[1]Deutsch D, Jozsa R. Rapid solution of problems by quantum computation[M]. [S.l.]: University of Bristol, 1992: 553-558.
[2]Feynman J. Geomagnetic and solar wind cycles, 1900–1975[J]. Journal of Geophysical Research: Space Physics, 1982, 87(A8): 6153-6162.
[3]熊康林,冯加贵,郑亚锐等.超导量子电路材料[J].科学通报,2022,67(02):143-162.
[4]Cai Weizhou, Ma Yuwei, Wang Weiting, et al. Bosonic quantum error correction codes in superconducting quantum circuits[J]. Fundamental Research,2021,1(1).
[5]Moore G E, et al. Cramming more components onto integrated circuits[M]. McGraw-Hill New York, 1965.
[6]Shalf J. The future of computing beyond Moore’s law[J]. Philosophical Transactions of the Royal Society A, 2020, 378(2166): 20190061.
[7]Bishop L S . Circuit quantum electrodynamics.[D]. Yale University.;, 2010.
[8]Shor P W. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings 35th annual symposium on foundations of computer science. Ieee, 1994: 124-134.
[9]Eman Alqudah,Amin Jarrah. Parallel implementation of genetic algorithm on FPGA using Vivado high level synthesis[J]. International Journal of Bio-Inspired Computation,2020,15(2).
[10]Huang, HL., Wu, D., Fan, D. et al. Superconducting quantum computing: a review.[J]. Sci. China Inf. Sci., 2020, 63, 180501.
[11]Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[12]Makhlin Y, Schön G, Shnirman A. Quantum-state engineering with josephson-junction devices[J]. Physics, 2000, 73(2): 357-400.
[13]Place, A.P.M., Rodgers, L.V.H., Mundada, P. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat Commun 12, 1779 (2021). https://doi.org/10.1038/s41467-021-22030-5.
[14]Guo, Qiujiang and Cheng, Chen and Li, Hekang et al. Stark Many-Body Localization on a Superconducting Quantum Processor. Phys. Rev. 127.240502 (2021). https://doi.org/10.1103/PhysRevLett.127.240502.
[15]Zhang, X., Jiang, W., Deng, J. et al. Digital quantum simulation of Floquet symmetry-protected topological phases. Nature 607, 468–473 (2022). https://doi.org/10.1038/s41586-022-04854-3.
[16]Wang, C., Li, X., Xu, H. et al. Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf 8, 3 (2022). https://doi.org/10.1038/s41534-021-00510-2.
[17]Ni, Z., Li, S., Deng, X. et al. Beating the break-even point with a discrete-variable-encoded logical qubit. Nature 616, 56–60 (2023). https://doi.org/10.1038/s41586-023-05784-4.
[18]Joshi A , Noh K , Gao Y Y . Quantum information processing with bosonic qubits in circuit QED[J]. Quantum Science and Technology, 2021, 6(3).
[19]Chiaverini J et al. Realization of quantum error correction.[J]. Nature, 2004, 432(7017) : 602-5.
[20]Devoret M H, Schoelkopf R J. Superconducting circuits for quantum information: an outlook.[J]. Science, 2013, 339(6124): 1169-74.
[21]Ming Gong et al. ,Quantum walks on a programmable two-dimensional 62-qubit superconducting processor.Science, 2021, 372,948-952.
[22]Ristè D, DiCarlo L. Digital feedback in superconducting quantum circuits[J]. arXiv: Quantum Physics (2015): n. pag..
[23]Liu Y . Quantum Feedback Control of Multiple Superconducting Qubits[D]. Yale University. 2016.
[24]P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, et al. Persistent Control of a Superconducting Qubit by Stroboscopic Measurement Feedback[J]. Phys. Rev. X, 2013, 3(2): 021008.
[25]Jacobs K , Wang X , Wiseman H M . Coherent feedback that beats all measurement-based feedback protocols[J]. New Journal of Physics, 2014, 16(7): 073036.
[26]Divincenzo, David P. The physical implementation of quantum computation[J]. Fortschritte Der Physik, 2010, 48(9-11): 771-783.
[27]Das Subhajit,Sunaniya A.K.. FPGA implementation of high-fidelity hybrid reversible watermarking algorithm[J]. Microprocessors and Microsystems,2022,89.
[28]Cramer J, Kalb N, Rol M A, et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback[J]. Nat. Commun., 2016, 7(May 2016): 11526.
[29]班冬松,唐培松,陈子钰,等.超导和自旋量子比特测控芯片架构研究[J].中国集成电路,2021,30(10):51-58.
[30]宿非凡, 杨钊华. 超导量子比特耦合与测控的物理原理[J]. 物理与工程, 2022, 32(4):9.
[31]王战. 基于超导量子比特芯片的测控与量子模拟[D].中国科学院大学(中国科学院物理研究所),2021.
[32]杨真. 超导量子比特器件制备与测控[D].南京大学,2019.
[33]徐昱. 超导量子计算室温电子学读出系统研究[D].中国科学技术大学,2019.
[34]John, Clarke, Frank K , et al. Superconducting quantum bits.[J]. Nature, 2008, 453(7198):1031-1042.
[35]Krantz P , Kjaergaard M , Yan F , et al. A Quantum Engineer's Guide to Superconducting Qubits[J]. Applied Physics Reviews, 2019, 6(2):021318.
[36]J.K. Asboth, P. Adam, et al . Coherent-state qubits: entanglement and decoherence[J]. Eur. Phys. J. D, 2004, 30(8): 403-410.
[37]孟宪元 陈彰林 陆佳华.Xilinx新一代FPGA设计套件Vivado应用指南:EDA工程技术丛书[M].北京:清华大学出版社,2014.
[38]Devoret M H, Schoelkopf R J. Superconducting circuits for quantum information: an outlook.[J]. Science, 2013, 339(6124): 1169-74.
[39]Nakamura Y , Pashkin Y A , Tsai J S . Coherent control of macroscopic quantum states in a single-Cooper-pair box[J]. Nature, 1999, 398(6775): A49-A51.
[40]于扬.谷歌宣称成功演示“量子霸权”[J].中国科学基金, 2020, 34(02):196-197.
[41]Y Wu, WS Bao, S Cao, et al. Strong quantum computational advantage using a superconducting quantum processor[J]. Phys. Rev. Lett., 2021, 127: 180501.
[42]孔伟成.基于 Transmon qubit 量子芯片工作环境的研究与优化 [D]. 合肥:中国科学技术大学, 2018.
[43]Ristè D, Bultink C C, Lehnert K W, et al. Feedback control of a solid-state qubit using high-fidelity projective measurement[J]. Phys. Rev. Lett., 2012, 109(24): 240502.
[44]Hu, L., Ma, Y., Cai, W. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit[J]. Nat. Phys., 2019, 15(5): 503-508.
[45]Ling Hu, Xianghao Mu, Weizhou Cai , et al. Experimental quantum channel simulation[J]. Science Bulletin, 2018, 63(23): 1551-1557.
[46]Lin T , Jacobs K . A Controllable Interaction Between Two-Level Systems Inside a Josephson Junction[J]. IEEE Trans. Appl. Supercond., 2009, 19(3): 953-956.
[47]J.K. Asboth, P. Adam, et al . Coherent-state qubits: entanglement and decoherence[J]. Eur. Phys. J. D, 2004, 30(8): 403-410.
[48]张振涛. 超导量子比特的调控与退相干研究[D].南京大学,2013.
[49]王腾辉. 超导量子比特与绝热快速捷径在量子模拟和量子门中的应用[D].浙江大学,2018.
[50]Chow J M, Gambetta J M, Córcoles A D, et al. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits[J]. Phys. Rev. Lett., 2012, 109: 060501.
[51]雷世曾.二次量子化方法中产生算符和湮灭算符的两种形式[J].大学物理,1983(12):11-13.
[52]Wendin,Goran, and V.S.Shumeiko.Superconductingquantum circuits, qubits and computing. arXiv preprint cond-mat/0508729, 2005.
[53]Devoret M H, Martinis J M. Implementing qubits with superconducting integrated circuits[J]. Experimental aspects of quantum computing, 2005: 163-203.
[54]Mooij J E, Lloyd S. Josephson persistent-current qubit[J]. Science, 1999, 285(5430): 1036.
[55]B. D. Josephson. Possible New Effects in Superconductive Tunnelling[J]. Phys. Lett., 1962, 1(7): 251-253.
[56]Blais A , Grimsmo A L , Girvin S M , et al. Circuit Quantum Electrodynamics[J]. Rev. Mod. Phys., 2020, 93: 025005.
[57]S. M. Girvin, Circuit QED: Superconducting qubits coupled to microwave photons. In Quantum Machines: Measurement and Control of Engineered Quantum Systems. Oxford University Press, 2014, pp. 113–256.
[58]Uri, Voo, Michel, et al. Introduction to quantum electromagnetic circuits[J]. Int. J. Circuit Theory Appl., 2017, 45(7): 897-934.
[59]R. J. Cava, B. Batlogg, J. J. Krajewski, et al. Electrical and magnetic properties of crystallographic shear structures[J]. Phys. Rev. B 44, 6973. 1991.
[60]C. Nico, T. Monteiro, M. P. F. Graça. Niobium oxides and niobates physical properties: Review and prospects. Progress in Materials Science 80, 1 (2016).
[61]D. Face, D. Prober. Nucleation of body‐centered‐cubic tantalum films with a thin niobium underlayer. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, 3408 (1987).
[62]D. Face, D. Prober, W. McGrath, P. Richards. High quality tantalum superconducting tunnel junctions for microwave mixing in the quantum limit. Applied physics letters 48, 1098 (1986).
[63]Chen Z . Metrology of Quantum Control and Measurement in Superconducting Qubits[D]. University of California, Santa Barbara. 2018.
[64]Muhammad Nasir Khan, Syed K. Hasnain, Mohsin Jamil, et al. Electronic Signals and Systems:Analysis, Design and Applications[M].River Publishers:2022-09-01.
[65]Khalid Sayood. Signals and Systems:A One Semester Modular Course[M].Morgan & Claypool Publishers:2021-07-22.
[66]Majer J , Chow J M , Gambetta J M , et al. Coupling Superconducting Qubits via a Cavity Bus[J]. Nature, 2007, 449(7161):443-447.
[67]Martinis J M, Nam S, Aumentado J, et al. Rabi oscillations in a large josephson-junction qubit.[J]. Physical Review Letters, 2002, 89(11): 117901.
[68]Marvin Chandra Wijaya. Comparative Analysis of Performance Run Length (RLE) Data Compression Design by VHDL and Design by Microcontroller[J]. International Journal of Modern Education and Computer Science (IJMECS),2021,13(6).
[69]Gadawe N. T.,Fathi T.A.,Qaddoori S.L.,Hamad R. W.. Synthesis and Implementation of IIR Filter using VHDL Language[J]. IOP Conference Series: Materials Science and Engineering,2021,1152(1).
[70]Sachin Maheshwari,V.A. Bartlett,Izzet Kale. Modelling, simulation and verification of 4-phase adiabatic logic design: A VHDL-Based approach[J]. Integration,2019,67.
[71]Yogesh Misra. Implementation of Fuzzy Based Flow Controller using VHDL[J]. International Journal of Innovative Technology and Exploring Engineering (IJITEE),2019,8(8).
[72]AbdelAtty Heba M., Hassaneen Saly S., Soliman Heba Y.. VHDL implementation of circular shifting‐partial transmit sequence in MIMO OFDM systems[J]. Int. J. Commun. Syst., 2022, 36(3).
[73]Ujjwala S Rawandale,Sanjay R. Ganorkar,Mahesh T. Kolte. VHDL based Design of an Efficient Hearing Aid Filter using an Intelligent Variable-Bandwidth-Filter[J]. nt. J. Adv. Comput. Sci. Appl., 2023, 14(1).
[74]Pedroni V A. Circuit design with vhdl[M]. Cambridge: MIT Press, 2004.
[75]G. Petrone,F. Serra,G. Spagnuolo,E. Monmasson. SoC implementation of a photovoltaic reconfiguration algorithm by exploiting a HLS-based architecture[J]. Mathematics and Computers in Simulation,2018,158.
[76]Byung gyu Lim,Moon ho Kang. HW/SW Co-design For an Ultrasonic Signal Processing System Using Zynq SoC[J]. Journal of the Institute of Electronics and Information Engineers,2014,51(8).
[77]Wang Yonggang,Zhou Xiaoyu,Kong Xiaoguang,Hu Yang,Wang Ran,Kuang Jie,Cao Qiang. Performance analysis and IP Core Implementation of two high performance time-to-digital converters on Xilinx 7-series FPGA[J]. Nuclear Inst. and Methods in Physics Research, A,2021,1020.
[78]Khvatov V. M.,Gavrilov S. V.. Formation of IP-Core Libraries in the User IC Design Flow for FPGAs and RSoCs[J]. Russian Microelectronics,2023,51(7).
[79]贺雪莉.基于FPGA的数字逻辑电路实验设计[J].现代计算机,2022,28(18):67-74.
[80]张新宇. 基于FPGA的高精度时间-数字转换器的设计与实现[D].阜阳师范大学,2022.DOI:10.27846/d.cnki.gfysf.2022.000182.
[81]Saramud M V,Karaseva M V,Kovalev I V,Losev V V. Implementation of processor cores of a fault-tolerant control system on FPGA under external control[J]. Journal of Physics: Conference Series,2022,2388(1).
[82]党宏社,王黎,王晓倩.基于Vivado HLS的FPGA开发与应用研究[J].陕西科技大学学报(自然科学版),2015,33(01):155-159.
[83]Rajesh Kumar Dwivedi,Raghav Dwivedi. FIR Filter Implementation using Matlab Fdatool and Xilinx Vivado[J]. International Journal of Engineering Research and,2017,V6(10).
[84]王奥. 基于FPGA的嵌入式目标检测系统设计与实现[D].西安电子科技大学,2021.DOI:10.27389/d.cnki.gxadu.2021.003190.
[85]杨翠娥.基于FPGA的片上系统设计研究[J].山西电子技术,2021(04):82-84.
[86]K. Pranitha,G. Kavya,M. Arun Kumar. A Detailed Illustration of VLSI Block Design Implementation Process Using VIVADO HLS and Arty Kit[J]. Universal Journal of Electrical and Electronic Engineering,2020,7(3).
[87]An Efficient VLSI Design of 32X32 bit Multiplier using Wallace Tree Algorithm in Vivado HLS and Xilinx ISE Software using VHDL[J]. International Journal of Innovative Technology and Exploring Engineering,2020,9(7).
[88]A Systematic Method for Hardware Software Codesign using Vivado HLS[J]. International Journal of Recent Technology and Engineering,2019,8(4).
[89]https://docs.xilinx.com/v/u/en-US/pg058-blk-mem-gen
[90]Konda Sai Prakash Reddy. Designing Various 64-bit Adders using VHDL in VIVADO[J]. Journal of Innovation in Electronics and Communication Engineering,2019,9(2).
[91]郑志旺. 基于国产FPGA的数据采集存储系统的研究与设计[D].中北大学,2021.DOI:10.27470/d.cnki.ghbgc.2021.001044.
[92]Zhang Yuan Y.,Zhang Lei,Shang Zi Q.,Su Yan R.,Wu Zhao,Yan Fa B.. A New Multichannel Parallel Real-time FFT Algorithm for a Solar Radio Observation System Based on FPGA[J]. Publications of the Astronomical Society of the Pacific,2022,134(1033).
[93]Özbek Assist. Prof. Mehmet Efe,Al-Obaidi Anwer Sabah. Design and Implementation of Hardware to Perform Testing the Matching Packet Header Based on FPGA[J]. IOP Conference Series: Materials Science and Engineering,2021,1105(1).
[94]Wada Takuma,Matsumura Naoki,Yasudo Ryota,Nakano Koji,Ito Yasuaki. Efficient implementations of Bloom filter using block RAMs and DSP slices on the FPGA[J]. Concurrency and Computation: Practice and Experience,2019,33(12).
[95]Nguyen Xuan Thuan,Hoang Trong Thuc,Nguyen Hong Thu,Inoue Katsumi,Pham Cong Kha. An Efficient I/O Architecture for RAM-Based Content-Addressable Memory on FPGA[J]. IEEE Transactions on Circuits and Systems II: Express Briefs,2019,66(3).
[96]Khaleghi Behnam,Asadi Hossein. A Resistive RAM-Based FPGA Architecture Equipped With Efficient Programming Circuitry[J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2018,65(7).
[97]Bhagyashree Ashok Gavhane , Prashant Vitthalrao Kathole. Alternative RAM Mapping Algorithm for Embedded Memory Blocks in FPGA[J]. Journal of Trend in Scientific Research and Development,2018,2(3).
[98]Jarosław Sugier. Simplifying FPGA Implementations of BLAKE Hash Algorithm with Block Memory Resources[J]. Procedia Engineering,2017,178.
[99]Flex Logix; Flex Logix Extends Embedded FPGA-in-SoC Architecture with New Block RAM and DSP Cores[J]. Computer Weekly News,2015.
[100]苟玉玲,曾湘洪.基于FPGA中DDS IP核的设计应用[J].软件,2021,42(01):101-103.
[101]董殿国,侯文.基于FPGA的DDS信号发生器设计[J].电子制作,2023,31(01):16. DOI:10.16589/j.cnki.cn11-3571/tn.2023.01.010.
[102]Qu P,Hu M,Cai X, et al. Design of Scalable Sinusoidal Excitation for Multi-capacitance Sensors[C]//中国自动化学会控制理论专业委员会(Technical Committee on Control Theory, Chinese Association of Automation),中国自动化学会(Chinese Association of Automation),中国系统工程学会(Systems Engineering Society of China).第41届中国控制会议论文集(9).[出版者不详],2022:356-360.DOI:10.26914/c.cnkihy.2022.028738.
[103]Ren Li Min,Xue Xiao,Zheng Yang Bing. The Design of High Precision Arbitrary Waveform Generator Based on DDS Technology and FPGA[J]. Journal of Physics: Conference Series,2021,1820(1).
[104]Pu Wang,Yuming Zhang,Jun Yang. Design and Implementation of Modified DDS Based on FPGA[J]. Procedia Computer Science,2018,131.
[105]Zhang J,Zhang R,Dai Y. Design and FPGA Implementation of DDS Based on Waveform Compression and Taylor Series[C]//东北大学,IEEE新加坡工业电子分会,中国自动化学会信息物理系统控制与决策专业委员会.第29届中国控制与决策会议论文集(3).[出版者不详],2017:1283-1288.
[106]https://docs.xilinx.com/v/u/en-US/pg141-dds-compiler
[107]Zixin Gao,Chen Yang,Yizhuang Xie,Bingyi Li,He Chen,Yu Xie. Design and implementation of a multi-channel space-borne SAR imaging system on Vivado HLS[J]. IEICE Electronics Express,2018,15(10).
修改评论