中文版 | English
题名

基于涡旋光束的光纤磁场传感

其他题名
VORTEX BEAMS FOR OPTICAL FIBER MAGNETIC FIELD SENSING
姓名
姓名拼音
ZHOU Zhitai
学号
12032196
学位类型
硕士
学位专业
080901 物理电子学
学科门类/专业学位类别
08 工学
导师
沈平
导师单位
电子与电气工程系
论文答辩日期
2023-05-12
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

涡旋光束也称作光学涡旋,是指具有相位涡旋或是偏振涡旋的光束。由于在涡旋中心存在孤立的奇点,涡旋光束拥有许多独特的性质。一般把具有相位涡旋的光束称为轨道角动量光束(Orbital Angular Momentum, OAM),把具有偏振涡旋的光束称为矢量光束(Vector Beam, VB)。随着人们对涡旋本质的不断探究,涡旋光束已经在光学的多个领域得到了广泛的应用。特别在传感领域中,涡旋光束因其多自由度和存在光学奇点的特性也受到研究者的广泛关注。

磁场传感在电力系统、航空航天、生物医疗等场景有着大量的需求,由于传统基于电学的传感器存在易受电磁干扰、结构复杂、对环境要求高等缺点,人们希望利用光学磁场传感的方式解决这些问题,其中光纤磁场传感器以其体积小、灵敏度高、环境适应力强等优势受到青睐。而目前大部分光纤磁场传感器只能对标量磁场进行测量,且测量结果容易受到外界环境变化的串扰。

为此本论文主要研究了涡旋光束在磁场传感中的应用,希望利用其多自由度的优势,实现对磁场传感中的多物理量测量和矢量磁场的测量。在多物理量的测量中,本研究利用柱状矢量光束(Cylindrical Vector Beam, CVB)偏振的径向分布和磁流体在磁场下表现出的二向色性,实现了温度和磁场的同时测量。同时本研究也探究了全庞加莱光束在磁场传感中的应用,借助庞加莱球的分析手段,构建了斯托克斯相位进行磁场传感。通过分析斯托克斯相位的旋转角度测量磁场强度的变化,灵敏度为0.934°/mT 该方法对外界干扰具有很强的鲁棒性,能避免光强波动而引起的测量误差。在此基础上,本文进一步探究了利用全庞加莱光束中奇点的移动来实现矢量磁场传感的方案,并进行了相应的仿真和实验验证。

其他摘要

Vortex beam, also known as an optical vortex, refers to a beam of light with phase or polarization vortex. Due to the existence of an isolated singularity at the center of the vortex, vortex beams possess many unique properties. Beams with phase vortex are generally called orbital angular momentum (OAM) beams, while beams with polarization vortex are called vector beams (VB). With continuous exploration into the nature of vortices, vortex beams have been widely applied in various fields of optics. Particularly in the field of sensing, researchers have shown great interest in vortex beams due to their multiple degrees of freedom and the existence of optical singularities.

There is a great demand for magnetic field sensing in power systems, aerospace, biomedical scenarios and so on. Traditional electric-based sensors are prone to electromagnetic interference, have complex structures, and require a high level of environmental adaptability. Therefore, researchers hope to use optical magnetic field sensing to solve these problems, with fiber-optic magnetic field sensors being favored for their small size, high sensitivity, and strong environmental adaptability. However, currently, most fiber-optic magnetic field sensors can only measure scalar magnetic fields, and their measurement results are susceptible to external environmental changes.

Therefore, this paper mainly investigates the application of vortex beams in magnetic field sensing, hoping to use their advantages of multiple degrees of freedom to achieve measurements of multiple physical quantities and vector magnetic fields in magnetic field sensing. In the measurement of multiple physical quantities, we used the radial distribution of a cylindrical vector beam (CVB) polarization and the dichroism of magnetic fluid in a magnetic field to achieve simultaneous measurements of temperature and magnetic fields. We also explored the application of the full Poincaré beam in magnetic field sensing. With the analytical tool of the Poincaré sphere, we constructed a Stokes phase for magnetic field sensing. By measuring the rotation angle of the Stokes phase, we can detect changes in the magnetic field strength with a sensitivity of 0.934°/mT. This method has strong robustness against external interference and can avoid measurement errors caused by fluctuations in light intensity. Based on this, we investigated a scheme for vector magnetic field sensing using the movement of singularities in the full Poincaré beam, and conducted corresponding simulations and experimental verifications.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] LI Y, ZHANG W, LIU X, et al. Characteristic Analysis and Experiment of Adaptive Fiber Optic Current Sensor Technology [J]. Applied Sciences, 2019, 9(2): 333
[2] 张朝阳, 刘济民, 杨林. 磁探潜关键技术现状及发展趋势 [J]. 科学技术与工程, 2022, 22(1): 18-27.
[3] 刘星, 吴浩. 心磁图在心脏病诊断检查技术中的研究进展 [J]. 心电与循环, 2019, 38(5): 4.
[4] 陆峰. 传感器产业发展的现状与问题 [J]. 中国工业和信息化, 2022, (7): 5.
[5] 廖延彪. 光纤传感技术与应用 : Optical fiber sensing techniques and applications [M]. 北京: 清华大学出版社, 2009: 2-3.
[6] MIHAILOVIC P, PETRICEVIC S. Fiber Optic Sensors Based on the Faraday Effect [J]. Sensors (Basel), 2021, 21(19): 6564.
[7] LIU C, SHEN T, WU H, et al. Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors: A review [J]. Optical Fiber Technology, 2021, 65: 102634.
[8] ZHAO Y, LV R, LI H, et al. Birefringence Measurement for Magnetic Fluid Film Using Optical Fiber System [J]. IEEE Photonics Technology Letters, 2015, 27(2): 209-212.
[9] ZHANG J, WANG C, CHEN Y, et al. Fiber structures and material science in optical fiber magnetic field sensors [J]. Frontiers of Optoelectronics, 2022, 15(1): 34.
[10] 陈耀飞, 黄欢欢, 陈嘉尧, 等. 磁流体型光纤磁场传感研究进展: 从标量到矢量 [J]. 半导体光电, 2022, 43(4): 11.
[11] ZHANG Z, LIU F, MA Q, et al. Vector Magnetometer Based On Localized Scattering Between Optical Fiber Spectral Combs and Magnetic Nanoparticles [J]. Journal of Lightwave Technology, 2021, 39(20): 6599-6605.
[12] HAO Z, LI Y, PU S, et al. Ultrahigh-performance vector magnetic field sensor with wedge-shaped fiber tip based on surface plasmon resonance and magnetic fluid [J]. Nanophotonics, 2022, 11(15): 3519-3528.
[13] XIA J, WANG F, LUO H, et al. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure [J]. Sensors, 2016, 16(5): 620.
[14] SHI S, DING D, ZHOU Z, et al. Magnetic-field-induced rotation of light with orbital angular momentum [J]. Applied Physics Letters, 2015, 106(26): 261110.
[15] YU S, PANG F, LIU H, et al. Compositing orbital angular momentum beams in Bi4Ge3O12 crystal for magnetic field sensing [J]. Applied Physics Letters, 2017, 111(9): 091107.
[16] PANG F, ZHENG H, LIU H, et al. The Orbital Angular Momentum Fiber Modes for Magnetic Field Sensing [J]. IEEE Photonics Technology Letters, 2019, 31(11): 893-896.
[17] WU H, QIU J, WANG P, et al. Cylindrical Vector Beam for Vector Magnetic Field Sensing Based on Magnetic Fluid [J]. IEEE Photonics Technology Letters, 2021, 33(14): 703-706.
[18] QIU S, WANG J, CASTELLUCCI F, et al. Visualization of magnetic fields with cylindrical vector beams in a warm atomic vapor [J]. Photonics Research, 2021, 9(12): 2325-2331.
[19] CASTELLUCCI F, CLARK T W, SELYEM A, et al. Atomic Compass: Detecting 3D Magnetic Field Alignment with Vector Vortex Light [J]. Physical Review Letters, 2021, 127(23): 233202.
[20] YAO A, PADGETT M J. Orbital angular momentum: origins, behavior and applications [J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.
[21] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185-8189.
[22] MACDONALD M P, PATERSON L, VOLKE-SEPULVEDA K, et al. Creation and manipulation of three-dimensional optically trapped structures [J]. Science, 2002, 296(5570): 1101-1103.
[23] GRIER D G. A revolution in optical manipulation [J]. Nature, 2003, 424(6950): 810-816.
[24] WANG J, YANG J, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photonics, 2012, 6(7): 488-496.
[25] BOZINOVIC N, YUE Y, REN Y, et al. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers [J]. Science, 2013, 340(6140): 1545-1548.
[26] MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons [J]. Nature, 2001, 412(6844): 313-316.
[27] FICKLER R, CAMPBELL G, BUCHLER B, et al. Quantum entanglement of angular momentum states with quantum numbers up to 10,010 [J]. Proceedings of the National Academy of Sciences, USA, 2016, 113(48): 13642-13647.
[28] DORN R, QUABIS S, LEUCHS G. Sharper focus for a radially polarized light beam [J]. Physical Review Letters, 2003, 91(23): 233901.
[29] NESTEROV A V, NIZIEV V G. Laser beams with axially symmetric polarization [J]. Journal Of Physics D-applied Physics, 2000, 33(15): 1817-1822.
[30] PANG F, XIANG L, LIU H, et al. Review on Fiber-Optic Vortices and their Sensing Applications [J]. Journal of Lightwave Technology, 2021, 39(12): 3740-3750.
[31] DURNIN J. Exact-Solutions for Nondiffracting Beams .1. The Scalar Theory [J]. Journal of the Optical Society of America A-optics Image Science and Vision, 1987, 4(4): 651-654.
[32] GORI F, GUATTARI G, PADOVANI C. Bessel-Gauss Beams [J]. Optics Communications, 1987, 64(6): 491-495.
[33] PADGETT M J, ALLEN L. The Poynting Vector in Laguerre-Gaussian Laser Modes [J]. Optics Communications, 1995, 121(1-3): 36-40.
[34] ZHAN Q. Cylindrical vector beams: from mathematical concepts to applications [J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.
[35] RAMACHANDRAN S, KRISTENSEN P. Optical vortices in fiber [J]. Nanophotonics, 2013, 2(5-6): 455-474.
[36] FORBES A, DUDLEY A, MCLAREN M. Creation and detection of optical modes with spatial light modulators [J]. Advances in Optics and Photonics, 2016, 8(2): 200-227.
[37] MARRUCCI L, KARIMI E, SLUSSARENKO S, et al. Spin-to-Orbital Optical Angular Momentum Conversion in Liquid Crystal "q-Plates": Classical and Quantum Applications [J]. Molecular Crystals and Liquid Crystals, 2012, 561: 48-56.
[38] ORON R, DAVIDSON N, FRIESEM A A, et al. Efficient formation of pure helical laser beams [J]. Optics Communications, 2000, 182(1-3): 205-208.
[39] YU J, ZHOU C, JIA W, et al. Three-dimensional Dammann vortex array with tunable topological charge [J]. Applied Optics, 2012, 51(13): 2485-2490.
[40] ZHANG H, MAO B, HAN Y, et al. Generation of Orbital Angular Momentum Modes Using Fiber Systems [J]. Applied Sciences, 2019, 9(5): 1033.
[41] FENG L, LI Y, WU S, et al. A Review of Tunable Orbital Angular Momentum Modes in Fiber: Principle and Generation [J]. Applied Sciences, 2019, 9(12): 2408.
[42] MAO D, ZHENG Y, ZENG C, et al. Generation of polarization and phase singular beams in fibers and fiber lasers [J]. Advanced Photonics, 2021, 3(1): 014002.
[43] POINCARE H. Theorie mathematique de la Lumiere [M]. Paris: Gauthiers-Villars, 1892.
[44] MILIONE G, SZTUL H I, NOLAN D A, et al. Higher-order Poincare sphere, stokes parameters, and the angular momentum of light [J]. Physical Review Letters, 2011, 107(5): 053601.
[45] YI X, LIU Y, LING X, et al. Hybrid-order Poincaré sphere [J]. Physical Review A, 2015, 91(2): 023801.
[46] JIANG Y, REN G, LI H, et al. Linearly polarized orbital angular momentum mode purity measurement in optical fibers [J]. Applied Optics, 2017, 56(7): 1990-1995.
[47] BOZINOVIC N, GOLOWICH S, KRISTENSEN P, et al. Control of Orbital Angular Momentum of Light with Optical Fibers [J]. Optics Letters 2012, 37(13): 2451-2453.
[48] 刘公强. 磁光学 [M]. 上海: 上海科学技术出版社, 2001: 30-36.
[49] 刘公强, 龚挺. 磁光效应的经典理论分析 [J]. 上海交通大学学报, 1985, (03): 84-91.
[50] YAN Y, WU C, LIU L, et al. Temperature characteristics of a BGO fiber-optic voltage transformer [J]. Applied Optics, 2019, 58(28): 7781-7788.
[51] WILLIAMS P, ROSE A, LEE K, et al. Optical, thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi4Ge3O12) [J]. Applied Optics, 1996, 35(19): 3562-3569.
[52] WANG H, JIA W, SHEN J. Magneto-Optical Faraday Rotation in Bi4Ge3O12 Crystal [J]. Acta Physica Sinica, 1985, (01): 128-130.
[53] JING D, SUN L, JIN J, et al. Magneto-optical transmission in magnetic nanoparticle suspensions for different optical applications: a review [J]. Journal of Physics D: Applied Physics, 2020, 54(1): 013001.
[54] SHOKO, TAKETOMI S, OGAWA H, et al. Magnetic Birefringence and Dichroism in Magnetic Fluid [J]. IEEE Translation Journal on Magnetics in Japan, 1989, 4(6): 384-394.
[55] QI J, WANG W, SHI B, et al. Concise and efficient direct-view generation of arbitrary cylindrical vector beams by a vortex half-wave plate [J]. Photonics Research, 2021, 9(5): 803-813.
[56] ARORA G, RUCHI, PAL S K, et al. Full Poincare beam delineation based on the Stokes vortex ring [J]. Journal of Optics, 2021, 23(10): 105201.
[57] NAPE I, SINGH K, KLUG A, et al. Revealing the invariance of vectorial structured light in complex media [J]. Nature Photonics, 2022, 16(7): 538-546.
[58] RUCHI, SENTHILKUMARAN P, PAL S K, et al. Phase Singularities to Polarization Singularities [J]. International Journal of Optics, 2020, 2020: 2812803.
[59] ARORA G, RUCHI, SENTHILKUMARAN P. Hybrid order Poincare spheres for Stokes singularities [J]. Optics Letters, 2020, 45(18): 5136-5139.
[60] KUMAR V, PICCIRILLO B, REDDY S G, et al. Topological structures in vector speckle fields [J]. Optics Letters, 2017, 42(3): 466-469.
[61] ZUBAREV A Y. On the theory of birefringence in magnetic fluids [J]. Colloid Journal, 2012, 74(6): 695-702.
[62] GAO T, MA G, WANG Y, et al. Effect of Structure on Sensitivity of Magnetic Field Sensor Based on Non-Adiabatic Tapered Optical Fiber With Magnetic Fluid [J]. Ieee Sensors Journal, 2022, 22(5): 4022-4027.
[63] FREUND I. Poincare vortices [J]. Optics Letters, 2001, 26(24): 1996-1998.
[64] WANG Q, TU C, LI Y, et al. Polarization singularities: Progress, fundamental physics, and prospects [J]. APL Photonics, 2021, 6(4): 040901.

所在学位评定分委会
电子科学与技术
国内图书分类号
TN253
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544167
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
周之泰. 基于涡旋光束的光纤磁场传感[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032196-周之泰-电子与电气工程(4839KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周之泰]的文章
百度学术
百度学术中相似的文章
[周之泰]的文章
必应学术
必应学术中相似的文章
[周之泰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。