[1] 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知[J]. 中华人民共和国国务院公报, 2020(31): 16-23.
[2] WU S, CAI C, LIU X, et al. Compact and Free-Positioning Omnidirectional Wireless Power Transfer System for Unmanned Aerial Vehicle Charging Applications[J]. IEEE Transactions on Power Electronics, 2022(8):37.
[3] ZHANG Z, PANG H L, GEORGIADIS A, et al. Wireless power transfer-an overview[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1044-1058.
[4] LIANG H W R, WANG H W, LEE C K, et al. Analysis and performance enhancement of wireless power transfer systems with intended metallic objects[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1388-1398.
[5] MAHESH A, BHARATIRAJA C, POPA L M. Review on inductive wireless power transfer charging for electric vehicle—a review[J]. IEEE Access, 2021, 9:137667-137713.
[6] LIU S P, WU Y H, ZHOU L Y, et al. A Misalignment-Tolerant IPT System Based on Dual Decoupled Receiver Coils with Voltage Doubler Rectifier[C]//2022 IEEE Applied Power Electronics Conference and Exposition (APEC), 2022:1104-1109.
[7] SAB A, DW B, CPY A, et al. How driver behaviour and parking alignment affects inductive charging systems for electric vehicles - ScienceDirect[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 721-731.
[8] SCHNEIDER J M, O'HARE J J. Alignment, verification, and optimization of high power wireless charging systems: US, US09637014B2[P]2017-05-02.
[9] NI W, COLLINGS I B, WANG X, et al. Radio alignment for inductive charging of electric vehicles[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2): 427-440.
[10] XU J, LI Z, ZHANG K, et al. The Principle, Methods and Recent Progress in RFID Positioning Techniques: A Review[J], IEEE Journal of Radio Frequency Identification, 2023, 7: 50-63.
[11] HASHI S, YABUKAMI S, KANETAKA H, et al. Wireless magnetic position-sensing system using optimized pickup coils for higher accuracy[J]. IEEE Transactions on Magnetics, 2011, 47(10): 3542-3545.
[12] KHAN N, MATSUMOTO H, TRESCASES O. Wireless electric vehicle charger with electromagnetic coil-based position correction using impedance and resonant frequency detection[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 7873-7883.
[13] DAHAL A, KUMAR V R, YOGAMANI S, et al. An Online Learning System for Wireless Charging Alignment Using Surround-View Fisheye Cameras[J], IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 20553-20562.
[14] YANG Y, WANG X, LI D, et al. An Improved Indoor 3-D Ultrawideband Positioning Method by Particle Swarm Optimization Algorithm[J], IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11.
[15] LIU L, NIU P, LUO D, et al. A method for aligning of transmitting and receiving coils of electric vehicle wireless charging based on binocular vision[C]//2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2018: 1-6.
[16] 日月. 日本研制无人驾驶公共汽车[J]. 航天技术与民品, 2000(6): 38-38.
[17] GAO Y, CHEN D, OLIVEIRA A A, et al. 3-D Coil positioning based on magnetic sensing for wireless EV charging[J]. IEEE Transactions on Transportation Electrification, 2017, 3(3): 578-588.
[18] LIU X, LIU C, HAN W, et al. Design and Implementation of a Multi-Purpose TMR Sensor Matrix for Wireless Electric Vehicle Charging[J]. IEEE Sensors Journal, 2019, 19(5): 1683-1692.
[19] BABU A, GEORGE B. Sensor system to aid the vehicle alignment for inductive ev chargers[J]. IEEE Transactions on Industrial Electronics, 2018, 66(9): 7338-7346.
[20] JESHMA T V, GEORGE B. MR sensor based coil alignment sensing system for wirelessly charged EVs[J]. IEEE Sensors Journal, 2020, 20(99): 5588-5596.
[21] TAN L, LI C, J LI, et al. Mesh-based accurate positioning strategy of EV wireless charging coil with detection coils[J]. IEEE Transactions on Industrial Informatics, 2020, 17(5): 3176-3185.
[22] ZHANG Z, ZHENG S, YAO Z, et al. A Coil Positioning Method Integrated With an Orthogonal Decoupled Transformer for Inductive Power Transfer Systems[J] IEEE Transactions on Power Electronics, 2022, 37(8): 9983-9998.
[23] WANG R, HUANG X. Multi-degree of freedom accurate offset angle measurement for coils based on 3D electronic compasses[J]. IEEE sensors journal, 2021, 21(19): 22038-22046.
[24] WEI Y Q, LUO Q M, MANTOOTH ALAN. A Resonant frequency tracking technique for LLC converter-based DC transformers[J]. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021, 2(4): 579-590.
[25] 曹玲玲, 陈乾宏, 任小永, 等. 电动汽车高效率无线充电技术的研究进展[J]. 电工技术学报, 2012, 27(8): 13.
[26] V. F. -G. TSENG, S. S. BEDAIR, J. J. RADICE, et al. Ultrasonic Lamb Waves for Wireless Power Transfer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(3):664-670.
[27] MATOS D, CORREIA R, CARVALHO N B. Millimeter-wave hybrid rf-dc converter based on a GaAs chip for IOT-WPT applications[J]. IEEE Microwave and Wireless Components Letters, 2021, PP(99):1-1.
[28] CHINTHAVALI M S, ONAR O C, MILLER J M, et al. SiC MOSFET based single phase active boost rectifier with power factor correction for wireless power transfer applications[C]//2013 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2013: 3258-3265.
[29] WU H H, GILCHRIST A, SEALY K D, et al. A high efficiency 5 kw inductive charger for evs using dual side control[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 585-595.
[30] AL-KARAKCHI A A, LACEY G, PUTRUS G. A method of electric vehicle charging to improve battery life[C]//2015 IEEE International Universities Power Engineering Conference (UPEC). IEEE, 2015: 1-3.
[31] BOYS J T, COVIC G A, GREEN A W. Stability and control of inductively coupled power transfer systems[J]. IEEE Proceedings-Electric Power Applications, 2000, 147(1): 37-43.
[32] KUMAR P, RITURAJ G. A new magnetic structure of unipolar rectangular coils in WPT systems to minimize the ferrite volume while maintaining maximum coupling[J]. IEEE Transactions on Circuits and Systems, II. Express briefs, 2021(68-6).
[33] INOUE R, UEDA H, KIM S. Study on Low-Loss and high-energy density coil structure of a wireless power transmission system using high temperature superconducting coils for railway vehicle[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(6):1-4.
[34] BUDHIA M, BOYS J T, COVIC G A, et al. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 318-328.
[35] 沈锦飞. 磁共振无线充电技术[M]. 北京: 机械工业出版社, 2020.
[36] 戴欣, 孙悦, 唐春森, 等. 无线电能传输技术[M]. 北京: 科学出版社, 2017.
[37] ZHAKSYLYK Y, HANKE U, AZADMEHR M. Single-Sided Interspiraled Inductive Impedance Matching for Magnetic Resonance Wireless Power Transfer[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(5):2189-2200.
[38] ZHAKSYLYK Y, HALVORSEN E, HANKE U, et al. Analysis of Fundamental Differences between Capacitive and Inductive Impedance Matching for Inductive Wireless Power Transfer[J]. Electronics, 2020, 9(3):476.
[39] BEH T C, IMURA T, KATO M, et al. Explicit Design of Impedance Matching Networks for Robust MHz WPT Systems With Different Features[J]. IEEE Transactions on Power Electronics, 2022, 37(9): 11382-11393.
[40] SHIN Y, WOO S, AHN S. Design of Series Inductors to Reduce EMI and Improve Power Bifurcation Phenomenon in WPT System[C]// 2022 Asia-Pacific Microwave Conference (APMC).
[41] VO T, DUONG Q T, OKADA M. Load-Independent Voltage Control for Multiple-Receiver Inductive Power Transfer Systems[J]. IEEE Access, 2019, 7(99):139450-139461.
[42] LIAO Z J, FENG Q K, JIANG C H, et al. Analysis and Design of EIT-Like Magnetic Coupling Wireless Power Transfer Systems[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021.
[43] VILLA J L, SALLAN J, OSORIO J, et al. High-misalignment tolerant compensation topology for ICPT systems[J]. IEEE Transactions on Industrial Electronics, 2011, 59(2): 945-951.
[44] BI Z, KAN T, MI C C, et al. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility[J]. Applied Energy, 2016, 179(oct.1): 413-425.
[45] JAMES J E, ROBERTSON D, COVIC G A. Improved AC pickups for IPT systems[J]. IEEE Transactions on Power Electronics, 2014, 29(12): 6361-6374.
[46] HE R, ZHOU J, HU C. A Dual-Source Inductive Power Transfer System Optimized with Large Misalignment Tolerance[C]// IECON 2020 - 46th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2020.
[47] AUVIGNE C, GERMANO P, LADAS D, et al. A dual-topology ICPT applied to an electric vehicle battery charger[C]//2012 IEEE International Conference on Electrical Machines (ICEM). IEEE, 2012: 2287-2292.
[48] 孙运全, 顾加亭, 陆洋锐, 等. 基于双边LCC补偿槽恒流恒压输出的无线充电系统研究[J]. 电子器件, 2019, 42(06): 1428-1434.
[49] QU X, JING Y, HAN H, et al. Higher order compensation for inductive-power-transfer converters with constant-voltage or constant-current output combating transformer parameter constraints[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 394-405.
[50] NIU S, XU H, SUN Z, et al. The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies[J]. Renewable & Sustainable Energy Reviews, 2019, 114(OCT.): 109302.1-109302.20.
[51] ZHANG B, CHEN Q, ZHANG L, et al. Triple-coil-structure-based coil positioning system for wireless EV charger[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 13515-13525.
[52] CULLINANE B, SMITH D, GREEN P. Where, when, and how well people park: a phone survey and field measurements[R]. University of Michigan Ann Arbor Transportation Research Institute, 2004.
[53] VEIT A, WILBER M J, BELONGIE S. Residual networks behave like ensembles of relatively shallow networks[C]//Advances in Neural Information Processing Systems. 2016: 550-558.
[54] ORHAN A E, PITKOW X. Skip Connections Eliminate Singularities[J]. International Conference on Learning Representations, 2018.
[55] NAIR V, HINTON G E. Rectified Linear Units Improve Restricted Boltzmann Machines Vinod Nair[C]//2010 International Conference on Machine Learning (ICML). JMLR.org, 2010: 807-814
[56] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//2015 International Conference on Machine Learning (ICML). JMLR.org, 2015: 448-456.
[57] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 770-778.
[58] BALDUZZI D, FREAN M, LEARY L, et al. The shattered gradients problem: If resnets are the answer, then what is the question?[C]//2017 International Conference on Machine Learning (ICML). JMLR.org, 2017: 342-350.
[59] ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual networks with adaptively parametric rectifier linear units for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2587-2597.
[60] ZHANG X X, WANG J, IEEE. A Method for high-dynamic DS-FH signal simulation based on high-order DDS[C]//2017 International Conference on Systems and Informatics (ICSAI). IEEE, 2017: 1330-1335.
[61] RIFKIN R, KLAUTAU A. In defense of one-vs-all classification[J]. Journal of Machine Learning Research, 2004, 5: 101-141.
[62] DENG X Q, LI W K, LIU X P, et al. One-class remote sensing classification: one-class vs. binary classifiers[J]. International Journal of Remote Sensing, 2018, 39(6): 1890-1910.
[63] CHANG C C, LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 27: 1-27.
[64] 徐启华, 杨瑞. 一种新的软间隔支持向量机分类算法[J]. 计算机工程与设计, 2005, 26(9): 3.
[65] FENG F, NA W C, JIN J, et al. Artificial neural networks for microwave computer-aided design: the state of the art[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(11): 4597-4619.
[66] ZHAO P, WU K. Homotopy optimization of microwave and millimeter-wave filters based on neural network model[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(4): 1390-1400.
[67] ZHANG W, FENG F, VENU-MADHAV-REDDY G R, et al. Space mapping approach to electromagnetic centric multiphysics parametric modeling of microwave components[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66: 3169-3185.
[68] CHAUDHARY V, PANWAR R. FSS derived using a new equivalent circuit model backed deep neural network[J]. IEEE Antennas and Wireless Propagation Letters, 2021(10): 20.
[69] DACHENA C, FEDELI A, FANTI A, et al. Initial experimental tests of an ann-based microwave imaging technique for neck diagnostics[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(12): 1495-1498.
[70] ZHOU P and AUSTIN J. Learning criteria for training neural network classifiers[J]. Neural Computation. Apply., vol. 7, no. 4, pp. 334–342, 1998.
[71] SHALEV-SHWARTZ S, ZHANG T. Stochastic dual coordinate ascent methods for regularized loss minimization[J]. Journal of Machine Learning Research, 2013, 14: 567-599.
[72] MAATEN L J P V D, HINTON G E. Visualizing high-dimensional data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
[73] ZHANG X Y, ZOU J H, HE K M, et al. Accelerating very deep convolutional networks for classification and detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 1943-1955.
[74] CHENG Y W, ZHU H P, WU J, et al. Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 987-997.
[75] PAN S J, QIANG Y. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[76] 王晋东, 陈益强. 迁移学习导论[M]. 北京: 电子工业出版社, 2022.
[77] LONG M, WANG J, DING G, et al. Transfer learning with graph co-regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 1805-1818.
[78] ZHANG Y, YANG Q. A survey on multi-task learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5586-5609.
修改评论