年精选文集, 2014.
[84] ZHOU X F, MA D, WANG L, et al. Large-volume cubic press produces high temperatures above 4000 Kelvin for study of the refractory materials at pressures [J]. Review of Scientific Instruments, 2020, 91(1): 015118.
[85] BI T, ZARIFI N, TERPSTRA T, et al. The Search for Superconductivity in High Pressure Hydrides [J]. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2018.
[86] 孙莹, 刘寒雨, 马琰铭. 高压下富氢高温超导体的研究进展 [J]. 物理学报, 2021, 70(1): 017407-1.
[87] SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures [J]. Physical Review Letters, 2019, 122(2): 027001.
[88] CHOU I-M, BLANK J G, GONCHAROV A F, et al. In Situ Observations of a High-Pressure Phase of H2O Ice [J]. Science, 1998, 281(5378): 809-12.
[89] SUNDING M F, HADIDI K, DIPLAS S, et al. XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures [J]. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184(7): 399-409.
[90] KOH K Y, CHEN Z, ZHANG S, et al. Cost-effective phosphorus removal from aqueous solution by a chitosan/lanthanum hydrogel bead: Material development, characterization of uptake process and investigation of mechanisms [J]. Chemosphere, 2022, 286: 131458-.
[91] WANG S, YU X, ZHANG J, et al. Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN [J]. crystal growth & design, 2015, 21(21): 1671-3.
[92] LASOTA C, WANG C Z, YU R, et al. Ab Initio Linear Response Study of SrTiO3 [J]. Ferroelectrics, 1997, 194(1): 109-18.
[93] GHOSEZ P, COCKAYNE E, WAGHMARE U V, et al. Lattice dynamics ofBaTiO3,PbTiO3, andPbZrO3:A comparative first-principles study [J]. Physical Review B, 1999, 60(2).
[94] GOODENOUGH J B. Metallic oxides [J]. Progress in Solid State Chemistry, 1971, 5(none): 145-399.
[95] BERSUKER, ISAAC B. Pseudo-Jahn-teller effect--a two-state paradigm in formation, deformation, and transformation of molecular systems and solids [J]. Chemical Reviews, 2013, 113(3): 1351-90.
[96] SEREIKA R, LIU P, KIM B, et al. Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO [J]. npj Quantum Materials.

所在学位评定分委会
物理学
国内图书分类号
G250.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544147
专题理学院_物理系
推荐引用方式
GB/T 7714
徐文文. 钙钛矿氮化物 LnWN3(Ln=La, Pr, Nd) 的高温高压制备与研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032017-徐文文-物理系.pdf(8834KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[徐文文]的文章
百度学术
百度学术中相似的文章
[徐文文]的文章
必应学术
必应学术中相似的文章
[徐文文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。