[1] LIU J, XIE G, WANG J, et al. Deep Visual Anomaly Detection in Industrial Manufacturing: A Survey[A]. 2023.
[2] LI W, ZHAN J, WANG J, et al. Towards continual adaptation in industrial anomaly detection [C]//Proceedings of the 30th ACM International Conference on Multimedia. 2022: 2871-2880.
[3] ZHANG S, ZHANG L, XIE G, et al. What makes a good data augmentation for few-shot unsupervised image anomaly detection?[A]. 2023.
[4] XIE G, WANG J, LIU J, et al. Pushing the Limits of Fewshot Anomaly Detection in Industry Vision: Graphcore[A]. 2023.
[5] CHALAPATHY R, CHAWLA S. Deep learning for anomaly detection: A survey[A]. 2019.
[6] BULUSU S, KAILKHURA B, LI B, et al. Anomalous instance detection in deep learning: A survey[R]. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2020.
[7] PANG G, SHEN C, CAO L, et al. Deep learning for anomaly detection: A review[J]. ACM Computing Surveys (CSUR), 2021, 54(2): 1-38.
[8] RUFF L, KAUFFMANN J R, VANDERMEULEN R A, et al. A unifying review of deep and shallow anomaly detection[J]. Proceedings of the IEEE, 2021.
[9] SALEHI M, MIRZAEI H, HENDRYCKS D, et al. A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges[A]. 2021.
[10] CHO H, SEOL J, LEE S G. Masked Contrastive Learning for Anomaly Detection[A]. 2021.
[11] MAZIARKA L, SMIEJA M, SENDERA M, et al. OneFlow: One-class flow for anomaly detec- tion based on a minimal volume region[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
[12] YANG J, ZHOU K, LI Y, et al. Generalized out-of-distribution detection: A survey[A]. 2021.
[13] KONG S, SHEN Y, HUANG L. Resolving Training Biases via Influence-based Data Relabeling [C]//International Conference on Learning Representations. 2021.
[14] YOU Z, CUI L, SHEN Y, et al. A Unified Model for Multi-class Anomaly Detection[A]. 2022.
[15] ZHOU Z H. A brief introduction to weakly supervised learning[J]. National science review, 2018, 5(1): 44-53.
[16] YANG J, XU R, QI Z, et al. Visual Anomaly Detection for Images: A Survey[A]. 2021.
[17] LI C L, SOHN K, YOON J, et al. CutPaste: Self-Supervised Learning for Anomaly Detec- tion and Localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 9664-9674.
[18] SHEYNIN S, BENAIM S, WOLF L. A Hierarchical Transformation-Discriminating Genera- tive Model for Few Shot Anomaly Detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021: 8495-8504.
[19] ZAVRTANIK V, KRISTAN M, SKOČAJ D. DRAEM-A discriminatively trained reconstruc- tion embedding for surface anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 8330-8339.
[20] REISS T, COHEN N, BERGMAN L, et al. PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 2806-2814.
[21] SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 14902-14912.
[22] BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 4183-4192.
[23] YAN X, ZHANG H, XU X, et al. Learning Semantic Context from Normal Samples for Un- supervised Anomaly Detection[C]//Proceedings of the AAAI Conference on Artificial Intelli- gence: volume 35. 2021: 3110-3118.
[24] ZHOU K, XIAO Y, YANG J, et al. Encoding structure-texture relation with P-Net for anomaly detection in retinal images[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16. Springer, 2020: 360-377.
[25] DEHAENE D, FRIGO O, COMBREXELLE S, et al. Iterative energy-based projection on a normal data manifold for anomaly localization[C]//International Conference on Learning Rep- resentations. 2019.
[26] HOU J, ZHANG Y, ZHONG Q, et al. Divide-and-assemble: Learning block-wise memory for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 8791-8800.
[27] RUDOLPH M, WANDT B, ROSENHAHN B. Same same but differnet: Semi-supervised de- fect detection with normalizing flows[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021: 1907-1916.
[28] CHU W H, KITANI K M. Neural Batch Sampling with Reinforcement Learning for Semi- Supervised Anomaly Detection[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVI 16. Springer, 2020: 751-766.
[29] VENKATARAMANAN S, PENG K C, SINGH R V, et al. Attention guided anomaly localiza- tion in images[C]//European Conference on Computer Vision. Springer, 2020: 485-503.
[30] LIU J, WANG C, SU H, et al. Multistage GAN for fabric defect detection[J]. IEEE Transactions on Image Processing, 2019, 29: 3388-3400.
[31] SU J, SHEN H, PENG L, et al. Few-shot domain-adaptive anomaly detection for cross-site brain images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
[32] SINDAGI V A, SRIVASTAVA S. Domain adaptation for automatic OLED panel defect detection using adaptive support vector data description[J]. International Journal of Computer Vision, 2017, 122(2): 193-211.
[33] SIDDIQUEE M M R, ZHOU Z, TAJBAKHSH N, et al. Learning fixed points in generative adversarial networks: From image-to-image translation to disease detection and localization [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 191- 200.
[34] BHATTACHARYA G, MANDAL B, PUHAN N B. Interleaved Deep Artifacts-Aware Atten- tion Mechanism for Concrete Structural Defect Classification[J]. IEEE Transactions on Image Processing, 2021, 30: 6957-6969.
[35] YANG L, LI B, YANG G, et al. Deep neural network based visual inspection with 3d metric measurement of concrete defects using wall-climbing robot[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 2849-2854.
[36] ZENG Z, LIU B, FU J, et al. Reference-Based Defect Detection Network[J]. IEEE Transactions on Image Processing, 2021, 30: 6637-6647.
[37] LONG X, FANG B, ZHANG Y, et al. Fabric defect detection using tactile information[C]// 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 11169- 11174.
[38] LIS K, NAKKA K, FUA P, et al. Detecting the unexpected via image resynthesis[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 2152-2161.
[39] OBERDIEK P, ROTTMANN M, FINK G A. Detection and retrieval of out-of-distribution objects in semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020: 328-329.
[40] DI BIASE G, BLUM H, SIEGWART R, et al. Pixel-wise anomaly detection in complex driving scenes[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recogni- tion. 2021: 16918-16927.
[41] VOJIR T, ŠIPKA T, ALJUNDI R, et al. Road anomaly detection by partial image reconstruc- tion with segmentation coupling[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 15651-15660.
[42] KENDALL A, GAL Y. What uncertainties do we need in bayesian deep learning for computer vision?[J]. Advances in neural information processing systems, 2017, 30.
[43] RAMOS S, GEHRIG S, PINGGERA P, et al. Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling[C]//2017 IEEE Intelligent Vehicles Sym- posium (IV). IEEE, 2017: 1025-1032.
[44] GUPTA K, JAVED S A, GANDHI V, et al. Mergenet: A deep net architecture for small obstacle discovery[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 5856-5862.
[45] SUN L, YANG K, HU X, et al. Real-time fusion network for RGB-D semantic segmentation incorporating unexpected obstacle detection for road-driving images[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5558-5565.
[46] XUE F, MING A, ZHOU M, et al. A novel multi-layer framework for tiny obstacle discovery [C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 2939- 2945.
[47] CHAN R, LIS K, UHLEMEYER S, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation[A]. 2021.
[48] BARZ B, RODNER E, GARCIA Y G, et al. Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41: 1088-1101.
[49] CHANG Y, TU Z, XIE W, et al. Clustering Driven Deep Autoencoder for Video Anomaly Detection[C]//ECCV. 2020.
[50] GEORGESCU M I, IONESCU R T, KHAN F S, et al. A Background-Agnostic Framework with Adversarial Training for Abnormal Event Detection in Video.[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, PP.
[51] GONG D, LIU L, LE V, et al. Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection[J]. 2019 IEEE/CVF International Con- ference on Computer Vision (ICCV), 2019: 1705-1714.
[52] IONESCU R T, KHAN F S, GEORGESCU M I, et al. Object-Centric Auto-Encoders and Dummy Anomalies for Abnormal Event Detection in Video[J]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 7834-7843.
[53] JARDIM E, THOMAZ L A, DA SILVA E A B, et al. Domain-Transformable Sparse Repre- sentation for Anomaly Detection in Moving-Camera Videos[J]. IEEE Transactions on Image Processing, 2020, 29: 1329-1343.
[54] LI X, CHEN M, WANG Q. Quantifying and Detecting Collective Motion in Crowd Scenes[J]. IEEE Transactions on Image Processing, 2020, 29: 5571-5583.
[55] LUO W, LIU W, LIAN D, et al. Future Frame Prediction Network for Video Anomaly Detection. [J]. IEEE transactions on pattern analysis and machine intelligence, 2021, PP.
[56] MARKOVITZ A, SHARIR G, FRIEDMAN I, et al. Graph Embedded Pose Clustering for Anomaly Detection[J]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni- tion (CVPR), 2020: 10536-10544.
[57] MORAIS R, LE V, TRAN T, et al. Learning Regularity in Skeleton Trajectories for Anomaly Detection in Videos[J]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog- nition (CVPR), 2019: 11988-11996.
[58] PANG G, YAN C, SHEN C, et al. Self-Trained Deep Ordinal Regression for End-to-End Video Anomaly Detection[J]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni- tion (CVPR), 2020: 12170-12179.
[59] PARK H, NOH J, HAM B. Learning Memory-Guided Normality for Anomaly Detection [J]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 14360-14369.
[60] SABOKROU M, FAYYAZ M, FATHY M, et al. Deep-Cascade: Cascading 3D Deep Neural Networks for Fast Anomaly Detection and Localization in Crowded Scenes[J]. IEEE Transac- tions on Image Processing, 2017, 26: 1992-2004.
[61] BAPPY J H, PAUL S, TUNCEL E, et al. Exploiting Typicality for Selecting Informative and Anomalous Samples in Videos[J]. IEEE Transactions on Image Processing, 2019, 28: 5214- 5226.
[62] YAO Y, XU M, WANG Y, et al. Unsupervised Traffic Accident Detection in First-Person Videos [J]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019: 273-280.
[63] LIU Z, NIE Y, LONG C, et al. A Hybrid Video Anomaly Detection Framework via Memory- Augmented Flow Reconstruction and Flow-Guided Frame Prediction: abs/2108.06852[A]. 2021.
[64] LUO W, LIU W, LIAN D, et al. Video Anomaly Detection with Sparse Coding Inspired Deep Neural Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43: 1070-1084.
[65] LIU W, LUO W, LI Z, et al. Margin Learning Embedded Prediction for Video Anomaly De- tection with A Few Anomalies[C]//IJCAI. 2019.
[66] LV H, ZHOU C, CUI Z, et al. Localizing Anomalies From Weakly-Labeled Videos[J]. IEEE Transactions on Image Processing, 2021, 30: 4505-4515.
[67] PURWANTO D, CHEN Y T, FANG W H. Dance With Self-Attention: A New Look of Con- ditional Random Fields on Anomaly Detection in Videos[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 173-183.
[68] SULTANI W, CHEN C, SHAH M. Real-World Anomaly Detection in Surveillance Videos[J]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6479-6488.
[69] TIAN Y, PANG G, CHEN Y, et al. Weakly-supervised video anomaly detection with robust temporal feature magnitude learning[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 4975-4986.
[70] WU J, ZHANG W, LI G, et al. Weakly-Supervised Spatio-Temporal Anomaly Detection in Surveillance Video[C]//IJCAI. 2021.
[71] WU P, LIU J. Learning Causal Temporal Relation and Feature Discrimination for Anomaly Detection[J]. IEEE Transactions on Image Processing, 2021, 30: 3513-3527.
[72] ZAHEER M, MAHMOOD A, ASTRID M, et al. CLAWS: Clustering Assisted Weakly Super- vised Learning with Normalcy Suppression for Anomalous Event Detection[C]//ECCV. 2020.
[73] ZHONG J X, LI N, KONG W, et al. Graph Convolutional Label Noise Cleaner: Train a Plug- And-Play Action Classifier for Anomaly Detection[J]. 2019 IEEE/CVF Conference on Com- puter Vision and Pattern Recognition (CVPR), 2019: 1237-1246.
[74] LEYVA R, SANCHEZ V, LI C T. Video Anomaly Detection With Compact Feature Sets for Online Performance[J]. IEEE Transactions on Image Processing, 2017, 26: 3463-3478.
[75] LI J, HUANG Q, DU Y, et al. Variational Abnormal Behavior Detection With Motion Consis- tency[J]. IEEE Transactions on Image Processing, 2022, 31: 275-286.
[76] LIU W, LUO W, LIAN D, et al. Future Frame Prediction for Anomaly Detection - A New Baseline[J]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6536-6545.
[77] LUO W, LIU W, GAO S. A Revisit of Sparse Coding Based Anomaly Detection in Stacked RNN Framework[J]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 341-349.
[78] LU C, SHI J, WANG W, et al. Fast Abnormal Event Detection[J]. International Journal of Computer Vision, 2018: 1-19.
[79] LIZNERSKI P, RUFF L, VANDERMEULEN R A, et al. Explainable deep one-class classifi- cation[A]. 2020.
[80] BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD–A comprehensive real- world dataset for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF Confer- ence on Computer Vision and Pattern Recognition. 2019: 9592-9600.
[81] BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 4183-4192.
[82] YAMADA S, HOTTA K. Reconstruction Student with Attention for Student-Teacher Pyramid Matching[A]. 2021.
[83] SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 14902-14912.
[84] WANG G, HAN S, DING E, et al. Student-Teacher Feature Pyramid Matching for Anomaly Detection[C]//BMVC. 2021.
[85] DENG H, LI X. Anomaly Detection via Reverse Distillation from One-Class Embedding[A]. 2022.
[86] RUDOLPH M, WANDT B, ROSENHAHN B. Same same but differnet: Semi-supervised de- fect detection with normalizing flows[C]//Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2021: 1907-1916.
[87] YU J, ZHENG Y, WANG X, et al. Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows[A]. 2021.
[88] RUDOLPH M, WEHRBEIN T, ROSENHAHN B, et al. Fully convolutional cross-scale-flows for image-based defect detection[C]//Proceedings of the IEEE/CVF Winter Conference on Ap- plications of Computer Vision. 2022: 1088-1097.
[89] GUDOVSKIY D, ISHIZAKA S, KOZUKA K. Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022: 98-107.
[90] COHEN N, HOSHEN Y. Sub-image anomaly detection with deep pyramid correspondences [A]. 2020.
[91] LI N, JIANG K, MA Z, et al. Anomaly Detection Via Self-Organizing Map[C]//2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021: 974-978.
[92] KIM J H, KIM D H, YI S, et al. Semi-orthogonal embedding for efficient unsupervised anomaly segmentation[A]. 2021.
[93] DEFARD T, SETKOV A, LOESCH A, et al. Padim: a patch distribution modeling framework for anomaly detection and localization[C]//International Conference on Pattern Recognition. Springer, 2021: 475-489.
[94] ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection [A]. 2021.
[95] LEE S, LEE S, SONG B C. CFA: Coupled-hypersphere-based Feature Adaptation for Target- Oriented Anomaly Localization[A]. 2022.
[96] SOHN K, LI C L, YOON J, et al. Learning and Evaluating Representations for Deep One-Class Classification[C]//International Conference on Learning Representations. 2020.
[97] MASSOLI F V, FALCHI F, KANTARCI A, et al. MOCCA: Multilayer One-Class Classification for Anomaly Detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021.
[98] YI J, YOON S. Patch svdd: Patch-level svdd for anomaly detection and segmentation[C]// Proceedings of the Asian Conference on Computer Vision. 2020.
[99] HU C, CHEN K, SHAO H. A Semantic-Enhanced Method Based On Deep SVDD for Pixel- Wise Anomaly Detection[C]//2021 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2021: 1-6.
[100] SAUTER D, SCHMITZ A, DIKICI F, et al. Defect Detection of Metal Nuts Applying Convo- lutional Neural Networks[C]//2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, 2021: 248-257.
[101] REISST,COHENN,BERGMANL,etal.PANDA:AdaptingPretrainedFeaturesforAnomaly Detection and Segmentation[J]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 2805-2813.
[102] LI C L, SOHN K, YOON J, et al. Cutpaste: Self-supervised learning for anomaly detection and localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 9664-9674.
[103] YANGJ,SHIY,QIZ.Dfr:Deepfeaturereconstructionforunsupervisedanomalysegmentation [A]. 2020.
[104] ZAVRTANIK V, KRISTAN M, SKOČAJ D. Draem-a discriminatively trained reconstruction embedding for surface anomaly detection[C]//Proceedings of the IEEE/CVF International Con- ference on Computer Vision. 2021: 8330-8339.
[105] LIANG Y, ZHANG J, ZHAO S, et al. Omni-frequency Channel-selection Representations for Unsupervised Anomaly Detection[A]. 2022.
[106] BERGMANNP,FAUSERM,SATTLEGGERD,etal.MVTecAD—AComprehensiveReal- World Dataset for Unsupervised Anomaly Detection[J]. 2019 IEEE/CVF Conference on Com- puter Vision and Pattern Recognition (CVPR), 2019: 9584-9592.
[107] BERGMANN P, BATZNER K, FAUSER M, et al. The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection[J]. International Journal of Computer Vision, 2021, 129(4): 1038-1059.
[108] BERGMANN P, JIN X, SATTLEGGER D, et al. The mvtec 3d-ad dataset for unsupervised 3d anomaly detection and localization[A]. 2021.
[109] BERGMANN P, BATZNER K, FAUSER M, et al. Beyond Dents and Scratches: Logical Con- straints in Unsupervised Anomaly Detection and Localization[J]. International Journal of Com- puter Vision, 2022, 130(4): 947-969.
[110] JEZEK S, JONAK M, BURGET R, et al. Deep learning-based defect detection of metal parts:evaluating current methods in complex conditions[C]//2021 13th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE, 2021:66-71.
[111] MISHRA P, VERK R, FORNASIER D, et al. VT-ADL: A vision transformer network for imageanomaly detection and localization[C]//2021 IEEE 30th International Symposium on IndustrialElectronics (ISIE). IEEE, 2021: 01-06.
[112] ZOU Y, JEONG J, PEMULA L, et al. SPot-the-Diference Self-supervised Pre-training forAnomaly Detection and Segmentation[C]//Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXX. Springer, 2022: 392-408.
[113] HUANG Y, QIU C, YUAN K. Surface defect saliency of magnetic tile[J]. The Visual Computer,2020, 36(1): 85-96.
[114] DAGM (DEUTSCHE ARBEITSGEMEINSCHAFT FüR MUSTERERKENNUNG E.V.G C O T I I A F P R, THE GNSS (GERMAN CHAPTER OF THE EUROPEAN NEURALNETWORK SOCIETY). DAGM dataset[EB/OL]. 2000. http://www.thisisurl/.
[115] BAO T, CHEN J, LI W, et al. MIAD: A Maintenance Inspection Dataset for UnsupervisedAnomaly Detection[A]. 2022.
[116] NDIOUR I, AHUJA N, GENC U, et al. FRE: A Fast Method For Anomaly Detection AndSegmentation[A]. 2022.
[117] HU Z, YANG Z, HU X, et al. SimPLE: Similar Pseudo Label Exploitation for Semi-SupervisedClassifcation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition (CVPR). 2021: 15099-15108.
[118] SOHN K, BERTHELOT D, CARLINI N, et al. Fixmatch: Simplifying semi-supervised learningwith consistency and confdence[J]. Advances in Neural Information Processing Systems, 2020,33: 596-608.
[119] LI J, SOCHER R, HOI S C. Dividemix: Learning with noisy labels as semi-supervised learning[A]. 2020.
[120] XU M, ZHANG Z, HU H, et al. End-to-end semi-supervised object detection with soft teacher[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 3060-3069.
[121] LIU Y C, MA C Y, HE Z, et al. Unbiased teacher for semi-supervised object detection[A]. 2021.
[122] YANG F, WU K, ZHANG S, et al. Class-Aware Contrastive Semi-Supervised Learning[A].2022.
[123] PETERSON L E. K-nearest neighbor[J]. Scholarpedia, 2009, 4(2): 1883.
[124] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD international conference on Management of data.2000: 93-104.
[125] BERGMANN P, LÖWE S, FAUSER M, et al. Improving unsupervised defect segmentation byapplying structural similarity to autoencoders[A]. 2018.
[126] COLLIN A S, DE VLEESCHOUWER C. Improved anomaly detection by training an autoencoder with skip connections on images corrupted with stain-shaped noise[C]//2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021: 7915-7922.
[127] KINGMA D P, WELLING M. Auto-encoding variational bayes[A]. 2013.
[128] LIU W, LI R, ZHENG M, et al. Towards visually explaining variational autoencoders[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:8642-8651.
[129] AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. Ganomaly: Semi-supervisedanomaly detection via adversarial training[C]//Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers,Part III 14. Springer, 2019: 622-637.
[130] PERERA P, NALLAPATI R, XIANG B. Ocgan: One-class novelty detection using gans withconstrained latent representations[C]//Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition. 2019: 2898-2906.
[131] SABOKROU M, KHALOOEI M, FATHY M, et al. Adversarially learned one-class classiferfor novelty detection[C]//Proceedings of the IEEE conference on computer vision and patternrecognition. 2018: 3379-3388.
[132] ZHOU K, XIAO Y, YANG J, et al. Encoding structure-texture relation with p-net for anomalydetection in retinal images[C]//Computer Vision–ECCV 2020: 16th European Conference,Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16. Springer, 2020: 360-377.
[133] SHI Y, YANG J, QI Z. Unsupervised anomaly segmentation via deep feature reconstruction[J].Neurocomputing, 2021, 424: 9-22.
[134] XIA Y, ZHANG Y, LIU F, et al. Synthesize then compare: Detecting failures and anomalies for semantic segmentation[C]//Computer Vision–ECCV 2020: 16th European Conference,Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16. Springer, 2020: 145-161.
[135] GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: Memory-augmenteddeep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 1705-1714.
[136] HOU J, ZHANG Y, ZHONG Q, et al. Divide-and-assemble: Learning block-wise memory forunsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference onComputer Vision. 2021: 8791-8800.
[137] PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020:14372-14381.
[138] DEHAENE D, FRIGO O, COMBREXELLE S, et al. Iterative energy-based projection on anormal data manifold for anomaly localization[A]. 2020.
[139] YAN X, ZHANG H, XU X, et al. Learning semantic context from normal samples for unsupervised anomaly detection[C]//Proceedings of the AAAI Conference on Artifcial Intelligence:volume 35. 2021: 3110-3118.
[140] SCHWARTZ E, ARBELLE A, KARLINSKY L, et al. MAEDAY: MAE for few and zero shotAnomalY-Detection[A]. 2022.
[141] POURREZA M, MOHAMMADI B, KHAKI M, et al. G2d: Generate to detect anomaly[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021:2003-2012.
[142] PARK J J, FLORENCE P, STRAUB J, et al. Deepsdf: Learning continuous signed distancefunctions for shape representation[C]//Proceedings of the IEEE/CVF conference on computervision and pattern recognition. 2019: 165-174.
[143] LI M, PATIL A G, XU K, et al. Grains: Generative recursive autoencoders for indoor scenes[J]. ACM Transactions on Graphics (TOG), 2019, 38(2): 1-16.
[144] SITZMANN V, MARTEL J N P, BERGMAN A W, et al. Implicit Neural Representations withPeriodic Activation Functions[J]. Neural Information Processing Systems, 2020.
[145] LINDELL D B, VAN VEEN D, PARK J J, et al. Bacon: Band-limited coordinate networksfor multiscale scene representation[C]//Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition. 2022: 16252-16262.
[146] DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]//2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009: 248-255.
[147] TAN M, LE Q. Effcientnet: Rethinking model scaling for convolutional neural networks[C]//International conference on machine learning. PMLR, 2019: 6105-6114.
[148] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances inneural information processing systems, 2017, 30.
[149] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. Nerf: Representing scenes as neuralradiance felds for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106.
[150] MEHTA I, GHARBI M, BARNES C, et al. Modulated periodic activations for generalizablelocal functional representations[C]//Proceedings of the IEEE/CVF International Conference onComputer Vision. 2021: 14214-14223.
修改评论