[1] LI Y, ZHANG W, LIU X, et al. Characteristic Analysis and Experiment of Adaptive Fiber Optic Current Sensor Technology [J]. Applied Sciences, 2019, 9(2): 333
[2] 张朝阳, 刘济民, 杨林. 磁探潜关键技术现状及发展趋势 [J]. 科学技术与工程, 2022, 22(1): 18-27.
[3] 刘星, 吴浩. 心磁图在心脏病诊断检查技术中的研究进展 [J]. 心电与循环, 2019, 38(5): 4.
[4] 陆峰. 传感器产业发展的现状与问题 [J]. 中国工业和信息化, 2022, (7): 5.
[5] 廖延彪. 光纤传感技术与应用 : Optical fiber sensing techniques and applications [M]. 北京: 清华大学出版社, 2009: 2-3.
[6] MIHAILOVIC P, PETRICEVIC S. Fiber Optic Sensors Based on the Faraday Effect [J]. Sensors (Basel), 2021, 21(19): 6564.
[7] LIU C, SHEN T, WU H, et al. Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors: A review [J]. Optical Fiber Technology, 2021, 65: 102634.
[8] ZHAO Y, LV R, LI H, et al. Birefringence Measurement for Magnetic Fluid Film Using Optical Fiber System [J]. IEEE Photonics Technology Letters, 2015, 27(2): 209-212.
[9] ZHANG J, WANG C, CHEN Y, et al. Fiber structures and material science in optical fiber magnetic field sensors [J]. Frontiers of Optoelectronics, 2022, 15(1): 34.
[10] 陈耀飞, 黄欢欢, 陈嘉尧, 等. 磁流体型光纤磁场传感研究进展: 从标量到矢量 [J]. 半导体光电, 2022, 43(4): 11.
[11] ZHANG Z, LIU F, MA Q, et al. Vector Magnetometer Based On Localized Scattering Between Optical Fiber Spectral Combs and Magnetic Nanoparticles [J]. Journal of Lightwave Technology, 2021, 39(20): 6599-6605.
[12] HAO Z, LI Y, PU S, et al. Ultrahigh-performance vector magnetic field sensor with wedge-shaped fiber tip based on surface plasmon resonance and magnetic fluid [J]. Nanophotonics, 2022, 11(15): 3519-3528.
[13] XIA J, WANG F, LUO H, et al. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure [J]. Sensors, 2016, 16(5): 620.
[14] SHI S, DING D, ZHOU Z, et al. Magnetic-field-induced rotation of light with orbital angular momentum [J]. Applied Physics Letters, 2015, 106(26): 261110.
[15] YU S, PANG F, LIU H, et al. Compositing orbital angular momentum beams in Bi4Ge3O12 crystal for magnetic field sensing [J]. Applied Physics Letters, 2017, 111(9): 091107.
[16] PANG F, ZHENG H, LIU H, et al. The Orbital Angular Momentum Fiber Modes for Magnetic Field Sensing [J]. IEEE Photonics Technology Letters, 2019, 31(11): 893-896.
[17] WU H, QIU J, WANG P, et al. Cylindrical Vector Beam for Vector Magnetic Field Sensing Based on Magnetic Fluid [J]. IEEE Photonics Technology Letters, 2021, 33(14): 703-706.
[18] QIU S, WANG J, CASTELLUCCI F, et al. Visualization of magnetic fields with cylindrical vector beams in a warm atomic vapor [J]. Photonics Research, 2021, 9(12): 2325-2331.
[19] CASTELLUCCI F, CLARK T W, SELYEM A, et al. Atomic Compass: Detecting 3D Magnetic Field Alignment with Vector Vortex Light [J]. Physical Review Letters, 2021, 127(23): 233202.
[20] YAO A, PADGETT M J. Orbital angular momentum: origins, behavior and applications [J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.
[21] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185-8189.
[22] MACDONALD M P, PATERSON L, VOLKE-SEPULVEDA K, et al. Creation and manipulation of three-dimensional optically trapped structures [J]. Science, 2002, 296(5570): 1101-1103.
[23] GRIER D G. A revolution in optical manipulation [J]. Nature, 2003, 424(6950): 810-816.
[24] WANG J, YANG J, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photonics, 2012, 6(7): 488-496.
[25] BOZINOVIC N, YUE Y, REN Y, et al. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers [J]. Science, 2013, 340(6140): 1545-1548.
[26] MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons [J]. Nature, 2001, 412(6844): 313-316.
[27] FICKLER R, CAMPBELL G, BUCHLER B, et al. Quantum entanglement of angular momentum states with quantum numbers up to 10,010 [J]. Proceedings of the National Academy of Sciences, USA, 2016, 113(48): 13642-13647.
[28] DORN R, QUABIS S, LEUCHS G. Sharper focus for a radially polarized light beam [J]. Physical Review Letters, 2003, 91(23): 233901.
[29] NESTEROV A V, NIZIEV V G. Laser beams with axially symmetric polarization [J]. Journal Of Physics D-applied Physics, 2000, 33(15): 1817-1822.
[30] PANG F, XIANG L, LIU H, et al. Review on Fiber-Optic Vortices and their Sensing Applications [J]. Journal of Lightwave Technology, 2021, 39(12): 3740-3750.
[31] DURNIN J. Exact-Solutions for Nondiffracting Beams .1. The Scalar Theory [J]. Journal of the Optical Society of America A-optics Image Science and Vision, 1987, 4(4): 651-654.
[32] GORI F, GUATTARI G, PADOVANI C. Bessel-Gauss Beams [J]. Optics Communications, 1987, 64(6): 491-495.
[33] PADGETT M J, ALLEN L. The Poynting Vector in Laguerre-Gaussian Laser Modes [J]. Optics Communications, 1995, 121(1-3): 36-40.
[34] ZHAN Q. Cylindrical vector beams: from mathematical concepts to applications [J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.
[35] RAMACHANDRAN S, KRISTENSEN P. Optical vortices in fiber [J]. Nanophotonics, 2013, 2(5-6): 455-474.
[36] FORBES A, DUDLEY A, MCLAREN M. Creation and detection of optical modes with spatial light modulators [J]. Advances in Optics and Photonics, 2016, 8(2): 200-227.
[37] MARRUCCI L, KARIMI E, SLUSSARENKO S, et al. Spin-to-Orbital Optical Angular Momentum Conversion in Liquid Crystal "q-Plates": Classical and Quantum Applications [J]. Molecular Crystals and Liquid Crystals, 2012, 561: 48-56.
[38] ORON R, DAVIDSON N, FRIESEM A A, et al. Efficient formation of pure helical laser beams [J]. Optics Communications, 2000, 182(1-3): 205-208.
[39] YU J, ZHOU C, JIA W, et al. Three-dimensional Dammann vortex array with tunable topological charge [J]. Applied Optics, 2012, 51(13): 2485-2490.
[40] ZHANG H, MAO B, HAN Y, et al. Generation of Orbital Angular Momentum Modes Using Fiber Systems [J]. Applied Sciences, 2019, 9(5): 1033.
[41] FENG L, LI Y, WU S, et al. A Review of Tunable Orbital Angular Momentum Modes in Fiber: Principle and Generation [J]. Applied Sciences, 2019, 9(12): 2408.
[42] MAO D, ZHENG Y, ZENG C, et al. Generation of polarization and phase singular beams in fibers and fiber lasers [J]. Advanced Photonics, 2021, 3(1): 014002.
[43] POINCARE H. Theorie mathematique de la Lumiere [M]. Paris: Gauthiers-Villars, 1892.
[44] MILIONE G, SZTUL H I, NOLAN D A, et al. Higher-order Poincare sphere, stokes parameters, and the angular momentum of light [J]. Physical Review Letters, 2011, 107(5): 053601.
[45] YI X, LIU Y, LING X, et al. Hybrid-order Poincaré sphere [J]. Physical Review A, 2015, 91(2): 023801.
[46] JIANG Y, REN G, LI H, et al. Linearly polarized orbital angular momentum mode purity measurement in optical fibers [J]. Applied Optics, 2017, 56(7): 1990-1995.
[47] BOZINOVIC N, GOLOWICH S, KRISTENSEN P, et al. Control of Orbital Angular Momentum of Light with Optical Fibers [J]. Optics Letters 2012, 37(13): 2451-2453.
[48] 刘公强. 磁光学 [M]. 上海: 上海科学技术出版社, 2001: 30-36.
[49] 刘公强, 龚挺. 磁光效应的经典理论分析 [J]. 上海交通大学学报, 1985, (03): 84-91.
[50] YAN Y, WU C, LIU L, et al. Temperature characteristics of a BGO fiber-optic voltage transformer [J]. Applied Optics, 2019, 58(28): 7781-7788.
[51] WILLIAMS P, ROSE A, LEE K, et al. Optical, thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi4Ge3O12) [J]. Applied Optics, 1996, 35(19): 3562-3569.
[52] WANG H, JIA W, SHEN J. Magneto-Optical Faraday Rotation in Bi4Ge3O12 Crystal [J]. Acta Physica Sinica, 1985, (01): 128-130.
[53] JING D, SUN L, JIN J, et al. Magneto-optical transmission in magnetic nanoparticle suspensions for different optical applications: a review [J]. Journal of Physics D: Applied Physics, 2020, 54(1): 013001.
[54] SHOKO, TAKETOMI S, OGAWA H, et al. Magnetic Birefringence and Dichroism in Magnetic Fluid [J]. IEEE Translation Journal on Magnetics in Japan, 1989, 4(6): 384-394.
[55] QI J, WANG W, SHI B, et al. Concise and efficient direct-view generation of arbitrary cylindrical vector beams by a vortex half-wave plate [J]. Photonics Research, 2021, 9(5): 803-813.
[56] ARORA G, RUCHI, PAL S K, et al. Full Poincare beam delineation based on the Stokes vortex ring [J]. Journal of Optics, 2021, 23(10): 105201.
[57] NAPE I, SINGH K, KLUG A, et al. Revealing the invariance of vectorial structured light in complex media [J]. Nature Photonics, 2022, 16(7): 538-546.
[58] RUCHI, SENTHILKUMARAN P, PAL S K, et al. Phase Singularities to Polarization Singularities [J]. International Journal of Optics, 2020, 2020: 2812803.
[59] ARORA G, RUCHI, SENTHILKUMARAN P. Hybrid order Poincare spheres for Stokes singularities [J]. Optics Letters, 2020, 45(18): 5136-5139.
[60] KUMAR V, PICCIRILLO B, REDDY S G, et al. Topological structures in vector speckle fields [J]. Optics Letters, 2017, 42(3): 466-469.
[61] ZUBAREV A Y. On the theory of birefringence in magnetic fluids [J]. Colloid Journal, 2012, 74(6): 695-702.
[62] GAO T, MA G, WANG Y, et al. Effect of Structure on Sensitivity of Magnetic Field Sensor Based on Non-Adiabatic Tapered Optical Fiber With Magnetic Fluid [J]. Ieee Sensors Journal, 2022, 22(5): 4022-4027.
[63] FREUND I. Poincare vortices [J]. Optics Letters, 2001, 26(24): 1996-1998.
[64] WANG Q, TU C, LI Y, et al. Polarization singularities: Progress, fundamental physics, and prospects [J]. APL Photonics, 2021, 6(4): 040901.
修改评论