[1] POPE S B. Turbulent Flows[M]. Cambridge: Cambridge University Press, 2000.
[2] MOIN P, MAHESH K. Direct numerical simulation: a tool in turbulence research[J]. Annu. Rev. Fluid Mech., 1998, 30(1): 539-578.
[3] SAGAUT P. Scientific computation: Large eddy simulation for incompressible flows: an in- troduction[M]. 3rd ed ed. Berlin ; New York: Springer, 2006.
[4] 张兆顺, 崔桂香, 许春晓. 湍流理论与模拟[M]. 清华大学出版社, 2005.
[5] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 清华大学出版社, 2008.
[6] 傅德薰, 马延文, 李新亮, 等. 可压缩湍流直接数值模拟[M]. 科学出版社, 2010.
[7] GARNIER E, ADAMS N, SAGAUT P. Scientific Computation: Large Eddy Simulation for Compressible Flows[M]. Dordrecht: Springer Netherlands, 2009.
[8] LESIEUR M, METAIS O. New Trends in Large-Eddy Simulations of Turbulence[J]. Annu. Rev. Fluid Mech., 1996, 28(1): 45-82.
[9] MENEVEAU C, KATZ J. Scale-Invariance and Turbulence Models for Large-Eddy Simulation [J]. Annu. Rev. Fluid Mech., 2000, 32(1): 1-32.
[10] DURBIN P A. Some Recent Developments in Turbulence Closure Modeling[J]. Annu. Rev. Fluid Mech., 2018, 50(1): 77-103.
[11] MOSER R D, HAERING S W, YALLA G R. Statistical Properties of Subgrid-Scale Turbulence Models[J]. Annu. Rev. Fluid Mech., 2021, 53(1): 255-286.
[12] REYNOLDS O. IV. On the dynamical theory of incompressible viscous fluids and the deter- mination of the criterion[J]. Philos. Trans. Royal Soc. A, 1895(186): 123-164.
[13] ZHAOSHUN Z, GUIXIANG C, CHUNXIAO X. Modern turbulence and new challenges[J]. Acta Mech. Sin., 2002, 18(4): 309-327.
[14] PIOMELLI U. Large-eddy simulation: achievements and challenges[J]. Prog. Aerosp. Sci., 1999, 35(4): 335-362.
[15] PIOMELLI U. Large eddy simulations in 2030 and beyond[J]. Philos. Trans. Royal Soc. A, 2014, 372(2022): 20130320.
[16] ZHIYIN Y. Large-eddy simulation: Past, present and the future[J]. Chinese J. Aeronaut., 2015, 28(1): 11-24.
[17] ROZEMA W, BAE H J, MOIN P, et al. Minimum-dissipation models for large-eddy simulation [J]. Phys. Fluids, 2015, 27(8): 085107.
[18] ABKAR M, BAE H J, MOIN P. Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows[J]. Phys. Rev. Fluids, 2016, 1(4): 041701.
[19] SMAGORINSKY J. General circulation experiments with the primitive equations: I. The basic experiment[J]. Mon. Wea. Rev., 1963, 91(3): 99-164.
[20] LILLY D K. The representation of small-scale turbulence in numerical simulation experiments [C]//Proc. IBM Sci. Compt. Symp. Environ. Sci., White Plains, IBM, 1967. 1967.
[21] BARDINA J, FERZIGER J, REYNOLDS W. Improved subgrid-scale models for large-eddy simulation[C]//13th Fluid and PlasmaDynamics Conference. Snowmass,CO,U.S.A.: American Institute of Aeronautics and Astronautics, 1980.
[22] LIU S, MENEVEAU C, KATZ J. On the properties of similarity subgrid-scale models as de- duced from measurements in a turbulent jet[J]. J. Fluid Mech., 1994, 275: 83-119.
[23] CLARK R A, FERZIGER J H, REYNOLDS W C. Evaluation of subgrid-scale models using an accurately simulated turbulent flow[J]. J. Fluid Mech., 1979, 91(01): 1.
[24] STOLZ S, ADAMS N A. An approximate deconvolution procedure for large-eddy simulation [J]. Phys. Fluids, 1999, 11(7): 1699-1701.
[25] STOLZ S, ADAMS N A, KLEISER L. An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows[J]. Phys. Fluids, 2001, 13 (4): 997-1015.
[26] LAYTON W J, REBHOLZ L. Lecture Notes in Mathematics: volume 2042 Approximate Deconvolution Models of Turbulence[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
[27] SAN O, STAPLES A E, ILIESCU T. A Posteriori Analysis of Low-Pass Spatial Filters for Approximate Deconvolution Large Eddy Simulations of Homogeneous Incompressible Flows [J]. Int. J. Comut. Fluid. Dyn., 2015, 29(1): 40-66.
[28] SAN O, VEDULA P. Generalized Deconvolution Procedure for Structural Modeling of Turbu- lence[J]. J Sci Comput, 2018, 75(2): 1187-1206.
[29] HABISREUTINGER M A, BOUFFANAIS R, LERICHE E, et al. A coupled approximate deconvolution and dynamic mixed scale model for large-eddy simulation[J]. J. Comput. Phys., 2007.
[30] ERLEBACHER G, HUSSAINI M Y, SPEZIALE C G, et al. Toward the Large-Eddy Simulation of Compressible Turbulent Flows[J]. J. Fluid Mech., 1992, 238: 155-185.
[31] BORIS J P, GRINSTEIN F F, ORAN E S, et al. New insights into large eddy simulation[J]. Fluid Dyn Res, 1992, 10(4): 199-228.
[32] ADAMS N A, HICKEL S, FRANZ S. Implicit subgrid-scale modeling by adaptive deconvo- lution[J]. J. Comput. Phys., 2004, 200(2): 412-431.
[33] GRINSTEIN F F, MARGOLIN L G, RIDER W J. Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics: volume 113[M]. Cambridge University Press, 2007.
[34] TADMOR E. Shock Capturing by the Spectral Viscosity Method[J]. Comput. Methods Appl. Mech. Eng., 1990, 80(1): 197-208.
[35] REMMLER S, HICKEL S. Spectral Eddy Viscosity of Stratified Turbulence[J]. J. Fluid Mech., 2014, 755.
[36] THORNBER B, MOSEDALE A, DRIKAKIS D. On the Implicit Large Eddy Simulations of Homogeneous Decaying Turbulence[J]. J. Comput. Phys., 2007, 226(2): 1902-1929.
[37] JEANMART H, WINCKELMANS G. Investigation of Eddy-Viscosity Models Modified Using Discrete Filters: A Simplified "Regularized Variational Multiscale Model" and an "Enhanced Field Model"[J]. Phys. Fluids, 2007, 19(5): 055110.
[38] LAMBALLAIS E, FORTUNE V, LAIZET S. Straightforward High-Order Numerical Dissi- pation via the Viscous Term for Direct and Large Eddy Simulation[J]. J. Comput. Phys., 2011, 230(9): 3270-3275.
[39] SUN G, DOMARADZKI J A. Implicit LES Using Adaptive Filtering[J]. J. Comput. Phys., 2018, 359: 380-408.
[40] LAMBALLAIS E, VICENTE CRUZ R, PERRIN R. Viscous and Hyperviscous Filtering for Direct and Large-Eddy Simulation[J]. J. Comput. Phys., 2021, 431: 110115.
[41] BOSE S T, MOIN P, YOU D. Grid-Independent Large-Eddy Simulation Using Explicit Filtering [J]. Phys. Fluids, 2010, 22(10): 105103.
[42] CHEN S, XIA Z, PEI S, et al. Reynolds-stress-constrained large-eddy simulation of wall- bounded turbulent flows[J]. J. Fluid Mech., 2012, 703: 1-28.
[43] YOSHIZAWA A. Bridging between Eddy-Viscosity-Type and Second-Order Turbulence Mod- els through a Two-Scale Turbulence Theory[J]. Phys. Rev. E, 1993, 48(1): 273-281.
[44] CARATI D, WRAY A A. Large-eddy simulations with explicit equations for subgrid-scale quantities[C]//Proceedings of Summer Program: volume 2002. 2002: 79-86.
[45] HUANG S, LI Q S. A New Dynamic One-Equation Subgrid-Scale Model for Large Eddy Simulations[J]. Int. J. Numer. Meth. Engng, 2009, 81(7): 835-865.
[46] CHAI X, MAHESH K. Dynamic -Equation Model for Large-Eddy Simulation of Compressible Flows[J]. J. Fluid Mech., 2012,5,25, 699: 385-413.
[47] RANJAN R, VENKATASWAMY M K, MENON S. Dynamic One-Equation-Based Subgrid Model for Large-Eddy Simulation of Stratified Turbulent Flows[J]. Phys. Rev. Fluids, 2020, 5 (6): 064601.
[48] QI H, LI X, HU R, et al. Quasi-Dynamic Subgrid-Scale Kinetic Energy Equation Model for Large-Eddy Simulation of Compressible Flows[J]. J. Fluid Mech., 2022,9,25, 947: A22.
[49] QI H, LI X, YU C. Subgrid-Scale Helicity Equation Model for Large-Eddy Simulation of Turbulent Flows[J]. Phys. Fluids, 2021, 33(3): 035128.
[50] GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgrid-scale eddy viscosity model [J]. Phys. Fluids A: Fluid Dynamics, 1991, 3(7): 1760-1765.
[51] LILLY D K. A Proposed Modification of the Germano Subgrid-scale Closure Method[J]. Phys. Fluids A: Fluid Dynamics, 1992, 4(3): 633-635.
[52] ZANG T A, DAHLBURG R B, DAHLBURG J P. Direct and large-eddy simulations of three-dimensional compressible Navier-Stokes turbulence[J]. Phys. Fluids A: Fluid Dynamics, 1992, 4(1): 127-140.
[53] SHI Y, XIAO Z, CHEN S. Constrained Subgrid-Scale Stress Model for Large Eddy Simulation [J]. Phys. Fluids, 2008, 20(1): 011701.
[54] VREMAN B, GEURTS B, KUERTEN H. On the formulation of the dynamic mixed sub- grid-scale model[J]. Phys. Fluids, 1994, 6(12): 4057-4059.
[55] SAGAUT P, GARNIER E, TERRACOL M. A General Algebraic Formulation for Multi- parameter Dynamic Subgrid-scale Modeling[J]. Int. J. Comut. Fluid. Dyn., 2000, 13(3): 251- 257.
[56] 何国威, 夏蒙棼, 柯孚久, 等. 多尺度耦合现象: 挑战和机遇[J]. 自然科学进展, 2004, 14(2): 121.
[57] 王圣业, 符翔, 杨小亮, 等. 高阶矩湍流模型研究进展及挑战[J]. 力学进展, 2021, 51(1):2961.
[58] KUTZ J N. Deep Learning in Fluid Dynamics[J]. J. Fluid Mech., 2017, 814: 14.
[59] DURAISAMY K, IACCARINO G, XIAO H. Turbulence Modeling in the Age of Data[J]. Annu. Rev. Fluid Mech., 2019, 51(1): 357-377.
[60] 张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3): 444454.
[61] BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics [J]. Annu. Rev. Fluid Mech., 2020, 52: 477-508.
[62] BECK A, KURZ M. A perspective on machine learning methods in turbulence modeling[J]. GAMM-Mitteilungen, 2021, 44(1): e202100002.
[63] DURAISAMY K. Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence[J]. Phys. Rev. Fluids, 2021, 6(5): 050504.
[64] 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689.
[65] 金晓威, 李惠, 等. 物理增强的流场深度学习建模与模拟方法[J]. 力学学报, 2021, 53(10): 26162629.
[66] 赵耀民, 徐晓伟. 基于基因表达式编程的数据驱动湍流建模[J]. 力学学报, 2021, 53(10): 26402655.
[67] 王怡星, 韩仁坤, 刘子扬, 等. 流体力学深度学习建模技术研究进展[J]. 航空学报, 2021, 42 (4): 524779.
[68] 王年华, 鲁鹏, 常兴华, 等. 基于人工神经网络的非结构网格尺度控制方法[J].力学学报, 2021, 53(10): 26822691.
[69] 谢晨月, 袁泽龙, 王建春, 等. 基于人工神经网络的湍流大涡模拟方法[J].力学学报, 2021,53(1):1.
[70] 吴磊, 肖左利.基于人工神经网络的亚格子应力建模[J].力学学报, 2021, 53(10): 26672681.
[71] 李天一, 万敏平, 陈十一, 等. Gappy POD 方法重构湍流数据的研究[J].力学学报, 2021, 53 (10): 27032711.
[72] 邱敬然, 赵立豪. 复杂流动中的智能颗粒游动策略研究进展[J].力学学报, 2021, 53(10):26302639.
[73] 战庆亮, 葛耀君, 白春锦. 基于尾流时程目标识别的流场参数选择研究[J].力学学报, 2021,53(10): 26922702.
[74] 段总样, 赵云华, 徐璋. 基于离散单元法和人工神经网络的近壁颗粒动力学特征研究[J].力学学报, 2021, 53(10): 26562666.
[75] VINUESA R, BRUNTON S L. Enhancing computational fluid dynamics with machine learning [J]. Nat. Comput. Sci, 2022, 2(6): 358-366.
[76] 陈皓, 郭明明, 田野, 等. 卷积神经网络在流场重构研究中的进展[J]. 力学学报, 2022, 54 (9): 23432360.
[77] AHMED S E, PAWAR S, SAN O, et al. On closures for reduced order models-A spectrum of first-principle to machine-learned avenues[J]. Phys. Fluids, 2021, 33(9): 091301.
[78] BROWN R G, HWANG P Y. Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions[J]. Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions, 1997.
[79] KALNAY E. Atmospheric modeling, data assimilation and predictability[M]. Cambridge university press, 2003.
[80] GRONSKIS A, HEITZ D, MEMIN E. Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation[J]. J. Comput. Phys., 2013, 242: 480-497.
[81] LI Y, ZHANG J, DONG G, et al. Small-scale reconstruction in three-dimensional Kolmogorov flows using four-dimensional variational data assimilation[J]. J. Fluid Mech., 2020, 885.
[82] PARK S K, XU L. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)[M]. Springer, 2013.
[83] HOUTEKAMER P L, ZHANG F. Review of the ensemble Kalman filter for atmospheric data assimilation[J]. Mon. Weather Rev., 2016, 144(12): 4489-4532.
[84] MORELLI E A, KLEIN V. Aircraft system identification: theory and practice: volume 2[M]. Sunflyte Enterprises Williamsburg, VA, 2016.
[85] JAMESON A. Aerodynamic design via control theory[J]. J. Sci. Comput., 1988, 3: 233-260.
[86] Optimum aerodynamic design using the Navier-Stokes equations[J]. Theor. Comput. Fluid Dyn., 1998, 10(1): 213-237.
[87] BRENNER M, ELDREDGE J, FREUND J. Perspective on machine learning for advancing fluid mechanics[J]. Phys. Rev. Fluids, 2019, 4(10): 100501.
[88] BAR-SINAI Y, HOYER S, HICKEY J, et al. Learning data-driven discretizations for partial differential equations[J]. Proc. Natl. Acad. Sci. U.S.A., 2019, 116(31): 15344-15349.
[89] STEVENS B, COLONIUS T. Enhancement of shock-capturing methods via machine learning [J]. Theor. Comput. Fluid Dyn., 2020, 34(4): 483-496.
[90] JEON J, LEE J, KIM S J. Finite volume method network for the acceleration of unsteady computational fluid dynamics: Non-reacting and reacting flows[J]. Int. J. Energy Res., 2022, 46(8): 10770-10795.
[91] KOCHKOV D, SMITH J A, ALIEVA A, et al. Machine learning-accelerated computational fluid dynamics[J]. Proc. Natl. Acad. Sci. U.S.A., 2021, 118(21): e2101784118.
[92] AJURIA ILLARRAMENDI E, ALGUACIL A, BAUERHEIM M, et al. Towards an hybrid computational strategy based on deep learning for incompressible flows[C]//AIAA Aviation 2020 forum. 2020: 3058.
[93] OZBAY A G, HAMZEHLOO A, LAIZET S, et al. Poisson CNN: Convolutional neural net- works for the solution of the Poisson equation on a Cartesian mesh[J]. Data Centric Eng., 2021, 2: e6.
[94] PAWAR S, SAN O, AKSOYLU B, et al. Physics guided machine learning using simplified theories[J]. Phys. Fluids, 2021, 33(1): 011701.
[95] PAWAR S, SAN O, NAIR A, et al. Model fusion with physics-guided machine learning: Projection-based reduced-order modeling[J]. Phys. Fluids, 2021, 33(6): 067123.
[96] WANG R, KASHINATH K, MUSTAFA M, et al. Towards physics-informed deep learning for turbulent flow prediction[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 1457-1466.
[97] LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[A]. 2020.
[98] LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Neural operator: Graph kernel network for partial differential equations[A]. 2020.
[99] LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Multipole graph neural operator for parametric partial differential equations[J]. Adv. Neural Inf. Process. Syst., 2020, 33: 6755- 6766.
[100] PENG W, YUAN Z, WANG J. Attention-enhanced neural network models for turbulence sim- ulation[J]. Phys. Fluids, 2022, 34(2): 025111.
[101] PENG W, YUAN Z, LI Z, et al. Linear attention coupled Fourier neural operator for simulation of three-dimensional turbulence[J]. Phys. Fluids, 2023, 35(1): 015106.
[102] LI Z, PENG W, YUAN Z, et al. Fourier neural operator approach to large eddy simulation of three-dimensional turbulence[J]. Theor. App. Mech. Lett., 2022, 12(6): 100389.
[103] GUIBAS J, MARDANI M, LI Z, et al. Efficient token mixing for transformers via adaptive fourier neural operators[C]//International Conference on Learning Representations. 2021.
[104] KURTH T, SUBRAMANIAN S, HARRINGTON P, et al. Fourcastnet: Accelerating global high-resolution weather forecasting using adaptive fourier neural operators[A]. 2022.
[105] 尹宇辉, 李浩然, 张宇飞, 等. 机器学习辅助湍流建模在分离流预测中的应用[J]. 空气动力学学报, 2021, 39(2): 2332.
[106] YIN Y, YANG P, ZHANG Y, et al. Feature selection and processing of turbulence modeling based on an artificial neural network[J]. Phys. Fluids, 2020, 32(10): 105117.
[107] TRACEY B, DURAISAMY K, ALONSO J. Application of supervised learning to quantify uncertainties in turbulence and combustion modeling[C]//51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 2013: 259.
[108] TRACEY B D, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development[C]//53rd AIAA aerospace sciences meeting. 2015: 1287.
[109] LING J, KURZAWSKI A, TEMPLETON J. Reynolds Averaged Turbulence Modelling Using Deep Neural Networks with Embedded Invariance[J]. J. Fluid Mech., 2016, 807: 155-166.
[110] XIAO H, WU J L, WANG J X, et al. Quantifying and Reducing Model-Form Uncertainties in Reynolds-Averaged Navier-Stokes Simulations: A Data-Driven, Physics-Informed Bayesian Approach[J]. J. Comput. Phys., 2016, 324: 115-136.
[111] WANG J X, WU J L, XIAO H. Physics-Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data[J]. Phys. Rev. Fluids, 2017, 2(3): 034603.
[112] PARISH E J, DURAISAMY K. A paradigm for data-driven predictive modeling using field inversion and machine learning[J]. J. Comput. Phys., 2016, 305: 758-774.
[113] SINGH A P, DURAISAMY K. Using Field Inversion to Quantify Functional Errors in Turbulence Closures[J]. Phys. Fluids, 2016, 28(4): 045110.
[114] ZHU L, ZHANG W, KOU J, et al. Machine Learning Methods for Turbulence Modeling in Subsonic Flows around Airfoils[J]. Phys. Fluids, 2019, 31(1): 015105.
[115] JIANG C, VINUESA R, CHEN R, et al. An Interpretable Framework of Data-Driven Turbu- lence Modeling Using Deep Neural Networks[J]. Phys. Fluids, 2021, 33(5): 055133.
[116] WEATHERITT J, SANDBERG R. A novel evolutionary algorithm applied to algebraic modi- fications of the RANS stress-strain relationship[J]. J. Comput. Phys., 2016, 325: 22-37.
[117] ZHAO Y, AKOLEKAR H D, WEATHERITT J, et al. RANS turbulence model development using CFD-driven machine learning[J]. J. Comput. Phys., 2020, 411: 109413.
[118] LAV C, SANDBERG R D, PHILIP J. A framework to develop data-driven turbulence models for flows with organised unsteadiness[J]. J. Comput. Phys., 2019, 383: 148-165.
[119] WEATHERITT J, ZHAO Y, SANDBERG R D, et al. Data-driven scalar-flux model develop- ment with application to jet in cross flow[J]. Int. J. Heat Mass Transf., 2020, 147: 118931.
[120] AKOLEKAR H D, ZHAO Y, SANDBERG R D, et al. Turbulence Model Development for Low & High Pressure Turbines Using a Machine Learning Approach[J]. Int. Soc. Air Breath. Engines, 2019.
[121] LI H, ZHAO Y, WANG J, et al. Data-Driven Model Development for Large-Eddy Simulation of Turbulence Using Gene-Expression Programing[J]. Phys. Fluids, 2021, 33(12): 125127.
[122] WU Q, ZHAO Y, SHI Y, et al. Large-Eddy Simulation of Particle-Laden Isotropic Turbulence Using Machine-Learned Subgrid-Scale Model[J]. Phys. Fluids, 2022, 34(6): 065129.
[123] SCHMELZER M, DWIGHT R P, CINNELLA P. Discovery of algebraic Reynolds-stress mod- els using sparse symbolic regression[J]. Flow Turbul. Combust., 2020, 104: 579-603.
[124] SAIDI I B H, SCHMELZER M, CINNELLA P, et al. CFD-driven symbolic identification of algebraic Reynolds-stress models[J]. J. Comput. Phys., 2022, 457: 111037.
[125] POROSEVA S V, COLMENARESFJ D, MURMANS M. On the accuracy of RANS simula- tions with DNS data[J]. Phys. Fluids, 2016, 28(11): 115102.
[126] WU J, XIAO H, SUN R, et al. Reynolds-averaged Navier-Stokes equations with explicit data- driven Reynolds stress closure can be ill-conditioned[J]. J. Fluid Mech., 2019, 869: 553-586.
[127] BASARA B, JAKIRLIC S. A new hybrid turbulence modelling strategy for industrial CFD[J]. Int. J. Numer. Methods Fluids, 2003, 42(1): 89-116.
[128] MADUTA R, JAKIRLIC S. Improved RANS Computations of Flow over the 25 [degrees]- Slant-Angle Ahmed Body[J]. SAE Int. J. Passeng. Cars - Mech. Syst., 2017, 10(2).
[129] SARGHINI F, DE FELICE G, SANTINI S. Neural Networks Based Subgrid Scale Modeling in Large Eddy Simulations[J]. Comput. Fluids, 2003, 32(1): 97-108.
[130] GAMAHARA M, HATTORI Y. Searching for Turbulence Models by Artificial Neural Network [J]. Phys. Rev. Fluids, 2017, 2(5): 054604.
[131] ZHOU Z, HE G, WANG S, et al. Subgrid-Scale Model for Large-Eddy Simulation of Isotropic Turbulent Flows Using an Artificial Neural Network[J]. Comput. Fluids, 2019, 195: 104319.
[132] WANG J X, WU J, LING J, et al. A Comprehensive Physics-Informed Machine Learning Framework for Predictive Turbulence Modeling[J]. Phys. Rev. Fluids, 2018, 3(7): 074602.
[133] XIE C, WANG J, LI K, et al. Artificial Neural Network Approach to Large-Eddy Simulation of Compressible Isotropic Turbulence[J]. Phys. Rev. E, 2019, 99(5): 053113.
[134] ROSOFSKY S G, HUERTA E A. Artificial Neural Network Subgrid Models of 2-D Compress- ible Magnetohydrodynamic Turbulence[J]. Phys. Rev. D, 2020, 101(8): 084024.
[135] PARK J, CHOI H. Toward Neural-Network-Based Large Eddy Simulation: Application to Turbulent Channel Flow[J]. J. Fluid Mech., 2021, 914: A16.
[136] XIE C, WANG J, LI H, et al. A Modified Optimal LES Model for Highly Compressible Isotropic Turbulence[J]. Phys. Fluids, 2018, 30(6): 065108.
[137] XIE C, WANG J, LI H, et al. Artificial Neural Network Mixed Model for Large Eddy Simulation of Compressible Isotropic Turbulence[J]. Phys. Fluids, 2019, 31(8): 085112.
[138] XIE C, LI K, MA C, et al. Modeling Subgrid-Scale Force and Divergence of Heat Flux of Compressible Isotropic Turbulence by Artificial Neural Network[J]. Phys. Rev. Fluids, 2019, 4(10): 104605.
[139] XIE C, WANG J, E W. Modeling Subgrid-Scale Forces by Spatial Artificial Neural Networks in Large Eddy Simulation of Turbulence[J]. Phys. Rev. Fluids, 2020, 5(5): 054606.
[140] XIE C, WANG J, LI H, et al. Spatial Artificial Neural Network Model for Subgrid-Scale Stress and Heat Flux of Compressible Turbulence[J]. Theor. App. Mech. Lett., 2020, 10(1): 27-32.
[141] XIE C, WANG J, LI H, et al. Spatially Multi-Scale Artificial Neural Network Model for Large Eddy Simulation of Compressible Isotropic Turbulence[J]. AIP Advances, 2020, 10(1): 015044.
[142] XIE C, YUAN Z, WANG J. Artificial Neural Network-Based Nonlinear Algebraic Models for Large Eddy Simulation of Turbulence[J]. Phys. Fluids, 2020, 32(11): 115101.
[143] BECK A, FLAD D, MUNZ C D. Deep Neural Networks for Data-Driven LES Closure Models [J]. J. Comput. Phys., 2019, 398: 108910.
[144] RAISSI M, BABAEE H, GIVI P. Deep Learning of Turbulent Scalar Mixing[J]. Phys. Rev. Fluids, 2019, 4(12): 124501.
[145] VOLLANT A, BALARAC G, CORRE C. Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures[J]. J. Turb., 2017, 18(9): 854-878.
[146] MAULIK R, SAN O, JACOB J D, et al. Sub-Grid Scale Model Classification and Blending through Deep Learning[J]. J. Fluid Mech., 2019, 870: 784-812.
[147] MAULIK R, SAN O. A Neural Network Approach for the Blind Deconvolution of Turbulent Flows[J]. J. Fluid Mech., 2017, 831: 151-181.
[148] MAULIK R, SAN O, RASHEED A, et al. Data-Driven Deconvolution for Large Eddy Simulations of Kraichnan Turbulence[J]. Phys. Fluids, 2018, 30(12): 125109.
[149] MAULIK R, SAN O, RASHEED A, et al. Subgrid Modelling for Two-Dimensional Turbulence Using Neural Networks[J]. J. Fluid Mech., 2019, 858: 122-144.
[150] PRAT A, SAUTORY T, Navarro-Martinez S. A Priori Sub-Grid Modelling Using Artificial Neural Networks[J]. Int. J. Comut. Fluid. Dyn., 2020: 1-21.
[151] FUKAMI K, FUKAGATA K, TAIRA K. Super-resolution reconstruction of turbulent flows with machine learning[J]. J. Fluid Mech., 2019, 870: 106-120.
[152] FUKAMI K, FUKAGATA K, TAIRA K. Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows[J]. J. Fluid Mech., 2021, 909: A9.
[153] BODE M, GAUDING M, LIAN Z, et al. Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows[J]. Proceedings of the Combustion Institute, 2021, 38(2): 2617-2625.
[154] WANG Y, YUAN Z, XIE C, et al. Artificial Neural Network-Based Spatial Gradient Models for Large-Eddy Simulation of Turbulence[J]. AIP Adv., 2021, 11(5): 055216.
[155] WANG Y, YUAN Z, WANG X, et al. Constant-Coefficient Spatial Gradient Models for the Sub-Grid Scale Closure in Large-Eddy Simulation of Turbulence[J]. Phys. Fluids, 2022, 34(9): 095108.
[156] PAWAR S, SAN O, RASHEED A, et al. A priori analysis on deep learning of subgrid-scale parameterizations for Kraichnan turbulence[J]. Theor. Comput. Fluid Dyn., 2020, 34: 429-455.
[157] LIU B, YU H, HUANG H, et al. Investigation of nonlocal data-driven methods for subgrid-scale stress modeling in large eddy simulation[J]. AIP Adv., 2022, 12(6): 065129.
[158] GUAN Y, SUBEL A, CHATTOPADHYAY A, et al. Learning physics-constrained subgrid-scale closures in the small-data regime for stable and accurate LES[J]. Phys. D: Nonlinear Phenom., 2022: 133568.
[159] NOVATI G, de Laroussilhe H L, KOUMOUTSAKOS P. Automating Turbulence Modelling by Multi-Agent Reinforcement Learning[J]. Nat. Mach. Intell., 2021, 3(1): 87-96.
[160] KURZ M, OFFENHAUSER P, BECK A. Deep Reinforcement Learning for Turbulence Modeling in Large Eddy Simulations[J]. Int. J. Heat Fluid Flow, 2023, 99: 109094.
[161] KATO H, OBAYASHI S. Approach for uncertainty of turbulence modeling based on data assimilation technique[J]. Comput. Fluids, 2013, 85: 2-7.
[162] KATO H, YOSHIZAWA A, UENO G, et al. A data assimilation methodology for reconstructing turbulent flows around aircraft[J]. J. Comput. Phys., 2015, 283: 559-581.
[163] LI Z, ZHANG H, BAILEY S C, et al. A data-driven adaptive Reynolds-averaged Navier-Stokes k- model for turbulent flow[J]. J. Comput. Phys., 2017, 345: 111-131.
[164] MELDI M, POUX A. A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows[J]. J. Comput. Phys., 2017, 347: 207-234.
[165] MONS V, CHASSAING J C, GOMEZ T, et al. Is isotropic turbulence decay governed by asymptotic behavior of large scales? An eddy-damped quasi-normal Markovian-based data assimilation study[J]. Phys. Fluids, 2014, 26(11): 115105.
[166] HE C, LIU Y, GAN L. A Data Assimilation Model for Turbulent Flows Using Continuous Adjoint Formulation[J]. Phys. Fluids, 2018, 30(10): 105108.
[167] HE C, LIU Y, GAN L. Instantaneous pressure determination from unsteady velocity fields using adjoint-based sequential data assimilation[J]. Phys. Fluids, 2020, 32(3): 035101.
[168] HE C, LIU Y. Time-resolved reconstruction of turbulent flows using linear stochastic estimation and sequential data assimilation[J]. Phys. Fluids, 2020, 32(7): 075106.
[169] HE C, WANG P, LIU Y, et al. Flow enhancement of tomographic particle image velocimetry measurements using sequential data assimilation[J]. Phys. Fluids, 2022, 34(3): 035101.
[170] HE C, WANG P, LIU Y. Sequential data assimilation of turbulent flow and pressure fields over aerofoil[J]. AIAA J., 2022, 60(2): 1091-1103.
[171] LABAHN J W, WU H, HARRIS S R, et al. Ensemble Kalman filter for assimilating experimental data into large-eddy simulations of turbulent flows[J]. Flow Turbul. Combust., 2020, 104: 861-893.
[172] CHANDRAMOULI P, MEMIN E, HEITZ D. 4D large scale variational data assimilation of a turbulent flow with a dynamics error model[J]. J. Comput. Phys., 2020, 412: 109446.
[173] MONS V, DU Y, ZAKI T A. Ensemble-Variational Assimilation of Statistical Data in Large- Eddy Simulation[J]. Phys. Rev. Fluids, 2021, 6(10): 104607.
[174] SIRIGNANO J, MACART J F, FREUND J B. DPM: A Deep Learning PDE Augmentation Method with Application to Large-Eddy Simulation[J]. J. Comput. Phys., 2020, 423: 109811.
[175] MACART J F, SIRIGNANO J, FREUND J B. Embedded Training of Neural-Network Subgrid- Scale Turbulence Models[J]. Phys. Rev. Fluids, 2021, 6(5): 050502.
[176] WANG J, SHI Y, WANG L P, et al. Effect of Compressibility on the Small-Scale Structures in Isotropic Turbulence[J]. J. Fluid Mech., 2012, 713: 588-631.
[177] WANG J, WAN M, CHEN S, et al. Effect of Flow Topology on the Kinetic Energy Flux in Compressible Isotropic Turbulence[J]. J. Fluid Mech., 2020, 883: A11.
[178] LEONARD A. Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows[M]// Advances in Geophysics: volume 18. Elsevier, 1975: 237-248.
[179] BULL J R, JAMESON A. Explicit Filtering and Exact Reconstruction of the Sub-Filter Stresses in Large Eddy Simulation[J]. J. Comput. Phys., 2016, 306: 117-136.
[180] VREMAN B, GEURTS B, KUERTEN H. Large-eddy simulation of the turbulent mixing layer [J]. J. Fluid Mech., 1997, 339: 357-390.
[181] YUAN Z, XIE C, WANG J. Deconvolutional Artificial Neural Network Models for Large Eddy Simulation of Turbulence[J]. Phys. Fluids, 2020, 32(11): 115106.
[182] XIE C. An Approximate Second-Order Closure Model for Large-Eddy Simulation of Compressible Isotropic Turbulence[J]. CiCP, 2020, 27(3): 775-808.
[183] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proc. icml: volume 30. 2013: 3.
[184] VREMAN B, GEURTS B, KUERTEN H. Realizability Conditions for the Turbulent Stress Tensor in Large-Eddy Simulation[J]. J. Fluid Mech., 1994, 278: 351-362.
[185] PATTERSON G S, ORSZAG S A. Spectral Calculations of Isotropic Turbulence: Efficient Removal of Aliasing Interactions[J]. Phys. Fluids, 1971, 14(11): 2538-2541.
[186] CHEN S, DOOLEN G D, KRAICHNAN R H, et al. On Statistical Correlations between Veloc- ity Increments and Locally Averaged Dissipation in Homogeneous Turbulence[J]. Phys. Fluids A: Fluid Dynamics, 1993, 5(2): 458-463.
[187] WANG J, SHI Y, WANG L P, et al. Scaling and Statistics in Three-Dimensional Compressible Turbulence[J]. Phys. Rev. Lett., 2012, 108(21): 214505.
[188] WANG J, WAN M, CHEN S, et al. Kinetic Energy Transfer in Compressible Isotropic Turbu- lence[J]. J. Fluid Mech., 2018, 841: 581-613.
[189] ISHIHARA T, KANEDA Y, YOKOKAWA M, et al. Small-Scale Statistics in High-Resolution Direct Numerical Simulation of Turbulence: Reynolds Number Dependence of One-Point Ve- locity Gradient Statistics[J]. J. Fluid Mech., 2007, 592: 335-366.
[190] ISHIHARA T, GOTOH T, KANEDA Y. Study of High-Reynolds Number Isotropic Turbulence by Direct Numerical Simulation[J]. Annu. Rev. Fluid Mech., 2009, 41(1): 165-180.
[191] KINGMA D P, BA J. Adam: A Method for Stochastic Optimization[A]. 2017.
[192] FAVRE A. Equations des gaz turbulents compressibles[J]. J. de Mecanique, 1965, 4(3).
[193] LU H, RUTLAND C J. Structural subgrid-scale modeling for large-eddy simulation: A review [J]. Acta Mech. Sin., 2016, 32: 567-578.
[194] NIKOLAOU Z M, CANT R S, VERVISCH L. Scalar Flux Modeling in Turbulent Flames Using Iterative Deconvolution[J]. Phys. Rev. Fluids, 2018, 3(4): 043201.
[195] CHOW F K, MOIN P. A Further Study of Numerical Errors in Large-Eddy Simulations[J]. J. Comput. Phys., 2003, 184(2): 366-380.
[196] YANG X I A, GRIFFIN K P. Grid-Point and Time-Step Requirements for Direct Numerical Simulation and Large-Eddy Simulation[J]. Phys. Fluids, 2021, 33(1): 015108.
[197] VOLLANT A, BALARAC G, CORRE C. A Dynamic Regularized Gradient Model of the Subgrid-Scale Stress Tensor for Large-Eddy Simulation[J]. Phys. Fluids, 2016, 28(2): 025114.
[198] CLARK DI LEONI P, ZAKI T A, KARNIADAKIS G, et al. Two-Point Stress-Strain-Rate Correlation Structure and Non-Local Eddy Viscosity in Turbulent Flows[J]. J. Fluid Mech., 2021, 914: A6.
[199] ROSE W. Results of an attempt to generate a homogeneous turbulent shear flow[J]. J. Fluid Mech., 1966, 25(1): 97-120.
[200] ROGALLO R S. Numerical experiments in homogeneous turbulence: volume 81315[M]. National Aeronautics and Space Administration, 1981.
[201] CHEN S, WANG J, LI H, et al. Spectra and Mach Number Scaling in Compressible Homogeneous Shear Turbulence[J]. Phys. Fluids, 2018, 30(6): 065109.
[202] CHEN S, WANG J, LI H, et al. Effect of Compressibility on Small Scale Statistics in Homogeneous Shear Turbulence[J]. Phys. Fluids, 2019, 31(2): 025107.
[203] CHEN S, WANG X, WANG J, et al. Effects of Bulk Viscosity on Compressible Homogeneous Turbulence[J]. Phys. Fluids, 2019, 31(8): 085115.
[204] POPE S B. A More General Effective-Viscosity Hypothesis[J]. J. Fluid Mech., 1975, 72(2): 331-340.
[205] WONG V C. A Proposed Statistical-dynamic Closure Method for the Linear or Nonlinear Subgrid-scale Stresses[J]. Phys. Fluids Fluid Dyn., 1992, 4(5): 1080-1082.
[206] LUND T S, NOVIKOV E A. Parameterization of Subgrid-Scale Stress By the Velocity Gradient Tensor[J]. Cent. Turbul. Res. Stanf. Univ. NASA, 1992.
[207] VISBAL M R, GAITONDE D V. On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes[J]. J. Comput. Phys., 2002, 181(1): 155-185.
[208] VISBAL M R, RIZZETTA D P. Large-Eddy Simulation on Curvilinear Grids Using Compact Differencing and Filtering Schemes[J]. J. Fluids Eng., 2002, 124(4): 836-847.
[209] LEWIS J M, LAKSHMIVARAHAN S, DHALL S. Dynamic data assimilation: a least squares approach: volume 13[M]. Cambridge University Press, 2006.
[210] BEWLEY T R, MOIN P, TEMAM R. DNS-based Predictive Control of Turbulence: An Opti- mal Benchmark for Feedback Algorithms[J]. J. Fluid Mech., 2001, 447: 179-225.
[211] DELPORT S, BAELMANS M, MEYERS J. Constrained Optimization of Turbulent Mixing- Layer Evolution[J]. J. Turbul., 2009, 10: N18.
[212] DELPORT S, BAELMANS M, MEYERS J. Maximizing Dissipation in a Turbulent Shear Flow by Optimal Control of Its Initial State[J]. Phys. Fluids, 2011, 23(4): 045105.
[213] WANG Q, GAO J H. The Drag-Adjoint Field of a Circular Cylinder Wake at Reynolds Numbers 20, 100 and 500[J]. J. Fluid Mech., 2013, 730: 145-161.
[214] ASHLEY A S, CREAN J, HICKEN J E. Towards Aerodynamic Shape Optimization of Un- steady Turbulent Flows[C]//AIAA Scitech 2019 Forum. San Diego, California: American Institute of Aeronautics and Astronautics, 2019.
[215] GARAI A, MURMAN S M. Stabilization of the Adjoint for Turbulent Flows[J]. AIAA J., 2021, 59(6): 2001-2013.
[216] TALNIKAR C, WANG Q, LASKOWSKI G M. Unsteady Adjoint of Pressure Loss for a Fundamental Transonic Turbine Vane[J]. J. Turbomach., 2017, 139(3).
[217] BOGGS P T, TOLLE J W. Sequential quadratic programming[J]. Acta numerica, 1995, 4: 1-51.
[218] CHUNG S W, FREUND J B. An Optimization Method for Chaotic Turbulent Flow[J]. J. Comput. Phys., 2022, 457: 111077.
[219] KUHN H W, TUCKER A W. Nonlinear Programming[C]//Proceedings 2nd Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, 1951.
[220] BLONIGAN P J, WANG Q. Multiple Shooting Shadowing for Sensitivity Analysis of Chaotic Dynamical Systems[J]. J. Comput. Phys., 2018, 354: 447-475.
[221] VREMAN A W. The Adjoint Filter Operator in Large-Eddy Simulation of Turbulent Flow[J]. Phys. Fluids, 2004, 16(6): 2012-2022.
[222] LIU D C, NOCEDAL J. On the limited memory BFGS method for large scale optimization[J]. Math. Program., 1989, 45(1): 503-528.
[223] BADREDDINE H, VANDEWALLE S, MEYERS J. Sequential Quadratic Programming (SQP) for Optimal Control in Direct Numerical Simulation of Turbulent Flow[J]. J. Comput. Phys., 2014, 256: 1-16.
[224] ARMIJO L. Minimization of Functions Having Lipschitz Continuous First Partial Derivatives [J]. Pacific J. Math., 1966, 16(1): 1-3.
[225] CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral Methods in Fluid Dynamics [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.
[226] PEYRET R. Applied Mathematical Sciences: volume 148 Spectral Methods for Incompress- ible Viscous Flow[M]. New York, NY: Springer New York, 2002.
[227] YUAN Z, WANG Y, XIE C, et al. Dynamic Nonlinear Algebraic Models with Scale-Similarity Dynamic Procedure for Large-Eddy Simulation of Turbulence[J]. Advances in Aerodynamics, 2022, 4(1): 16.
[228] WANG Y, YUAN Z, XIE C, et al. Temporally Sparse Data Assimilation for the Small-Scale Reconstruction of Turbulence[J]. Phys. Fluids, 2022, 34(6): 065115.
[229] WANG Y, YUAN Z, WANG J. A Further Investigation on the Data Assimilation-Based Small- Scale Reconstruction of Turbulence[J]. Phys. Fluids, 2023, 35(1): 015143.
[230] SHARAN N, MATHEOU G, DIMOTAKIS P E. Turbulent Shear-Layer Mixing: Initial Condi- tions, and Direct-Numerical and Large-Eddy Simulations[J]. J. Fluid Mech., 2019, 877: 35-81.
[231] WANG X, WANG J, CHEN S. Compressibility Effects on Statistics and Coherent Structures of Compressible Turbulent Mixing Layers[J]. J. Fluid Mech., 2022, 947: A38.
[232] KLEIN M, SADIKI A, JANICKA J. A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations[J]. J. Comput. Phys., 2003, 186(2): 652-665.
[233] ROGERS M M, MOSER R D. Direct Simulation of a Self-similar Turbulent Mixing Layer[J]. Phys. Fluids, 1994, 6(2): 903-923.
[234] HUNT J C, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulent flows[J]. Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program, 1988.
[235] DUBIEF Y, DELCAYRE F. On coherent-vortex identification in turbulence[J]. J. Turbul., 2000, 1(1): 011.
[236] ZHAN J M, LI Y T, WAI W H O, et al. Comparison between the Q criterion and Rortex in the application of an in-stream structure[J]. Phys. Fluids, 2019, 31(12): 121701.
修改评论