[1] PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high performance deep learning library[J]. Advances in Neural Information Processing Systems, 2019, 32
[2] TOWNSHEND R J, EISMANN S, WATKINS A M, et al. Geometric deep learning of RNA structure[J]. Science, 2021, 373(6558): 1047-1051.
[3] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
[4] TUNYASUVUNAKOOL K, ADLER J, WU Z, et al. Highly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873): 590-596.
[5] CALDEIRA J, WU W K, NORD B, et al. DeepCMB: Lensing reconstruction of the cosmic microwave background with deep neural networks[J]. Astronomy and Computing, 2019, 28: 100307.
[6] WAHL C B, AYKOL M, SWISHER J H, et al. Machine learning–accelerated design and synthesis of polyelemental heterostructures[J]. Science Advances, 2021, 7(52): eabj5505.
[7] SUN W B, ZHENG Y J, YANG K, et al. Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials[J]. Science Advances, 2019, 5(11)
[8] KONG S, RICCI F, GUEVARRA D, et al. Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings[J]. Nature Communications, 2022, 13(1): 949.
[9] LIU C, FUJITA E, KATSURA Y, et al. Machine learning to predict quasicrystals from chemical compositions[J]. Advanced Materials, 2021, 33(36): 2102507.
[10] DIJKSTRA M, LUIJTEN E. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly[J]. Nature Materials, 2021, 20(6): 762-773.
[11] AHNEMAN D T, ESTRADA J G, LIN S, et al. Predicting reaction performance in C–N cross-coupling using machine learning[J]. Science, 2018, 360(6385): 186-190.
[12] REID J P, SIGMAN M S. Holistic prediction of enantioselectivity in asymmetric catalysis[J]. Nature, 2019, 571(7765): 343-348.
[13] ZAHRT A F, HENLE J J, ROSE B T, et al. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[J]. Science, 2019, 363(6424): eaau5631.
[14] DE ALMEIDA A F, MOREIRA R, RODRIGUES T. Synthetic organic driven by artificial intelligence[J]. Nature Reviews Chemistry, 2019, 3(10): 589-604.
[15] SCHWALLER P, VAUCHER A C, LAINO T, et al. Prediction of chemical reaction yields using deep learning[J]. Machine Learning: Science and Technology, 2021, 2(1): 015016.
[16] SINGH S, PAREEK M, CHANGOTRA A, et al. A unified machine-learning protocol for asymmetric catalysis as a proof of concept demonstration using asymmetric hydrogenation[J]. Proceedings of the National Academy of Sciences, 2020, 117(3): 1339-1345.
[17] GUAN Y, COLEY C W, WU H, et al. Regio-selectivity prediction with a machine learned reaction representation and on-the-fly quantum mechanical descriptors[J]. Chemical Science, 2021, 12(6): 2198-2208.
[18] GAO H, STRUBLE T J, COLEY C W, et al. Using machine learning to predict suitable conditions for organic reactions[J]. ACS Central Science, 2018, 4(11): 1465-1476.
[19] SHIELDS B J, STEVENS J, LI J, et al. Bayesian reaction optimization as a tool for chemical synthesis[J]. Nature, 2021, 590(7844): 89-96.
[20] LIU B, RAMSUNDAR B, KAWTHEKAR P, et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models[J]. ACS Central Science, 2017, 3(10): 1103-1113.
[21] ZHANG P, EUN J, ELKIN M, et al. A neural network model informs the total synthesis of clovane sesquiterpenoids[J]. Nature Synthesis, 2023: 1-8.
[22] BROCKHERDE F, VOGT L, LI L, et al. Bypassing the Kohn-Sham equations with machine learning[J]. Nature Communications, 2017, 8(1): 872.
[23] PFAU D, SPENCER J S, MATTHEWS A G, et al. Ab initio solution of the many electron Schrödinger equation with deep neural networks[J]. Physical Review Research, 2020, 2(3): 033429.
[24] KIRKPATRICK J, MCMORROW B, TURBAN D H, et al. Pushing the frontiers of density functionals by solving the fractional electron problem[J]. Science, 2021, 374(6573): 1385-1389.
[25] PEDERSON R, KALITA B, BURKE K. Machine learning and density functional theory[J]. Nature Reviews Physics, 2022, 4(6): 357-358.
[26] SANDFORT F, STRIETH-KALTHOFF F, KUHNEMUND M, et al. A Structure-Based Platform for Predicting Chemical Reactivity[J]. Chem, 2020, 6(6): 1379-1390.
[27] MARYASIN B, MARQUETAND P, MAULIDE N. Machine Learning for Organic Synthesis: Are Robots Replacing Chemists?[J]. Angewandte Chemie-International Edition, 2018, 57(24): 6978-6980.
[28] SANTANILLA A B, REGALADO E L, PEREIRA T, et al. Nanomole-scale high throughput chemistry for the synthesis of complex molecules[J]. Science, 2015, 347(6217): 49-53.
[29] SELEKMAN J A, QIU J, TRAN K, et al. High-Throughput Automation in Process Development[J]. Annual Review of Chemical and Biomolecular Engineering, Vol 8, 2017, 8: 525-547.
[30] WARR W A. A short review of chemical reaction database systems, computer‐aided synthesis design, reaction prediction and synthetic feasibility[J]. Molecular Informatics, 2014, 33(6‐7): 469-476.
[31] KRAUT H, EIBLMAIER J, GRETHE G, et al. Algorithm for reaction classification[J]. Journal of Chemical Information and Modeling, 2013, 53(11): 2884-2895.
[32] CHEN L R, GASTEIGER J. Knowledge discovery in reaction databases: Landscaping organic reactions by a self-organizing neural network[J]. Journal of the American Chemical Society, 1997, 119(17): 4033-4042.
[33] ENGKVIST O, NORRBY P-O, SELMI N, et al. Computational prediction of chemical reactions: current status and outlook[J]. Drug Discovery Today, 2018, 23(6): 1203-1218.
[34] LOWE D M. Extraction of chemical structures and reactions from the literature[D]. University of Cambridge, 2012.
[35] DUGUNDJI J, UGI I. An algebraic model of constitutional chemistry as a basis for chemical computer programs[M]. Computers in Chemistry. Springer. 2006: 19-64.
[36] SCHNEIDER N, LOWE D M, SAYLE R A, et al. Development of a Novel Fingerprint for Chemical Reactions and Its Application to Large-Scale Reaction Classification and Similarity[J]. Journal of Chemical Information and Modeling, 2015, 55(1): 39-53.
[37] CHEN L, GASTEIGER J. Organic reactions classified by neural networks: Michael additions, Friedel-Crafts alkylations by alkenes, and related reactions[J]. Angewandte Chemie-International Edition in English, 1996, 35(7): 763-765.
[38] SATOH H, SACHER O, NAKATA T, et al. Classification of organic reactions: Similarity of reactions based on changes in the electronic features of oxygen atoms at the reaction sites[J]. Journal of Chemical Information and Computer Sciences, 1998, 38(2): 210-219.
[39] ÖZTüRK H, ÖZGüR A, SCHWALLER P, et al. Exploring chemical space using natural language processing methodologies for drug discovery[J]. Drug Discovery Today, 2020, 25(4): 689-705.
[40] SCHWALLER P, PETRAGLIA R, ZULLO V, et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy[J]. Chemical Science, 2020, 11(12): 3316-3325.
[41] JORNER K, BRINCK T, NORRBY P-O, et al. Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies[J]. Chemical Science, 2021, 12(3): 1163-1175.
[42] AGRAWAL A, CHOUDHARY A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science[J]. APL Materials, 2016, 4(5): 053208
[43] VON LILIENFELD O A, BURKE K. Retrospective on a decade of machine learning for chemical discovery[J]. Nature Communications, 2020, 11(1): 4895.
[44] KUNTZ D, WILSON A K. Machine learning, artificial intelligence, and chemistry: how smart algorithms are reshaping simulation and the laboratory[J]. Pure and Applied Chemistry, 2022, 94(8): 1019-1054.
[45] BAUM Z J, YU X, AYALA P Y, et al. Artificial Intelligence in Chemistry: Current Trends and Future Directions[J]. Journal of Chemical Information and Modeling, 2021, 61(7): 3197-3212.
[46] MA J S, SHERIDAN R P, LIAW A, et al. Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships[J]. Journal of Chemical Information and Modeling, 2015, 55(2): 263-274.
[47] BéDARD A-C, ADAMO A, AROH K C, et al. Reconfigurable system for automated optimization of diverse chemical reactions[J]. Science, 2018, 361(6408): 1220-1225.
[48] PERERA D, TUCKER J W, BRAHMBHATT S, et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow[J]. Science, 2018, 359(6374): 429-434.
[49] SCHWALLER P, LAINO T, GAUDIN T, et al. Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction[J]. ACS Central Science, 2019, 5(9): 1572-1583.
[50] SCHWALLER P, HOOVER B, REYMOND J-L, et al. Extraction of organic chemistry grammar from unsupervised learning of chemical reactions[J]. Science Advances, 2021, 7(15): eabe4166.
[51] FLAM-SHEPHERD D, ZHU K, ASPURU-GUZIK A. Language models can learn complex molecular distributions[J]. Nature Communications, 2022, 13(1): 3293.
[52] SCHWALLER P, PROBST D, VAUCHER A C, et al. Mapping the space of chemical reactions using attention-based neural networks[J]. Nature Machine Intelligence, 2021, 3(2): 144-152.
[53] PEREIRA F, XIAO K X, LATINO D, et al. Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals[J]. Journal of Chemical Information and Modeling, 2017, 57(1): 11-21.
[54] MULLIN R. The lab of the future is now[J]. Chem Eng News, 2021, 99(11): 28.
[55] CORTéS-BORDA D, WIMMER E, GOUILLEUX B, et al. An autonomous self optimizing flow reactor for the synthesis of natural product carpanone[J]. The Journal of Organic Chemistry, 2018, 83(23): 14286-14299.
[56] GRANDA J M, DONINA L, DRAGONE V, et al. Controlling an organic synthesis robot with machine learning to search for new reactivity[J]. Nature, 2018, 559(7714): 377-381.
[57] COLEY C W, THOMAS III D A, LUMMISS J A, et al. A robotic platform for flow synthesis of organic compounds informed by AI planning[J]. Science, 2019, 365(6453)eaax1566.
[58] ZHAO H, CHEN W, HUANG H, et al. A robotic platform for the synthesis of colloidal nanocrystals[J]. Nature Synthesis, 2023: 1-10.
[59] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
[60] HAND D J, YU K. Idiot's Bayes—not so stupid after all?[J]. International Statistical Review, 2001, 69(3): 385-398.
[61] VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[J]. Advances in Neural Information Processing Systems 30 (Nips 2017), 2017, 30
[62] DEVLIN J, CHANG M-W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:181004805, 2018
[63] LAN Z, CHEN M, GOODMAN S, et al. Albert: A lite bert for self-supervised learning of language representations[J]. arXiv preprint arXiv:190911942, 2019
[64] HELLER S, MCNAUGHT A, STEIN S, et al. InChI-the worldwide chemical structure identifier standard[J]. Journal of Cheminformatics, 2013, 5(1): 1-9.
[65] HELLER S R, MCNAUGHT A, PLETNEV I, et al. InChI, the IUPAC international chemical identifier[J]. Journal of Cheminformatics, 2015, 7(1): 1-34.
[66] WEININGER D. SMILES, A CHEMICAL LANGUAGE AND INFORMATION SYSTEM .1. INTRODUCTION TO METHODOLOGY AND ENCODING RULES[J]. Journal of Chemical Information and Computer Sciences, 1988, 28(1): 31-36.
[67] WEININGER D, WEININGER A, WEININGER J L. SMILES .2. ALGORITHM FOR GENERATION OF UNIQUE SMILES NOTATION[J]. Journal of Chemical Information and Computer Sciences, 1989, 29(2): 97-101.
[68] JELIAZKOVA N, KOCHEV N. AMBIT‐SMARTS: Efficient Searching of Chemical Structures and Fragments[J]. Molecular Informatics, 2011, 30(8): 707-720.
[69] ROGERS D, HAHN M. Extended-Connectivity Fingerprints[J]. Journal of Chemical Information and Modeling, 2010, 50(5): 742-754.
[70] WIGH D S, GOODMAN J M, LAPKIN A A. A review of molecular representation in the age of machine learning[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12(5): e1603.
[71] XU Z, WANG S, ZHU F Y, et al. Seq2seq Fingerprint: An Unsupervised Deep Molecular Embedding for Drug Discovery[J]. Acm-Bcb' 2017: Proceedings of the 8th Acm International Conference on Bioinformatics, Computational Biology,and Health Informatics, 2017: 285-294.
[72] WINTER R, MONTANARI F, NOE F, et al. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations[J]. Chemical Science, 2019, 10(6): 1692-1701.
[73] WANG S, GUO Y Z, WANG Y H, et al. SMILES-BERT: Large Scale Pre-Training for Molecular Property Prediction[J]. Acm-Bcb'19: Proceedings of the 10th Acm International Conference on Bioinformatics, Computational Biology and Health Informatics, 2019: 429-436.
[74] COLEY C W, GREEN W H, JENSEN K F. Machine learning in computer-aided synthesis planning[J]. Accounts of Chemical Research, 2018, 51(5): 1281-1289.
[75] COLEY C W, GREEN W H, JENSEN K F. RDChiral: An RDKit Wrapper for Handling Stereochemistry in Retrosynthetic Template Extraction and Application[J]. Journal of Chemical Information and Modeling, 2019, 59(6): 2529-2537.
[76] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[77] CHO K, VAN MERRIëNBOER B, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-decoder approaches[J]. arXiv preprint arXiv:14091259, 2014
[78] CHO K, VAN MERRIëNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:14061078, 2014
[79] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv:14123555, 2014
修改评论