中文版 | English
题名

新型室温热电材料的单晶生长和热电输运性能的研究

其他题名
CRYSTAL GROWTH AND TRANSPORT PROPERTIES OF NEW ROOM-TEMPERATURE THERMOELECTRIC MATERIALS
姓名
姓名拼音
LI Jinhong
学号
12032030
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
何佳清
导师单位
物理系
论文答辩日期
2023-05-31
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

热电技术能够将电能与热能相互转化,是解决能源危机和环境问题的一种重要方案。在新型热电材料中,Mg3(Bi,Sb)2由于优秀的室温热电性能备受关注;SnSe具有极低的晶格热导率,进行Pb合金化后在室温下具有优秀的功率因子和热电优值zT,两者均有望成为当前最先进室温热电材料Bi2Te3的替代者。

通过改进布里奇曼法的坩埚设计和生长工艺,以Mg作为助熔剂便捷地制备了n-Mg3(Bi,Sb)2晶体。所得到的晶体表现出极高的电导率跟低的Seebeck系数绝对值。进一步的结构分析中,我们发现晶体中存在助熔剂富集的第二相,n-Mg3(Bi,Sb)2由助熔剂镁的富集区和镁缺失的Mg3(Bi,Sb)2晶格构成,半定量的元素分析显示在镁缺失的晶格中Mg(Bi+Sb)的摩尔比接近1

通过布里奇曼法生长了Pb掺杂的SnSe晶体,研究了Na掺杂含量对Pb-SnSe晶体的影响。结果表明Na掺杂能显著的提高Pb-SnSe的电导率和功率因子,将载流子浓度提升~1019 cm-3。但是由于迁移率的快速下降,Na掺杂含量的继续提高对Pb-SnSe电输运性能影响不大,最佳的Na掺杂浓度位于2%左右。

在稍微过量的Se环境下生长的SnSe晶体具有更高的电导率和功率因子,这得益于载流子浓度的提高。此外由于出现了SnSe2第二相,在过量Se环境下生长的SnSe晶体中的晶格热导率发生了下降。最终得到的Sn0.89Na0.02Pb0.09Se1.05晶体在773 K时沿b方向的热电优值zT由标准化学计量比环境下的1.51增加到了1.98

沿着SnSe晶体的(100)解理面通过机械剥离制备了p-SnSe单晶薄膜,发现其具有良好的柔性和比较均匀的厚度(~15 μm)。热电性能测量结果表明SnSe薄膜具有近似于块体的电输运性能和良好的稳定性。将p-SnSe薄膜与n-Bi2Te3薄膜组合制备成π型器件,测得在ΔT=48 K时该器件功率密度达到24.04 Wm-2,表明SnSe在薄膜热电器件领域同样具有可观的应用前景。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-07
参考文献列表

[1] XUN S, CHEN L. Thermoelectric materials step up[J]. Nature materials, 2016, 15: 691-692.
[2] BROWN D R, STOUT T B, DIRKS J A, et al. The Prospects of Alternatives to Vapor Compression Technology for Space Coolingand Food Refrigeration Applications[J]. Energy engineering, 2012, 109: 7-20.
[3] STOPPA M, CHIOLERIO A. Wearable electronics and smart textiles:a critical review[J].Sensors, 2014, 14: 11957-11992.
[4] SHI X L, ZOU J, CHEN Z G. Advanced Thermoelectric Design: From Materials and Structures to Devices[J]. Chemical Reviews, 2020, 120: 7399-7515.
[5] ZHANG X, ZHAO L D. Thermoelectric Materials: Energy Conversion between Heat and Electricity[J]. Journal of Materiomics, 2015, 1: 92-105.
[6] XIE H Y, SU X L, BAILEY T P, et al. Anomalously Large Seebeck Coefficient of CuFeS2 Derives from Large Asymmetry in the Energy Dependence of Carrier Relaxation Time[J]. Chemistry of Materials, 2020, 32: 2639−2646.
[7] Bell L E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems[J]. Science, 2008, 321: 1457-61.
[8] QIU P, XUN S, CHEN L. Cu-based thermoelectric materials[J]. Energy Storage Materials, 2016, 3: 85-97.
[9] DEHKORDI A M, ZEBARJADI M, JIAN H, et al. Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials[J]. Materials Science & Engineering R Reports, 2015, 97: 1-22.
[10] MOSHWAN R, YANG L, ZOU J, et al. Eco-friendly SnTe thermoelectric materials: progress and future challenges[J]. Advanced Functional Materials, 2017, 27: 1703278.
[11] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States[J]. Science, 2008, 321: 554−557.
[12] MAO J, CHEN G, REN Z F. Thermoelectric cooling materials[J]. Nature Materials, 2021, 20: 454–461.
[13] YAN X, POUDE B, MA Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3[J]. Nano Letters, 2010, 10: 3373–3378.
[14] HU L, WU H, ZHU T, et al. Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n-Type Bismuth-Telluride-Based Solid Solutions[J]. Advanced energy materials, 2015, 5: 1500411.
[15] LIU W, WANG H, WANG L, et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications[J]. Journal of Materials Chemistry A, 2013, 1: 13093-13100.
[16] MAO J, ZHU H, DING Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019, 365: 495-498.
[17] ZHAO L D, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science, 2016, 351: 141-144.
[18] QIN B, WANG D, LIU X, et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments[J]. Science, 2021, 373: 556-561.
[19] TAMAKI H, SATO H K, KANNO T. Isotropic Conduction Network and Defect Chemistry in Mg3+δSb2-Based Layered Zintl Compounds with High Thermoelectric Performance[J]. Advanced Materials, 2016, 28: 10182-10187.
[20] JANA M K, PAL K, WARANKAR A, et al. Intrinsic Rattler-Induced Low Thermal Conductivity in Zintl Type TlInTe2[J]. Journal of the American Chemical Society, 2017, 139: 4350-4353.
[21] ZHENG C, HOFFMANN R, NESPER R, et al. Site preferences and bond length differences in CaAl2Si2-type Zintl compounds[J]. Journal of the American Chemical Society, 1986, 108: 1876-1884.
[22] SUN J F, SINGH D J. Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X=Sb, Bi), and Ba2ZnX2 (X =Sb, Bi) Zintl compounds[J]. Journal of Materials Chemistry A, 2017, 5: 8499-8509.
[23] WOOD M, IMASATO K, ANAND S, et al. The Importance of the Mg-Mg interaction in Mg3Sb2-Mg3Bi2 Shown Through Cation Site Alloying[J]. Journal of Materials Chemistry A, 2020, 8: 2033-2038.
[24] XIA S Q, MYERS C, BOBEV S. Combined Experimental and Density Functional Theory Studies on the Crystal Structures and Magnetic Properties of Mg(Mg1-xMnx)2Sb2 (x approximate to 0.25) and BaMn2Sb2[J]. European journal of inorganic chemistry, 2008, 27: 4262-4269.
[25] ZHANG J W, SONG L R, IVERSEN B B. Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment[J]. Npj Computational Materials, 2019, 5: 76.
[26] LI W, WU Y, LIN S, et al. Advances in Environment-Friendly SnTe Thermoelectrics[J]. ACS Energy Letters, 2017, 2: 2349-2355.
[27] IMASATO K, KANG S, OHNO S, et al. Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance[J]. Materials Horizons, 2018, 5: 59-64.
[28] ZHANG J, SONG L, PEDERSEN S H, et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands[J]. Nature Communications, 2017, 8: 13901.
[29] ZHANG J, SONG L, MADSEN, et al. Designing high-performance layered thermoelectric materials through orbital engineering[J]. Nature Communications, 2016, 7: 10892.
[30] MAO J, SHUAI J, SONG S, et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials[J]. Proceedings of the National Academy of Sciences, 2017, 114: 10548-10553.
[31] MAO J, WU Y, SONG S, et al. Defect Engineering for Realizing High Thermoelectric Performance in n-Type Mg3Sb2-Based Materials[J]. ACS Energy Letters, 2017, 2: 2245-2250.
[32] WANG X, LI W, WANG C, et al. Single parabolic band transport in p-type EuZn2Sb2 thermoelectrics[J]. Journal of Materials Chemistry A, 2017, 5: 24185-24192.
[33] SHI X, XIAO X, LI W, et al. Advances in Thermoelectric Mg3Sb2 and Its Derivatives[J]. Small Methods, 2018, 2: 1800022.
[34] VERBRUGGE D M, ZYTVELD J B V. Electronic properties of liquid MgSb[J]. Journal of Non-Crystalline Solids, 1993, 156: 736-739.
[35] OHNO S, IMASATO K, ANAND S. Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics[J]. Joule, 2018, 2: 141-154.
[36] SHUAI J, GE B,MAO J, et al. Significant Role of Mg Stoichiometry in Designing High Thermoelectric Performance for Mg3(Bi,Sb)2-Based n-Type Zintls[J]. Journal of the American Chemical Society, 2018, 140: 1910-1915.
[37] MAO J, SHUAI J, SONG S, et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials[J]. Proceedings of the National Academy of Sciences, 2017, 114: 10548-10553.
[38] SONG L R, ZHANG J W and IVERSEN B B. Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials[J]. Journal of Materials Chemistry A, 2017, 5: 4932-4939.
[39] BHARDWAJ A, CHAUHAN N S, GOEL S, et al. Tuning the carrier concentration using Zintl chemistry in Mg3Sb2, and its implications for thermoelectric figure-of-merit[J]. Physical Chemistry Chemical Physics, 2016, 18: 6191-6200.
[40] KIM S, KIM C, HONG Y K, et al. Thermoelectric properties of Mn-doped Mg–Sb single crystals[J]. Journal of Materials Chemistry A, 2014, 2: 12311-12316.
[41] REN Z S, SHUAI J, MAO J, et al. Significantly enhanced thermoelectric properties of p-type Mg3Sb2 via co-doping of Na and Zn[J]. Acta Materialia, 2018, 143: 265-271.
[42] ZHANG J W, SONG L R, MAMAKHEL A, et al. High-Performance Low-Cost n-Type Se-Doped Mg3Sb2-Based Zintl Compounds for Thermoelectric Application[J]. Chemistry of Materials, 2017, 29: 5371-5383.
[43] BHARDWAJ A, MISRA D K. Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework[J]. Rsc Advances, 2014, 4: 34552.
[44] ZHANG J W, SONG L R, BORUP K A, et al. New Insight on Tuning Electrical Transport Properties via Chalcogen Doping in n‐type Mg3Sb2‐Based Thermoelectric Materials[J]. Advanced Energy Materials, 2018, 8: 1702776.
[45] BHARDWAJ A, RAJPUT A, SHUKLA A K, et al. Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation[J]. Rsc Advances, 2013, 3: 8504-8516.
[46] LI W, ZHENG L L, GE B H, et al. Promoting SnTe as an Eco‐Friendly Solution for p‐PbTe Thermoelectric via Band Convergence and Interstitial Defects[J]. Advanced Materials, 2017, 29: 1605887.
[47] CHEN Z W, JIAN Z Z, LI W, et al. Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence[J]. Advanced Materials, 2017, 29: 1606768.
[48] HU L P, ZHU T J,LIU X H, et al. Point Defect Engineering of High-Performance Bismuth-Telluride-Based Thermoelectric Materials[J]. Advanced Functional Materials, 2014, 24: 5211-5218.
[49] KLEMENS P G. Thermal Resistance Due to Point Defects at High Temperatures[J]. Physical Review, 1960, 119: 507-509.
[50] SCHULTZ P A, EDWARDS A H. Modeling charged defects inside density functional theory band gaps[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 327: 2-8.
[51] BHARDWAJ A, CHAUHAN N S, MISRA D K. Significantly enhanced thermoelectric figure of merit of p-type Mg3Sb2-based Zintl phase compounds via nanostructuring and employing high energy mechanical milling coupled with spark plasma sintering[J]. Journal of Materials Chemistry A, 2015, 3: 10777-10786.
[52] CONDRON C L, KAUZLARICH S M, GASCOIN F, et al. Thermoelectric properties and microstructure of Mg3Sb2[J]. Journal of Solid State Chemistry, 2006, 179: 2252-2257.
[53] ZHANG J W, SONG L R, MADSEN G K H, et al. Designing high-performance layered thermoelectric materials through orbital engineering[J]. Nature Communications, 2016, 7: 10892.
[54] BHARDWAJ A, MISRA D K. Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework[J]. Rsc Advances, 2014, 4: 34552-34560.
[55] KIM S, KIM C, HONG Y K, et al. Thermoelectric properties of Mn-doped Mg–Sb single crystals[J]. Journal of Materials Chemistry A, 2014, 2: 12311-12316.
[56] IMASATO K, WOOD M, KUO J J, et al. Improved stability and high thermoelectric performance through cation site doping in n-type La-doped Mg3Sb1.5Bi0.5[J]. Journal of Materials Chemistry A, 2018, 6: 19941-19946.
[57] WOOD M, KUO J J, IMASATO K, et al. Improvement of Low‐Temperature zT in a Mg3Sb2–Mg3Bi2 Solid Solution via Mg‐Vapor Annealing[J]. Advanced Materials, 2019, 31: 1902337.
[58] IMASATO K, FU C, PAN Y, et al. Metallic n‐Type Mg3Sb2 Single Crystals Demonstrate the Absence of Ionized Impurity Scattering and Enhanced Thermoelectric Performance[J]. Advanced Materials, 2020, 32: 1908218.
[59] ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508: 373-377.
[60] CHEN Z G, SHI X L, ZHAO L D, et al. High-performance SnSe thermoelectric materials: Progress and future challenge[J]. Progress in Materials Science, 2018, 97: 283-346.
[61] ZHANG X, ZHAO L D. Thermoelectric materials: Energy conversion between heat and electricity[J]. Journal of Materiomics, 2015, 1: 92-105.
[62] GUO R Q, WANG X J, KUANG Y D, et al. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS[J]. Physical Review B, 2015, 92: 115202.
[63] MORELLI D T, JOVOVIC V, HEREMANS J P. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors[J]. Physical review letters, 2008, 101: 035901.
[64] ZHANG H. Thermoelectric Tin Selenide: The Beauty of Simplicity[J]. Angewandte Chemie International Edition, 2014, 53: 9126-9127.
[65] POPURI S R, POLLET M, DECOURT R, et al. Evidence for hard and soft substructures in thermoelectric SnSe[J]. Applied Physics Letters, 2017, 110: 253903.
[66] SKELTON J M, BURTON L A, PARKER S C, et al. Anharmonicity in the High-Temperature Cmcm Phase of SnSe: Soft Modes and Three-Phonon Interactions[J]. Physical Review Letters, 2016, 117: 075502.
[67] LEE H S. Theoretical Model of Thermoelectric Transport Properties[J]. Journal of Electronic Materials, 2016, 45: 1115-1141.
[68] YU J G, YUE A, STAFSUDD O. Growth and electronic properties of the SnSe semiconductor[J]. Journal of Crystal Growth, 1981, 54: 248-252.
[69] KUTORASINSKI K, WIENDLOCHA B, KAPRZYK S, et al. Electronic structure and thermoelectric properties of n- and p-type SnSe from first principles calculations[J]. Physical Review B, 2015, 91: 205201.
[70] SHI G S, KIOUPAKIS E. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe[J]. Journal of Applied Physics, 2015, 117: 554-20.
[71] ZHOU Y C, LI W, WU M H, et al. Influence of defects on the thermoelectricity in SnSe: A comprehensive theoretical study[J]. Physical Review B, 2018, 97: 245202.
[72] DUVJIR G, MIN T, LY T T, Et al. Origin of p-type characteristics in a SnSe single crystal[J]. Applied Physics Letters, 2017, 110: 262106.
[73] PENG K L, LU X, ZHAN H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals[J]. Energy & Environmental Science, 2016, 9: 454-460.
[74] DUONG A T, NGUYEN V Q, DUVJIR G, et al. Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals[J]. Nature Communications, 2016, 7: 13713.
[75] ZHOU C J, LEE Y K, YU Y, et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal[J]. Nature Materials, 2021, 20: 1378-1384.
[76] 介万奇. 晶体生长原理与技术[M]. 科学出版社, 2010.
[77] STOCKBARGER D C. The Production of Large Single Crystals of Lithium Fluoride[J]. Review of Scientific Instruments, 1936, 7: 133-136.
[78] CHANG C E, WILCOX W R. Control of interface shape in the vertical bridgman-stockbarger technique[J]. Journal of Crystal Growth, 1974, 21: 135-140.
[79] 凌妍, 钟娇丽, 唐晓山,等.扫描电子显微镜的工作原理及应用[J]. 山东化工, 2018, 47(9):3.
[80] 李斗星. 透射电子显微学的新进展Ⅰ透射电子显微镜及相关部件的发展及应用[J]. 电子显微学报, 2004, 23(3):9.
[81] LU Y, ZHOU Y, WANG W, et al. Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance. (Submitted)

所在学位评定分委会
物理学
国内图书分类号
TB3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544154
专题理学院_物理系
推荐引用方式
GB/T 7714
李锦鸿. 新型室温热电材料的单晶生长和热电输运性能的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032030-李锦鸿-物理系.pdf(8254KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李锦鸿]的文章
百度学术
百度学术中相似的文章
[李锦鸿]的文章
必应学术
必应学术中相似的文章
[李锦鸿]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。