题名 | 基于走滑断层级联破裂准则的地震危险性分析 |
其他题名 | SEISMIC HAZARD ANALYSIS BASED ON MULTI-SEGMENT RUPTURE CRITERIONS OF STRIK-SLIP FAULTS
|
姓名 | |
姓名拼音 | OUYANG Bo
|
学号 | 12032840
|
学位类型 | 硕士
|
学位专业 | 0801 力学
|
学科门类/专业学位类别 | 08 工学
|
导师 | |
导师单位 | 地球与空间科学系
|
外机构导师单位 | 南方科技大学
|
论文答辩日期 | 2023-05-11
|
论文提交日期 | 2023-06-27
|
学位授予单位 | 南方科技大学
|
学位授予地点 | 深圳
|
摘要 | 将级联破裂地震纳入地震危险性分析的研究范畴对于强震灾害的防治至关重要。在早期的地震危险性分析研究中,只有被观测证实的断层级联破裂方案才会 被收录为地震潜源区的震源。近 30 年来,由于数值模拟在地震动态破裂研究中的广泛应用,以及级联破裂地震的复杂破裂过程对社会造成的巨大灾害损失,研究者 们逐渐意识到:应在地震危险性分析中加入断层之间产生其它级联破裂方案的可能性。基于地震破裂动力学模拟方面的研究,Mignan 等人开发了能够利用断层参数来构建走滑断层间潜在级联破裂方案的算法,该算法通过破裂长度来估算每 个方案的最大可信地震震级,但无法将生成的级联破裂方案转化为概率性地震危险性分析结果。在中国地区针对级联破裂地震的危险性分析研究中,级联破裂方案的生成完全依赖于研究者对地区地质背景的经验性理解,不具有普适性。因此,为了实现从级联破裂方案生成到概率性地震危险性分析的流程探索性研究,本文首先对 Mignan 等人的原算法进行了重构和改进。将原算法和改进算法应用于 2013 欧洲及地中海地区地震灾害模型(ESHM13:The 2013 Euro-Mediterranean Seismic- Hazard Model)断层数据库,通过将两算法结果进行对比,从算法迭代的角度证明了改进算法的稳定性。同时,本文还将改进算法生成的级联破裂方案与真实地震破裂模型进行对比,证实了该算法生成级联破裂方案的合理性。为了得到概率性地震危险性分析结果,本文将改进算法运用于鲜水河-小江断裂带上的断层,得出了该地区潜在的级联破裂方案以及其对应的最大可信地震震级。通过将算法生成的方案与根据历史地震破裂设置的级联破裂方案进行对比,证明算法能够较为完整地还原基于历史地震的级联破裂方案。随后,本文将断层系统地震危险性及地震 发生率估计算法(SHERIFS:Seismic Hazard and Earthquake Rate in Fault Systems) 应用于级联破裂方案的震级-频度关系计算,并将计算出的结果与本文算法生成的 级联破裂方案输入地震危险性分析软件 OpenQuake Engine,计算出了鲜水河-小江断裂带区域 50 年内超越概率为 10% 和 2% 的地震动峰值加速度空间分布图。最后通过对比发现,在部分区域,算法得出的地震动峰值加速度结果普遍高于我国第五代《地震动参数区划图》的结果。自此,本文对从走滑断层之间级联破裂方案的生成到概率性地震危险性分析的流程进行了探索性研究,流程中各环节都是由开源代码实现,对级联破裂地震危险性研究在中国地区的推广有着重要的参考意义。 |
其他摘要 | The study of cascading (multi-segment rupture) earthquakes is crucial for the preven- tion and control of strong seismic disasters. In early seismic hazard analyses, schemes of fault segment ruptures were only included as possible scenarios if there was empirical evidence that these schemes had previously occurred. Over the past 30 years, researchers have gradually realized that the possibility of other multi-segment rupture schemes be- tween faults should be included in the seismic hazard analysis, due to the extensive application of numerical simulations in the study of seismic dynamic rupture and the enor- mous disasters caused by the complex rupture process of cascading earthquakes. Based on the research of dynamic simulation of earthquake rupture, Mignan developed an algorithm that can utilize faults’ parameters to construct potential multi-segment rupture schemes between strike-slip faults, which can also estimate the maximum credible earthquake magnitude for each scheme based on rupture length. However, the generated multi-segment rupture schemes cannot be transformed into probabilistic seismic hazard analysis results. In the studies of cascading earthquake hazard analysis in China, the generation of multi-segment rupture schemes depends entirely on the researchers’ empirical understanding of the regional geological background, which cannot be conveniently applies to other regions. Therefore, in order to realize the exploratory study of the process from multi-segment rupture scheme generation to probabilistic seismic hazard analysis, the original algorithm implementation of Mignan et al. is reconstructed and improved. The original and improved algorithm are applied to the ESHM13 fault database, by comparing the results of the two algorithms, stability of the improved algorithm is proved from the perspective of algorithm iteration. In order to obtain the results of probabilistic seismic hazard analysis, this thesis applies the improved algorithm to the faults of Xianshuihe- Xiaojiang fault zone, and obtains the potential multi-segment rupture schemes and their corresponding maximum credible earthquake magnitudes. By comparing the generated schemes with the multi-segment rupture schemes based on historical earthquake ruptures, the algorithm’s ability to reproduce seismic history-based cascading rupture schemes is proved to be relatively perfect. Then, SHERIFS is applied to calculate the magnitude- frequency relationship of the multi-segment rupture schemes, and the calculated results together with the multi-segment rupture schemes are imported into OpenQuake Engine,and the PGA spatial distribution maps of the Xianshuihe-Xiaojiang fault zone with the exceeding-probability of 10% and 2% in 50 years are calculated. Finally, through comparison, it is found that in some areas, the peak ground acceleration values calculated by the algorithm are on average higher than the values of the China Seismic Ground Motion Parameters Zonation Map. Up to now, the automated process from the generation of multi-segment rupture scheme between strike-slip faults to probabilistic seismic hazard analysis is fully constructed, and all the links in the process are realized by open source code, which has important reference significance for the promotion of multi-segment rupture seismic hazard research in China. |
关键词 | |
其他关键词 | |
语种 | 中文
|
培养类别 | 独立培养
|
入学年份 | 2020
|
学位授予年份 | 2023-06
|
参考文献列表 | [1] MIGNAN A, DANCIU L, GIARDINI D. Reassessment of the Maximum Fault Rupture Length of StrikeSlip Earthquakes and Inference on 𝑀 in the Anatolian Peninsula, Turkey[J/OL].Seismological Research Letters, 2015, 86(3): 890-900. https://doi.org/10.1785/0220140252. [2] CHARTIER T, SCOTTI O, LYON-CAEN H, et al. Methodology for earthquake rupture rate estimates of fault networks: example for the western Corinth rift, Greece[J]. Natural Hazards and Earth System Sciences, 2017, 17(10): 1857-1869. [3] CHARTIER T, SCOTTI O, LYON-CAEN H. SHERIFS: Open-source code for computingearthquake rates in fault systems and constructing hazard models[J]. Seismological Research Letters, 2019, 90(4): 1678-1688. [4] LIU M, WANG H, YE J, et al. Intraplate earthquakes in North China[M/OL]. CambridgeUniversity Press, 2014: 97–125. DOI: 10.1017/CBO9781139628921.006. [5] 中国地震局震灾应急救援司. 2006-2010 年中国大陆地震灾害损失评估汇编[M]. 地震出版社, 2015: 710. [6] YU G, XU X, KLINGER Y, et al. Fault-Scarp Features and Cascading-Rupture Model for the Mw 7.9 Wenchuan Earthquake, Eastern Tibetan Plateau, China[J/OL]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2590-2614. https://doi.org/10.1785/0120090255. [7] CAMPILLO M, ARCHULETA R J. A rupture model for the 28 June 1992 Landers, California, earthquake[J]. Geophysical research letters, 1993, 20(8): 647-650. [8] HARRIS R A, DAY S M. Dynamic 3D simulations of earthquakes on En Echelon Faults[J/OL]. Geophysical Research Letters, 1999, 26(14): 2089-2092. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999GL900377. DOI: https://doi.org/10.1029/1999GL900377. [9] KIMURA G, HINA S, HAMADA Y, et al. Runaway slip to the trench due to rupture of highly pressurized megathrust beneath the middle trench slope: The tsunamigenesis of the 2011 To- hoku earthquake off the east coast of northern Japan[J/OL]. Earth and Planetary Science Letters, 2012, 339-340: 32-45. https://www.sciencedirect.com/science/article/pii/S0012821X12001690. DOI: https://doi.org/10.1016/j.epsl.2012.04.002. [10] OKUWAKI R, YUJI Y, TAYMAZ T, et al. Multi-scale rupture growth with alternating directions in a complex fault network during the 2023 south-eastern Türkiye and Syria earthquake doublet [R/OL]. Earth Sciences, 2023 [2023-03-05]. https://eartharxiv.org/repository/view/5106/. DOI: 10.31223/X5RD4W. [11] MELGAR D, TAYMAZ T, GANAS A, et al. Sub-and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye[M]. EarthArXiv, 2023. [12] NORIO O, YE T, KAJITANI Y, et al. The 2011 eastern Japan great earthquake disaster: Overview and comments[J]. International Journal of Disaster Risk Science, 2011, 2: 34-42. [13] KAZAMA M, NODA T. Damage statistics (Summary of the 2011 off the Pacific Coast of Tohoku Earthquake damage)[J]. Soils and Foundations, 2012, 52(5): 780-792. [14] HAMLING I J, HREINSDÓTTIR S, CLARK K, et al. Complex multifault rupture during the 2016 M w 7.8 Kaikōura earthquake, New Zealand[J]. Science, 2017, 356(6334): eaam7194. [15] SHENNAN I, BRUHN R, PLAFKER G. Multi-segment earthquakes and tsunami potential of the Aleutian megathrust[J]. Quaternary Science Reviews, 2009, 28(1-2): 7-13. [16] WOO G, MIGNAN A. Counterfactual analysis of runaway earthquakes[J]. Seismological Research Letters, 2018, 89(6): 2266-2273. [17] ZöLLER G, HOLSCHNEIDER M, HAINZL S. The Maximum Earthquake Magnitude in a Time Horizon: Theory and Case Studies[J/OL]. Bulletin of the Seismological Society of America, 2013, 103(2A): 860-875. https://doi.org/10.1785/0120120013. [18] HOLSCHNEIDER M, ZÖLLER G, CLEMENTS R, et al. Can we test for the maximum possible earthquake magnitude?[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 2019- 2028. [19] KRAMER S L. Geotechnical earthquake engineering[M]. Pearson Education India, 1996. [20] CORNELL C A. Engineering seismic risk analysis[J/OL]. Bulletin of the Seismological Society of America, 1968, 58(5): 1583-1606. https://doi.org/10.1785/BSSA0580051583. [21] REITER L. Earthquake hazard analysis: issues and insights[M]. Columbia University Press, 1990. [22] 高孟潭, 陈国星, 谢富仁, 等. 中国地震动参数区划图[M]. GB 18306-2015. 中华人民共和 国国家质量监督检验检疫总局; 中国国家标准化管理委员会, 2015. [23] CORNELL C A, VANMARCKE E H. The major influences on seismic risk[C]//Proceedings of the fourth world conference on earthquake engineering: volume 1. 1969: 69-83. [24] 潘华, 高孟潭, 谢富仁. 新版地震区划图地震活动性模型与参数确定[J]. 震灾防御技术, 2013(11-23). [25] 陈颙, 陈凌. 地震危险性分析中最大地震震级的确定[J]. 地球物理学报, 1999(351- 352+553-357+438). [26] KIJKO A, SINGH M. Statistical tools for maximum possible earthquake magnitude estimation [J]. Acta Geophysica, 2011, 59: 674-700. [27] CHENG J, CHARTIER T, XU X. Multisegment Rupture Hazard Modeling along the Xian- shuihe Fault Zone, Southeastern Tibetan Plateau[J/OL]. Seismological Research Letters, 2021, 92(2A): 951-964 [2021-11-29]. https://pubs.geoscienceworld.org/ssa/srl/article/92/2A/951/592 864/Multisegment-Rupture-Hazard-Modeling-along-the. DOI: 10.1785/0220200117. [28] CHENG J, XU X, YAO Q, et al. Seismic hazard of multi-segment rupturing for the Anninghe– Zemuhe–Daliangshan fault region, southeastern Tibetan Plateau: constraints from geological and geodetic slip rates[J/OL]. Natural Hazards, 2021, 107(2): 1501-1525 [2021-11-29]. https: //link.springer.com/10.1007/s11069-021-04643-7. [29] CHENG J, XU X, REN J, et al. Probabilistic multi-segment rupture seismic hazard along the Xiaojiang fault zone, southeastern Tibetan Plateau[J/OL]. Journal of Asian Earth Sciences, 2021, 221: 104940 [2022-11-04]. https://linkinghub.elsevier.com/retrieve/pii/S136791202100 2789. DOI: 10.1016/j.jseaes.2021.104940. [30] 程佳, 许冲, 马健, 等. 从活动断层分段到地震地质灾害与财产人口损失风险——以鲜 水河-小江断裂带为例[J/OL]. 中国科学: 地球科学, 2023. http://www.sciengine.com/publ isher/ScienceChinaPress/journal/SCIENTIASINICATerrae///10.1360/SSTe-2022-0280. DOI: https://doi.org/10.1360/SSTe-2022-0280. [31] WOESSNER J, LAURENTIU D, GIARDINI D, et al. The 2013 European Seismic Hazard Model: key components and results[J/OL]. Bulletin of Earthquake Engineering, 2015, 13(12): 3553-3596. https://doi.org/10.1007/s10518-015-9795-1. [32] GIARDINI D, WOESSNER J, DANCIU L, et al. Seismic Hazard harmonization in Europe (SHARE): Online Data Resource[EB/OL]. 2013. http://dx.doi.org/10.12686/SED-0000000 1-SHARE. [33] PISARENKO V, RODKIN M. Approaches to solving the maximum possible earthquake magnitude (M max) problem[J]. Surveys in Geophysics, 2022: 1-35. [34] VERMEULEN P, KIJKO A. More statistical tools for maximum possible earthquake magnitude estimation[J]. Acta Geophysica, 2017, 65: 579-587. [35] WELLS D L, COPPERSMITH K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J/OL]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1002. https://doi.org/10.1785/BSSA0840040974. [36] THINGBAIJAM K K S, MARTIN MAI P, GODA K. New Empirical Earthquake SourceScaling Laws[J/OL]. Bulletin of the Seismological Society of America, 2017, 107 (5): 2225-2246. https://doi.org/10.1785/0120170017. [37] WESNOUSKY S G. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture[J/OL]. Bulletin of the Seismological Society of America, 2008, 98(4): 1609-1632. https://doi.org/10.1785/0120070111. [38] LEONARD M. Earthquake Fault Scaling: Self-Consistent Relating of Rupture Length, Width, Average Displacement, and Moment Release[J/OL]. Bulletin of the Seismological Society of America, 2010, 100(5A): 1971-1988. https://doi.org/10.1785/0120090189. [39] LEONARD M. SelfConsistent Earthquake FaultScaling Relations: Update and Extension to Stable Continental StrikeSlip Faults[J/OL]. Bulletin of the Seismological Society of America, 2014, 104(6): 2953-2965. https://doi.org/10.1785/0120140087. [40] CHENG J, RONG Y, MAGISTRALE H, et al. Earthquake Rupture Scaling Relations for Main- land China[J/OL]. Seismological Research Letters, 2019, 91(1): 248-261. https://doi.org/10.1 785/0220190129. [41] HANKS T C, KANAMORI H. A moment magnitude scale[J/OL]. Journal of Geophysical Research: Solid Earth, 1979, 84(B5): 2348-2350. https://agupubs.onlinelibrary.wiley.com/do i/abs/10.1029/JB084iB05p02348. DOI: https://doi.org/10.1029/JB084iB05p02348. [42] PISARENKO V. Statistical evaluation of maximum possible earthquakes[J]. Phys. Solid Earth, 1991, 27(9): 757-763. [43] 傅征祥等. 2006-2020 年中国大陆地震危险区与地震灾害损失预测研究[M]. 地震出版社, 2007. [44] HARRIS R A, DAY S M. Dynamics of fault interaction: parallel strike-slip faults[J/OL]. Jour- nal of Geophysical Research: Solid Earth, 1993, 98(B3): 4461-4472. https://agupubs.onlineli brary.wiley.com/doi/abs/10.1029/92JB02272. DOI: https://doi.org/10.1029/92JB02272. [45] HARRIS R A, DOLAN J F, HARTLEB R, et al. The 1999 İzmit, Turkey, Earthquake: A 3D Dynamic Stress Transfer Model of Intraearthquake Triggering[J/OL]. Bulletin of the Seismo- logical Society of America, 2002, 92(1): 245-255. https://doi.org/10.1785/0120000825. [46] KAME N, RICE J R, DMOWSKA R. Effects of prestress state and rupture velocity on dynamic fault branching[J/OL]. Journal of Geophysical Research: Solid Earth, 2003, 108(B5). https: //agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002JB002189. DOI: https://doi.org/10.1 029/2002JB002189. [47] POLIAKOV A N B, DMOWSKA R, RICE J R. Dynamic shear rupture interactions with fault bends and off-axis secondary faulting[J/OL]. Journal of Geophysical Research: Solid Earth, 2002, 107(B11): ESE 6-1-ESE 6-18. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.102 9/2001JB000572. DOI: https://doi.org/10.1029/2001JB000572. [48] BHAT H S, DMOWSKA R, RICE J R, et al. Dynamic Slip Transfer from the Denali to Totschunda Faults, Alaska: Testing Theory for Fault Branching[J/OL]. Bulletin of the Seismo- logical Society of America, 2004, 94(6B): S202-S213. https://doi.org/10.1785/0120040601. [49] BHAT H S, OLIVES M, DMOWSKA R, et al. Role of fault branches in earthquake rupture dynamics[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B11). [50] FLISS S, BHAT H S, DMOWSKA R, et al. Fault branching and rupture directivity[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B6). [51] FIELD E H, ARROWSMITH R J, BIASI G P, et al. Uniform California earthquake rupture forecast, version 3 (UCERF3)—The time-independent model[J]. Bulletin of the Seismological Society of America, 2014, 104(3): 1122-1180. [52] MILNER K, PAGE M, FIELD E, et al. Appendix T: Defining the inversion rupture set via plausibility filters[J]. US Geol. Surv. Open-File Rept. 2013-1165-T and California Geol. Surv. Special Rept. 228-T, 2013. [53] MIGNAN A. Runaway Rupture Algorithm for PSHA[EB/OL]. 2017. https://github.com/ami gnan/risk_EQ_extremes. [54] BLASER L, KRüGER F, OHRNBERGER M, et al. Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment[J/OL]. Bulletin of the Seismological Society of America, 2010, 100(6): 2914-2926. https://doi.org/10.1785/0120100111. [55] HANKS T C, BAKUN W H. A Bilinear Source-Scaling Model for M-log A Observations of Continental Earthquakes[J/OL]. Bulletin of the Seismological Society of America, 2002, 92(5): 1841-1846. https://doi.org/10.1785/0120010148. [56] MAI P M, THINGBAIJAM K K S. SRCMOD: An Online Database of FiniteFault Rupture Models[J/OL]. Seismological Research Letters, 2014, 85(6): 1348-1357. https://doi.org/10.1 785/0220140077. [57] PAGE M T, FIELD E H, MILNER K R, et al. The UCERF3 grand inversion: Solving for the long-term rate of ruptures in a fault system[J]. Bulletin of the Seismological Society of America, 2014, 104(3): 1181-1204. [58] 闻学泽. 小江断裂带的破裂分段与地震潜势概率估计[J]. 地震学报, 1993(322-330). [59] 闻学泽. 四川西部鲜水河-安宁河-则木河断裂带的地震破裂分段特征[J]. 地震地质, 2000(239-249). [60] 宋方敏, 汪一鹏. 中国活断层研究专辑: 小江活动断裂带[M]. 地震出版社, 1998. [61] 何宏林, 池田安隆, 何玉林, 等. 新生的大凉山断裂带——鲜水河-小江断裂系中段的裁弯 取直[J]. 中国科学 (D 辑: 地球科学), 2008(564-574). [62] SUN H, HE H, IKEDA Y, et al. Paleoearthquake history along the southern segment of the Daliangshan fault zone in the southeastern Tibetan Plateau[J]. Tectonics, 2019, 38(7): 2208- 2231. [63] 何宏林, 方仲景, 李玶. 小江断裂带西支断裂南段新活动初探[J]. 地震研究, 1993(291-298). [64] JUN S, YIPENG W, FANGMIN S. Characteristics of the active Xiaojiang fault zone in Yunnan, China: a slip boundary for the southeastward escaping Sichuan–Yunnan Block of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2003, 21(10): 1085-1096. [65] 李西, 冉勇康, 吴富峣, 等. 小江断裂带西支晚第四纪强震破裂特征[J]. 地震地质, 2018 (1179-1203). [66] 欧阳博. Runaway Rupture Algorithm for PSHA in Python[EB/OL]. 2023. https://github.com /BoOuyang/risk_EQ_extremes. [67] PAGANI M, MONELLI D, WEATHERILL G, et al. OpenQuake engine: An open hazard (and risk) software for the global earthquake model[J]. Seismological Research Letters, 2014, 85(3): 692-702. [68] WESNOUSKY S G. Predicting the endpoints of earthquake ruptures[J/OL]. Nature, 2006, 444 (7117): 358-360 [2021-11-30]. http://www.nature.com/articles/nature05275. DOI: 10.1038/na ture05275. [69] BARKA A A, KADINSKY-CADE K. Strike-slip fault geometry in Turkey and its influence on earthquake activity[J/OL]. Tectonics, 1988, 7(3): 663-684. https://agupubs.onlinelibrary.wile y.com/doi/abs/10.1029/TC007i003p00663. DOI: https://doi.org/10.1029/TC007i003p00663. [70] BARKA A. The 17 August 1999 Izmit Earthquake[J/OL]. Science, 1999, 285(5435): 1858- 1859. https://www.science.org/doi/abs/10.1126/science.285.5435.1858. [71] ANDERSON J G, WESNOUSKY S G, STIRLING M W. Earthquake size as a function of fault slip rate[J/OL]. Bulletin of the Seismological Society of America, 1996, 86(3): 683-690. https://doi.org/10.1785/BSSA0860030683. [72] SALAH M K, ŞAHIN Ş, AYDIN U. Seismic velocity and Poisson’s ratio tomography of the crust beneath East Anatolia[J]. Journal of Asian Earth Sciences, 2011, 40(3): 746-761. [73] PINAR A, COŞKUN Z, MERT A, et al. Frictional strength of North Anatolian fault in eastern Marmara region[J]. Earth, Planets and Space, 2016, 68: 1-17. [74] GÜVERCIN S E, KARABULUT H, KONCA A Ö, et al. Active seismotectonics of the East Anatolian Fault[J]. Geophysical Journal International, 2022, 230(1): 50-69. [75] STIRLING M, GODED T, BERRYMAN K, et al. Selection of earthquake scaling relationships for seismic-hazard analysis[J]. Bulletin of the Seismological Society of America, 2013, 103(6): 2993-3011. [76] EMRE Ö, DUMAN T Y, ÖZALP S, et al. Active fault database of Turkey[J]. Bulletin of Earthquake Engineering, 2018, 16(8): 3229-3275. [77] CHENG J, RONG Y, MAGISTRALE H, et al. An Mw-based historical earthquake catalog for Mainland China[J]. Bulletin of the Seismological Society of America, 2017, 107(5): 2490-2500. [78] 徐锡伟, 韩竹军, 杨晓平, 等. 中国及邻近地区地震构造图[M/OL]. 地震出版社, 2016. DOI: 10.12031/activefault.china.250.2016.db. [79] SOWERS J, UNRUH J, LETTIS W, et al. Relationship of the Kickapoo fault to the Johnson Valley and Homestead Valley faults, San Bernardino County, California[J]. Bulletin of the Seismological Society of America, 1994, 84(3): 528-536. [80] DZIEWONSKI A M, CHOU T A, WOODHOUSE J H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 2825-2852. [81] EKSTRÖM G, NETTLES M, DZIEWOŃSKI A. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes[J]. Physics of the Earth and Planetary In- teriors, 2012, 200: 1-9. [82] WEICHERT D H. Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes[J]. Bulletin of the Seismological Society of America, 1980, 70(4): 1337-1346. [83] RONG Y, XU X, CHENG J, et al. A probabilistic seismic hazard model for Mainland China [J]. Earthquake Spectra, 2020, 36(1_suppl): 181-209. [84] KAGAN Y Y. Seismic moment distribution revisited: I. Statistical results[J]. Geophysical Journal International, 2002, 148(3): 520-541. [85] DANGKUA D T, RONG Y, MAGISTRALE H. Evaluation of NGA-West2 and Chinese Ground-Motion Prediction Equations for Developing Seismic Hazard Maps of Mainland Chi- naEvaluation of NGA-West2 and Chinese GMPEs for Developing Seismic Hazard Maps of Mainland China[J]. Bulletin of the Seismological Society of America, 2018, 108(5A): 2422- 2443. [86] ABRAHAMSON N A, SILVA W J, KAMAI R. Summary of the ASK14 ground motion relation for active crustal regions[J]. Earthquake Spectra, 2014, 30(3): 1025-1055. [87] BOORE D M, STEWART J P, SEYHAN E, et al. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes[J]. Earthquake Spectra, 2014, 30 (3): 1057-1085. [88] CAMPBELL K W, BOZORGNIA Y. NGA-West2 ground motion model for the average hor- izontal components of PGA, PGV, and 5% damped linear acceleration response spectra[J]. Earthquake Spectra, 2014, 30(3): 1087-1115. [89] CHIOU B S J, YOUNGS R R. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthquake Spectra, 2014, 30(3): 1117-1153. [90] 俞言祥, 李山有, 肖亮. 为新区划图编制所建立的地震动衰减关系[J]. 震灾防御技术, 2013 (24-33). |
所在学位评定分委会 | 力学
|
国内图书分类号 | P315.5
|
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/544149 |
专题 | 理学院_地球与空间科学系 |
推荐引用方式 GB/T 7714 |
欧阳博. 基于走滑断层级联破裂准则的地震危险性分析[D]. 深圳. 南方科技大学,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
12032840-欧阳博-地球与空间科学(49170KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[欧阳博]的文章 |
百度学术 |
百度学术中相似的文章 |
[欧阳博]的文章 |
必应学术 |
必应学术中相似的文章 |
[欧阳博]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论