中文版 | English
题名

成对外尔—狄拉克拓扑声子材料的第一性原理研究

其他题名
FIRST-PRINCIPLES STUDY OF PAIRED WEYL— DIRAC TOPOLOGICAL PHONON MATERIALS
姓名
姓名拼音
WU Peng
学号
12032022
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
徐虎
导师单位
物理系
论文答辩日期
2023-05-27
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

拓扑量子材料因其非凡的拓扑特性和广泛的潜在应用而备受研究者关注。这
些材料表现出的表面态具有鲁棒性,为当前亟待解决的电子器件中热损耗以及自
旋电子学中的长程信息传输等问题提供了潜在的解决方案。近几十年来,拓扑物
理学的研究范围不断拓展,从有能隙的拓扑绝缘体到无能隙的拓扑半金属,从拓
扑电子材料到拓扑声子材料以及人工制造的声子晶体和光子晶体材料。基于第一
性原理的软件包迭代升级以及计算芯片的进步,我们可以进行大范围的搜索计算,
提供众多的候选材料以供实验者去验证,这为拓扑物态在实际应用中的进一步发
展提供了极大的便利。
双外尔拓扑声子态,是近年来备受瞩目的一类特殊准粒子,因为它们都拥有
±2 的拓扑电荷。在本文中,我们聚焦于其中的两个:两重简并的 charge-2 Weyl 点
和四重简并的 charge-2 Dirac 点。通过构建最小晶格模型,我们不仅验证了这两种
特殊准粒子可以在 92 号和 96 号手性空间群中成对出现,而且允许以最小数量的
成对情形来展现系统的拓扑性质,即整个布里渊区只有一个 charge-2 Weyl 点和一
个 charge-2 Dirac 点。通过计算 wannier charge center,我们证实了这两种准粒子具
有相反的拓扑电荷。通过研究 (010) 和 (001) 面的投影表面态,我们发现连接两个
投影点的表面态像一条长链一样穿越了整个布里渊区。起始点和终端交替进行,进
一步对频率的切片观察证实了其马鞍状色散的特性。我们使用 𝑘 ⋅ 𝑝 方法构建了有
效的哈密顿模型,并确认了这两种准粒子都受到 𝐷4 的点群保护。基于第一性原理
的计算,我们预测了 9 种材料都支持两类准粒子的成对情形,且这些材料的拓扑
表现都与我们的理论分析相一致。为了探究对称性变化对成对系统拓扑特征的影
响,我们研究了高拓扑电荷的 charge-2 Weyl 点和 charge-2 Dirac 点在对称性破缺后
分裂为多个单外尔点的过程,并进行了详细分析。我们的预测为实验探测新奇的
双外尔拓扑声子态提供了新的材料候选项,有望于推动拓扑物态在现实生活中的
进一步应用。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of thefine-structure constant based on quantized Hall resistance[J]. Physical Review Letters, 1980,45: 494-497.
[2] BASSANI G F, LIEDL G L, WYDER P. Encyclopedia of condensed matter physics[M]. Amsterdam Boston: Elsevier, 2005.
[3] TSUI D C, STORMER H L, GOSSARD A C. Two-dimensional magnetotransport in the extremequantum limit[J]. Physical Review Letters, 1982, 48: 1559-1562.
[4] LAUGHLIN R B. Quantized Hall conductivity in two dimensions[J]. Physical Review B, 1981,23: 5632-5633.
[5] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized Hall conductance ina two-dimensional periodic potential[J]. Physical Review Letters, 1982, 49: 405-408.
[6] LAUGHLIN R B. Anomalous quantum Hall effect: an incompressible quantum fluid withfractionally charged excitations[J]. Physical Review Letters, 1983, 50: 1395-1398.
[7] LIU C X, ZHANG S C, QI X L. The quantum anomalous Hall effect: theory and experiment[J]. Annual Review of Condensed Matter Physics, 2016, 7(1): 301-321.
[8] HALDANE F D M. Model for a quantum Hall effect without Landau levels: condensed-matterrealization of the ”parity anomaly”[J]. Physical Review Letters, 1988, 61: 2015-2018.
[9] LIU C X, QI X L, DAI X, et al. Quantum anomalous Hall effect in Hg1−𝑦Mn𝑦Te quantum wells[J]. Physical Review Letters, 2008, 101: 146802.
[10] YU R, ZHANG W, ZHANG H J, et al. Quantized anomalous Hall effect in magnetic topologicalinsulators[J]. Science, 2010, 329(5987): 61-64.
[11] CHANG C Z, ZHANG J, FENG X, et al. Experimental observation of the quantum anomalousHall effect in a magnetic topological insulator[J]. Science, 2013, 340(6129): 167-170.
[12] CHEN H, NIU Q, MACDONALD A H. Anomalous Hall effect arising from noncollinear antiferromagnetism[J]. Physical Review Letters, 2014, 112: 017205.
[13] HASAN M Z, KANE C L. Colloquium: Topological insulators[J]. Reviews of Modern Physics,2010, 82: 3045-3067.
[14] KANE C L, MELE E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters,2005, 95: 226801.
[15] KANE C L, MELE E J. 𝑍2 topological order and the quantum spin Hall effect[J]. PhysicalReview Letters, 2005, 95: 146802.
[16] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin Hall effect and topological phasetransition in HgTe quantum wells[J]. Science, 2006, 314(5806): 1757-1761.
[17] KöNIG M, WIEDMANN S, BRüNE C, et al. Quantum spin Hall insulator state in HgTe quantumwells[J]. Science, 2007, 318(5851): 766-770
[18] ZHANG H, LIU C X, QI X L, et al. Topological insulators in 𝐵𝑖2𝑆𝑒3, 𝐵𝑖2𝑇𝑒3 and 𝑆𝑏2𝑇𝑒3 witha single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.
[19] ZHANG Y, HE K, CHANG C Z, et al. Crossover of the three-dimensional topological insulator𝐵𝑖2𝑆𝑒3 to the two-dimensional limit[J]. Nature Physics, 2010, 6(8): 584-588.
[20] LIU C X, QI X L, ZHANG H, et al. Model Hamiltonian for topological insulators[J]. PhysicalReview B, 2010, 82: 045122.
[21] CHEN Y L, ANALYTIS J G, CHU J H, et al. Experimental realization of a three-Dimensionaltopological insulator, Bi2Te3[J]. Science, 2009, 325(5937): 178-181.
[22] WENG H, DAI X, FANG Z. Topological semimetals predicted from first-principles calculations[J]. Journal of Physics: Condensed Matter, 2016, 28(30): 303001.
[23] WANG Z, SUN Y, CHEN X Q, et al. Dirac semimetal and topological phase transitions in 𝐴3Bi(𝐴 = Na, K, Rb)[J]. Physical Review B, 2012, 85: 195320.
[24] XU S Y, LIU C, KUSHWAHA S K, et al. Observation of Fermi arc surface states in a topologicalmetal[J]. Science, 2015, 347(6219): 294-298.
[25] LIU Z K, ZHOU B, ZHANG Y, et al. Discovery of a three-dimensional topological Diracsemimetal, Na3Bi[J]. Science, 2014, 343(6173): 864-867.
[26] LIANG T, GIBSON Q, ALI M N, et al. Ultrahigh mobility and giant magnetoresistance in theDirac semimetal 𝐶𝑑3𝐴𝑠2[J]. Nature Materials, 2015, 14(3): 280-284.
[27] YOUNG S M, ZAHEER S, TEO J C Y, et al. Dirac semimetal in three dimensions[J]. PhysicalReview Letters, 2012, 108: 140405.
[28] WANG Z, WENG H, WU Q, et al. Three-dimensional Dirac semimetal and quantum transportin 𝐶𝑑3𝐴𝑠2[J]. Physical Review B, 2013, 88: 125427.
[29] CAO W, TANG P, XU Y, et al. Dirac semimetal phase in hexagonal LiZnBi[J]. Physical ReviewB, 2017, 96: 115203.
[30] GAO H, KIM Y, VENDERBOS J W F, et al. Dirac-Weyl semimetal: coexistence of Dirac andWeyl fermions in polar hexagonal 𝐴𝐵𝐶 crystals[J]. Physical Review Letters, 2018, 121: 106404.
[31] STEINBERG J A, YOUNG S M, ZAHEER S, et al. Bulk Dirac points in distorted spinels[J].Physical Review Letters, 2014, 112: 036403.
[32] TANG P, ZHOU Q, XU G, et al. Dirac fermions in an antiferromagnetic semimetal[J]. NaturePhysics, 2016, 12(12): 1100-1104.
[33] WAN X, TURNER A M, VISHWANATH A, et al. Topological semimetal and Fermi-arc surfacestates in the electronic structure of pyrochlore iridates[J]. Physical Review B, 2011, 83: 205101.
[34] LV B Q, MUFF S, QIAN T, et al. Observation of Fermi-arc spin texture in TaAs[J]. PhysicalReview Letters, 2015, 115: 217601.
[35] WANG Z, VERGNIORY M G, KUSHWAHA S, et al. Time-reversal-breaking Weyl fermionsin magnetic heusler alloys[J]. Physical Review Letters, 2016, 117: 236401.
[36] WANG Q, XU Y, LOU R, et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet 𝐶𝑜3𝑆𝑛2𝑆2 with magnetic Weyl fermions[J]. Nature Communications, 2018, 9(1): 3681
[37] YANG H, SUN Y, ZHANG Y, et al. Topological Weyl semimetals in the chiral antiferromagneticmaterials 𝑀𝑛3𝐺𝑒 and 𝑀𝑛3𝑆𝑛[J]. New Journal of Physics, 2017, 19(1): 015008.
[38] KIYOHARA N, TOMITA T, NAKATSUJI S. Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge[J]. Physical Review Applied, 2016, 5: 064009.
[39] RUAN J, JIAN S K, ZHANG D, et al. Ideal Weyl semimetals in the chalcopyrites CuTlSe2,AgTlTe2, AuTlTe2, and ZnPbAs2[J]. Physical Review Letters, 2016, 116: 226801.
[40] YU R, WU Q, FANG Z, et al. From nodal chain semimetal to Weyl semimetal in HfC[J].Physical Review Letters, 2017, 119: 036401.
[41] XU S Y, BELOPOLSKI I, ALIDOUST N, et al. Discovery of a Weyl fermion semimetal andtopological Fermi arcs[J]. Science, 2015, 349(6248): 613-617.
[42] HUANG S M, XU S Y, BELOPOLSKI I, et al. New type of Weyl semimetal with quadraticdouble Weyl fermions[J]. Proceedings of the National Academy of Sciences, 2016, 113(5):1180-1185.
[43] DENG K, WAN G, DENG P, et al. Experimental observation of topological Fermi arcs in type-IIWeyl semimetal 𝑀𝑜𝑇𝑒2[J]. Nature Physics, 2016, 12(12): 1105-1110.
[44] GOOTH J, BRADLYN B, HONNALI S, et al. Axionic charge-density wave in the Weylsemimetal (𝑇𝑎𝑆𝑒4)2𝐼[J]. Nature, 2019, 575(7782): 315-319.
[45] LI X P, DENG K, FU B, et al. Type-III Weyl semimetals: (TaSe4)2I[J]. Physical Review B,2021, 103: L081402.
[46] FANG C, GILBERT M J, DAI X, et al. Multi-Weyl topological semimetals stabilized by pointgroup symmetry[J]. Physical Review Letters, 2012, 108: 266802.
[47] XU G, WENG H, WANG Z, et al. Chern semimetal and the quantized anomalous Hall effect inHgCr2Se4[J]. Physical Review Letters, 2011, 107: 186806.
[48] ZHANG T, TAKAHASHI R, FANG C, et al. Twofold quadruple Weyl nodes in chiral cubiccrystals[J]. Physical Review B, 2020, 102: 125148.
[49] LIU G, CHEN Z, WU P, et al. Triple hourglass Weyl phonons[J]. Physical Review B, 2022,106: 214308.
[50] WANG X, ZHOU F, ZHANG Z, et al. Hourglass charge-three Weyl phonons[J]. PhysicalReview B, 2022, 106: 214309.
[51] LIU Q B, WANG Z, FU H H. Charge-four Weyl phonons[J]. Physical Review B, 2021, 103:L161303.
[52] ZOU J, HE Z, XU G. The study of magnetic topological semimetals by first principles calculations[J]. npj Computational Materials, 2019, 5(1): 96.
[53] WANG R, ZHAO J Z, JIN Y J, et al. Nodal line fermions in magnetic oxides[J]. Physical ReviewB, 2018, 97: 241111.
[54] WENG H, FANG C, FANG Z, et al. Weyl semimetal phase in noncentrosymmetric transitionmetal monophosphides[J]. Physical Review X, 2015, 5: 011029.
[55] FANG C, CHEN Y, KEE H Y, et al. Topological nodal line semimetals with and without spinorbital coupling[J]. Physical Review B, 2015, 92: 081201.
[56] LIANG Q F, ZHOU J, YU R, et al. Node-surface and node-line fermions from nonsymmorphiclattice symmetries[J]. Physical Review B, 2016, 93: 085427.
[57] CHANG G, XU S Y, ZHOU X, et al. Topological hopf and Chain link semimetal states andtheir application to Co2MnGa[J]. Physical Review Letters, 2017, 119: 156401.
[58] HIRSCHMANN M M, LEONHARDT A, KILIC B, et al. Symmetry-enforced band crossingsin tetragonal materials: Dirac and Weyl degeneracies on points, lines, and planes[J]. PhysicalReview Materials, 2021, 5: 054202.
[59] WU W, LIU Y, LI S, et al. Nodal surface semimetals: theory and material realization[J]. PhysicalReview B, 2018, 97: 115125.
[60] YU Z M, WU W, ZHAO Y X, et al. Circumventing the no-go theorem: A single Weyl pointwithout surface Fermi arcs[J]. Physical Review B, 2019, 100: 041118.
[61] BZDUšEK T, WU Q, RüEGG A, et al. Nodal-chain metals[J]. Nature, 2016, 538(7623): 75-78.
[62] VERGNIORY M G, ELCORO L, FELSER C, et al. A complete catalogue of high-qualitytopological materials[J]. Nature, 2019, 566(7745): 480-485.
[63] TANG F, PO H C, VISHWANATH A, et al. Comprehensive search for topological materialsusing symmetry indicators[J]. Nature, 2019, 566(7745): 486-489.
[64] ZHANG T, JIANG Y, SONG Z, et al. Catalogue of topological electronic materials[J]. Nature,2019, 566(7745): 475-479.
[65] YU Z M, ZHANG Z, LIU G B, et al. Encyclopedia of emergent particles in three-dimensionalcrystals[J]. Science Bulletin, 2022, 67(4).
[66] SUN X C, CHEN H, LAI H S, et al. Ideal acoustic quantum spin Hall phase in a multi-topologyplatform[J]. Nature Communications, 2023, 14(1): 952.
[67] WANG R, XIA B W, CHEN Z J, et al. Symmetry-protected topological triangular Weyl complex[J]. Physical Review Letters, 2020, 124: 105303.
[68] QI Y, QIU C, XIAO M, et al. Acoustic realization of quadrupole topological insulators[J].Physical Review Letters, 2020, 124: 206601.
[69] DU J, LI T, FAN X, et al. Acoustic realization of surface-obstructed topological insulators[J].Physical Review Letters, 2022, 128: 224301.
[70] HE C, NI X, GE H, et al. Acoustic topological insulator and robust one-way sound transport[J].Nature Physics, 2016, 12(12): 1124-1129.
[71] HE C, YU S Y, GE H, et al. Three-dimensional topological acoustic crystals with pseudospinvalley coupled saddle surface states[J]. Nature Communications, 2018, 9(1): 4555.
[72] DONG J W, CHEN X D, ZHU H, et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 2017, 16(3): 298-302.
[73] TORRENT D, SÁNCHEZ-DEHESA J. Acoustic analogue of graphene: observation of Diraccones in acoustic surface waves[J]. Physical Review Letters, 2012, 108: 174301.
[74] LI F, HUANG X, LU J, et al. Weyl points and Fermi arcs in a chiral phononic crystal[J]. NaturePhysics, 2018, 14(1): 30-34.
[75] HE H, QIU C, CAI X, et al. Observation of quadratic Weyl points and double-helicoid arcs[J].Nature Communications, 2020, 11(1): 1820.
[76] ZHANG Q, LI Y, SUN H, et al. Observation of acoustic non-hermitian bloch braids and associated topological phase transitions[J]. Physical Review Letters, 2023, 130: 017201.
[77] ZHANG Z, LONG H, LIU C, et al. Deep-subwavelength holey acoustic second-Order topological insulators[J]. Advanced Materials, 2019, 31(49): 1904682.
[78] CHEN Z J, WANG R, XIA B W, et al. Three-dimensional Dirac phonons with inversion symmetry[J]. Physical Review Letters, 2021, 126: 185301.
[79] YU W W, LIU Y, ZHANG X, et al. Topological charge-2 Dirac phonons in three dimensions:theory and realization[J]. Physical Review B, 2022, 106: 195142.
[80] ZHANG T, SONG Z, ALEXANDRADINATA A, et al. Double-Weyl phonons in transitionmetal monosilicides[J]. Physical Review Letters, 2018, 120: 016401.
[81] GONG J, WANG J, YUAN H, et al. Dirac phonons in two-dimensional materials[J]. PhysicalReview B, 2022, 106: 214317.
[82] XIA B W, WANG R, CHEN Z J, et al. Symmetry-protected ideal type-II Weyl phonons in CdTe[J]. Physical Review Letters, 2019, 123: 065501.
[83] WANG X, ZHOU F, ZHANG Z, et al. Single pair of multi-Weyl points in nonmagnetic crystals[J]. Physical Review B, 2022, 106: 195129.
[84] DING G, ZHOU F, ZHANG Z, et al. Charge-two Weyl phonons with type-III dispersion[J].Physical Review B, 2022, 105: 134303.
[85] LIU J, HOU W, WANG E, et al. Ideal type-II Weyl phonons in wurtzite CuI[J]. Physical ReviewB, 2019, 100: 081204.
[86] LIU G, JIN Y, CHEN Z, et al. Symmetry-enforced straight nodal-line phonons[J]. PhysicalReview B, 2021, 104: 024304.
[87] JIN Y J, CHEN Z J, XIA B W, et al. Ideal intersecting nodal-ring phonons in bcc C8[J]. PhysicalReview B, 2018, 98: 220103.
[88] LIU Q B, WANG Z Q, FU H H. Ideal topological nodal-surface phonons in RbTeAu-familymaterials[J]. Physical Review B, 2021, 104: L041405.
[89] XIE C, YUAN H, LIU Y, et al. Two-nodal surface phonons in solid-state materials[J]. PhysicalReview B, 2022, 105: 054307.
[90] FU L, KANE C L. Topological insulators with inversion symmetry[J]. Physical Review B,2007, 76: 045302.
[91] HARTREE D R. The wave mechanics of an atom with a non-coulomb central field. part I. theoryand methods[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1928, 24(1): 89–110.
[92] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136:B864-B871.
[93] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J].Physical Review, 1965, 140: A1133-A1138
[94] MARDIROSSIAN N, HEAD-GORDON M. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designedby a survival-of-the-fittest strategy[J]. Physical Chemistry Chemical Physics, 2014, 16(21):9904-9924.
[95] LEE J G. Computational materials science: an introduction[M]. CRC press, 2016.
[96] BRADLYN B, CANO J, WANG Z, et al. Beyond Dirac and Weyl fermions: Unconventionalquasiparticles in conventional crystals[J]. Science, 2016, 353(6299): aaf5037.
[97] TAKANE D, WANG Z, SOUMA S, et al. Observation of Chiral fermions with a large topological charge and associated Fermi-arc surface states in CoSi[J]. Physical Review Letters, 2019,122: 076402.
[98] RAO Z, LI H, ZHANG T, et al. Observation of unconventional chiral fermions with long Fermiarcs in CoSi[J]. Nature, 2019, 567(7749): 496-499.
[99] SANCHEZ D S, BELOPOLSKI I, COCHRAN T A, et al. Topological chiral crystals withhelicoid-arc quantum states[J]. Nature, 2019, 567(7749): 500-505.
[100] MIAO H, ZHANG T T, WANG L, et al. Observation of double Weyl phonons in parity-breakingFeSi[J]. Physical Review Letters, 2018, 121: 035302.
[101] LIU Q B, FU H H, WU R. Topological phononic nodal hexahedron net and nodal links in thehigh-pressure phase of the semiconductor CuCl[J]. Physical Review B, 2021, 104: 045409.
[102] JIN Y J, CHEN Z J, XIAO X L, et al. Tunable double Weyl phonons driven by chiral pointgroup symmetry[J]. Physical Review B, 2021, 103: 104101.
[103] ZHANG Z, YU Z M, LIU G B, et al. MagneticTB: A package for tight-binding model of magnetic and non-magnetic materials[J]. Computer Physics Communications, 2022, 270: 108153.
[104] HUSTER J, BRONGER W. Darstellung und struktur einer hochdruckmodifikation des bariumthioplatinats(II), 𝐵𝑎𝑃𝑡2𝑆3[J]. Zeitschrift für anorganische und allgemeine Chemie, 2004,630(5): 642-644.
[105] KRESSE G, FURTHMÜLLER J. Effcient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54: 11169-11186.
[106] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77: 3865-3868.
[107] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[Phys. Rev. Lett. 77, 3865 (1996)][J]. Physical Review Letters, 1997, 78: 1396-1396.
[108] TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. ScriptaMaterialia, 2015, 108: 1-5.
[109] WU Q, ZHANG S, SONG H F, et al. WannierTools: An open-source software package for noveltopological materials[J]. Computer Physics Communications, 2018, 224: 405-416.
[110] SANCHO M P L, SANCHO J M L, RUBIO J. Quick iterative scheme for the calculation oftransfer matrices: application to Mo (100)[J]. Journal of Physics F: Metal Physics, 1984, 14(5):1205-1218.68

所在学位评定分委会
物理学
国内图书分类号
0469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544153
专题理学院_物理系
推荐引用方式
GB/T 7714
武朋. 成对外尔—狄拉克拓扑声子材料的第一性原理研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032022-武朋-物理系.pdf(38853KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[武朋]的文章
百度学术
百度学术中相似的文章
[武朋]的文章
必应学术
必应学术中相似的文章
[武朋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。