中文版 | English
题名

基于FPGA的超导量子计算专用测控系统搭建

其他题名
CONSTRUCTION OF A DEDICATED MEASUREMENT AND CONTROL SYSTEM FOR SUPERCONDUCTING QUANTUM COMPUTING BASED ON FPGA
姓名
姓名拼音
HE Jiaxin
学号
12132839
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
胡玲
导师单位
量子科学与工程研究院
论文答辩日期
2023-05-23
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  超导量子计算以其可扩展性强,易于操控且芯片制备上兼容当前半导体工艺等优势成为目前最有可能实现通用量子计算机的方案之一。但是超导量子比特会不可避免的与环境发生耦合,从而导致其退相干。在量子实验系统中,不可避免的噪声是影响量子计算发展的重要因素。坦膜材料的成功应用使得超导比特相干时间大幅增加,有效解决了相干时间对超导量子计算方案的限制,促使超导量子计算向更大规模扩展。除了新材料的应用,量子纠错也是抑制噪声影响的重要手段。大规模的超导量子计算对测控系统性能及通道数提出了更高的要求,自主开发测控系统势在必行。量子纠错需要量子测控系统具有高保真度的测量、操控和快速实时反馈的能力。FPGA (Field Programmable Gate Array) 作为一种高性能可编程逻辑器件,具有非常好的高速并行运算特性,其速度快,延迟低,在量子控制和反馈方面具有重要的应用。

  本论文进行了一个基于 FPGA 的超导专用测控系统的 FPGA 逻辑部分设计,这个逻辑部分的功能可以分为三个部分:输出端实现任意波形发生器(AWG)的功能产生模拟波形;输入端对数据进行采集分析处理;内部功能块可以根据处理结果实现反馈控制。本论文对这三部分逻辑进行了模块设计,功能仿真及上板调试。相较于传统的基于 AWG+测量板卡的测控模式,本测控系统基于指令集设计,在片上生成波形。此方法不仅能节约存储空间,也能减少波形传输时间,更重要的是能实现实时反馈功能,有利于超导量子比特纠错等问题的研究。另外,本测控系统进行了功能模块的可扩展设计,可以轻易改变测控系统输出端的通道数,对超导量子系统扩展具有重要意义。

其他摘要

The superconducting quantum system has become one of the most promising approaches for the universal quantum computer due to its advantages of strong scalability, easy manipulation, and compatibility with current semiconductor processes in chip preparation. But superconducting qubits will inevitably couple with the environment, leading to their decoherence. In quantum experimental systems, unavoidable noise is the important factor affecting the development of quantum computing. The application of Tan film materials has greatly increased the coherence time of superconducting qubits, effectively solving the limitation of coherence time on superconducting quantum computing, and promoting the expansion of superconducting quantum computing to a larger scale. In addition to the application of new materials, quantum error correction is also an important mean to suppress the influence of noise. Large-scale superconducting quantum computing puts forward higher requirements on the performance and number of channels of the measurement and control system, and it is imperative to independently develop the measurement and control system. Quantum error correction requires high-fidelity measurement, manipulation, and fast real-time feedback. As a high-performance programmable logic device, FPGA (Field Programmable Gate Array) can do high-speed parallel computing, and it is fast and has low latency. Therefore, FPGA is widely used in the quantum control and quantum feedback.

This thesis designs the FPGA logic part of an FPGA-based superconducting special measurement and control system. The logic part is composed of three parts: an arbitrary waveform generator (AWG) at the output terminal; a data collector and analyzer at the input terminal; a feedback controller. This thesis has carried out the code programming, behavior simulation and on-board debugging for these three parts. Different from the traditional measurement and control systems based on AWG & measurement board, this system generates waveforms on the chip based on an instruction set. This method can not only save the memory resources, but also reduce the waveform transmission time. More importantly, it realizes the real-time feedback contol, which is beneficial to the research of the quantum error correction. In addition, this system has an expandable design for these modules, which can easily change the number of channels at the output terminal, and is of great significance to the expansion of the superconducting quantum system.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1]Deutsch D, Jozsa R. Rapid solution of problems by quantum computation[M]. [S.l.]: University of Bristol, 1992: 553-558.
[2]Feynman J. Geomagnetic and solar wind cycles, 1900–1975[J]. Journal of Geophysical Research: Space Physics, 1982, 87(A8): 6153-6162.
[3]熊康林,冯加贵,郑亚锐等.超导量子电路材料[J].科学通报,2022,67(02):143-162.
[4]Cai Weizhou, Ma Yuwei, Wang Weiting, et al. Bosonic quantum error correction codes in superconducting quantum circuits[J]. Fundamental Research,2021,1(1).
[5]Moore G E, et al. Cramming more components onto integrated circuits[M]. McGraw-Hill New York, 1965.
[6]Shalf J. The future of computing beyond Moore’s law[J]. Philosophical Transactions of the Royal Society A, 2020, 378(2166): 20190061.
[7]Bishop L S . Circuit quantum electrodynamics.[D]. Yale University.;, 2010.
[8]Shor P W. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings 35th annual symposium on foundations of computer science. Ieee, 1994: 124-134.
[9]Eman Alqudah,Amin Jarrah. Parallel implementation of genetic algorithm on FPGA using Vivado high level synthesis[J]. International Journal of Bio-Inspired Computation,2020,15(2).
[10]Huang, HL., Wu, D., Fan, D. et al. Superconducting quantum computing: a review.[J]. Sci. China Inf. Sci., 2020, 63, 180501.
[11]Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[12]Makhlin Y, Schön G, Shnirman A. Quantum-state engineering with josephson-junction devices[J]. Physics, 2000, 73(2): 357-400.
[13]Place, A.P.M., Rodgers, L.V.H., Mundada, P. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat Commun 12, 1779 (2021). https://doi.org/10.1038/s41467-021-22030-5.
[14]Guo, Qiujiang and Cheng, Chen and Li, Hekang et al. Stark Many-Body Localization on a Superconducting Quantum Processor. Phys. Rev. 127.240502 (2021). https://doi.org/10.1103/PhysRevLett.127.240502.
[15]Zhang, X., Jiang, W., Deng, J. et al. Digital quantum simulation of Floquet symmetry-protected topological phases. Nature 607, 468–473 (2022). https://doi.org/10.1038/s41586-022-04854-3.
[16]Wang, C., Li, X., Xu, H. et al. Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf 8, 3 (2022). https://doi.org/10.1038/s41534-021-00510-2.
[17]Ni, Z., Li, S., Deng, X. et al. Beating the break-even point with a discrete-variable-encoded logical qubit. Nature 616, 56–60 (2023). https://doi.org/10.1038/s41586-023-05784-4.
[18]Joshi A , Noh K , Gao Y Y . Quantum information processing with bosonic qubits in circuit QED[J]. Quantum Science and Technology, 2021, 6(3).
[19]Chiaverini J et al. Realization of quantum error correction.[J]. Nature, 2004, 432(7017) : 602-5.
[20]Devoret M H, Schoelkopf R J. Superconducting circuits for quantum information: an outlook.[J]. Science, 2013, 339(6124): 1169-74.
[21]Ming Gong et al. ,Quantum walks on a programmable two-dimensional 62-qubit superconducting processor.Science, 2021, 372,948-952.
[22]Ristè D, DiCarlo L. Digital feedback in superconducting quantum circuits[J]. arXiv: Quantum Physics (2015): n. pag..
[23]Liu Y . Quantum Feedback Control of Multiple Superconducting Qubits[D]. Yale University. 2016.
[24]P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, et al. Persistent Control of a Superconducting Qubit by Stroboscopic Measurement Feedback[J]. Phys. Rev. X, 2013, 3(2): 021008.
[25]Jacobs K , Wang X , Wiseman H M . Coherent feedback that beats all measurement-based feedback protocols[J]. New Journal of Physics, 2014, 16(7): 073036.
[26]Divincenzo, David P. The physical implementation of quantum computation[J]. Fortschritte Der Physik, 2010, 48(9-11): 771-783.
[27]Das Subhajit,Sunaniya A.K.. FPGA implementation of high-fidelity hybrid reversible watermarking algorithm[J]. Microprocessors and Microsystems,2022,89.
[28]Cramer J, Kalb N, Rol M A, et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback[J]. Nat. Commun., 2016, 7(May 2016): 11526.
[29]班冬松,唐培松,陈子钰,等.超导和自旋量子比特测控芯片架构研究[J].中国集成电路,2021,30(10):51-58.
[30]宿非凡, 杨钊华. 超导量子比特耦合与测控的物理原理[J]. 物理与工程, 2022, 32(4):9.
[31]王战. 基于超导量子比特芯片的测控与量子模拟[D].中国科学院大学(中国科学院物理研究所),2021.
[32]杨真. 超导量子比特器件制备与测控[D].南京大学,2019.
[33]徐昱. 超导量子计算室温电子学读出系统研究[D].中国科学技术大学,2019.
[34]John, Clarke, Frank K , et al. Superconducting quantum bits.[J]. Nature, 2008, 453(7198):1031-1042.
[35]Krantz P , Kjaergaard M , Yan F , et al. A Quantum Engineer's Guide to Superconducting Qubits[J]. Applied Physics Reviews, 2019, 6(2):021318.
[36]J.K. Asboth, P. Adam, et al . Coherent-state qubits: entanglement and decoherence[J]. Eur. Phys. J. D, 2004, 30(8): 403-410.
[37]孟宪元 陈彰林 陆佳华.Xilinx新一代FPGA设计套件Vivado应用指南:EDA工程技术丛书[M].北京:清华大学出版社,2014.
[38]Devoret M H, Schoelkopf R J. Superconducting circuits for quantum information: an outlook.[J]. Science, 2013, 339(6124): 1169-74.
[39]Nakamura Y , Pashkin Y A , Tsai J S . Coherent control of macroscopic quantum states in a single-Cooper-pair box[J]. Nature, 1999, 398(6775): A49-A51.
[40]于扬.谷歌宣称成功演示“量子霸权”[J].中国科学基金, 2020, 34(02):196-197.
[41]Y Wu, WS Bao, S Cao, et al. Strong quantum computational advantage using a superconducting quantum processor[J]. Phys. Rev. Lett., 2021, 127: 180501.
[42]孔伟成.基于 Transmon qubit 量子芯片工作环境的研究与优化 [D]. 合肥:中国科学技术大学, 2018.
[43]Ristè D, Bultink C C, Lehnert K W, et al. Feedback control of a solid-state qubit using high-fidelity projective measurement[J]. Phys. Rev. Lett., 2012, 109(24): 240502.
[44]Hu, L., Ma, Y., Cai, W. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit[J]. Nat. Phys., 2019, 15(5): 503-508.
[45]Ling Hu, Xianghao Mu, Weizhou Cai , et al. Experimental quantum channel simulation[J]. Science Bulletin, 2018, 63(23): 1551-1557.
[46]Lin T , Jacobs K . A Controllable Interaction Between Two-Level Systems Inside a Josephson Junction[J]. IEEE Trans. Appl. Supercond., 2009, 19(3): 953-956.
[47]J.K. Asboth, P. Adam, et al . Coherent-state qubits: entanglement and decoherence[J]. Eur. Phys. J. D, 2004, 30(8): 403-410.
[48]张振涛. 超导量子比特的调控与退相干研究[D].南京大学,2013.
[49]王腾辉. 超导量子比特与绝热快速捷径在量子模拟和量子门中的应用[D].浙江大学,2018.
[50]Chow J M, Gambetta J M, Córcoles A D, et al. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits[J]. Phys. Rev. Lett., 2012, 109: 060501.
[51]雷世曾.二次量子化方法中产生算符和湮灭算符的两种形式[J].大学物理,1983(12):11-13.
[52]Wendin,Goran, and V.S.Shumeiko.Superconductingquantum circuits, qubits and computing. arXiv preprint cond-mat/0508729, 2005.
[53]Devoret M H, Martinis J M. Implementing qubits with superconducting integrated circuits[J]. Experimental aspects of quantum computing, 2005: 163-203.
[54]Mooij J E, Lloyd S. Josephson persistent-current qubit[J]. Science, 1999, 285(5430): 1036.
[55]B. D. Josephson. Possible New Effects in Superconductive Tunnelling[J]. Phys. Lett., 1962, 1(7): 251-253.
[56]Blais A , Grimsmo A L , Girvin S M , et al. Circuit Quantum Electrodynamics[J]. Rev. Mod. Phys., 2020, 93: 025005.
[57]S. M. Girvin, Circuit QED: Superconducting qubits coupled to microwave photons. In Quantum Machines: Measurement and Control of Engineered Quantum Systems. Oxford University Press, 2014, pp. 113–256.
[58]Uri, Voo, Michel, et al. Introduction to quantum electromagnetic circuits[J]. Int. J. Circuit Theory Appl., 2017, 45(7): 897-934.
[59]R. J. Cava, B. Batlogg, J. J. Krajewski, et al. Electrical and magnetic properties of crystallographic shear structures[J]. Phys. Rev. B 44, 6973. 1991.
[60]C. Nico, T. Monteiro, M. P. F. Graça. Niobium oxides and niobates physical properties: Review and prospects. Progress in Materials Science 80, 1 (2016).
[61]D. Face, D. Prober. Nucleation of body‐centered‐cubic tantalum films with a thin niobium underlayer. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, 3408 (1987).
[62]D. Face, D. Prober, W. McGrath, P. Richards. High quality tantalum superconducting tunnel junctions for microwave mixing in the quantum limit. Applied physics letters 48, 1098 (1986).
[63]Chen Z . Metrology of Quantum Control and Measurement in Superconducting Qubits[D]. University of California, Santa Barbara. 2018.
[64]Muhammad Nasir Khan, Syed K. Hasnain, Mohsin Jamil, et al. Electronic Signals and Systems:Analysis, Design and Applications[M].River Publishers:2022-09-01.
[65]Khalid Sayood. Signals and Systems:A One Semester Modular Course[M].Morgan & Claypool Publishers:2021-07-22.
[66]Majer J , Chow J M , Gambetta J M , et al. Coupling Superconducting Qubits via a Cavity Bus[J]. Nature, 2007, 449(7161):443-447.
[67]Martinis J M, Nam S, Aumentado J, et al. Rabi oscillations in a large josephson-junction qubit.[J]. Physical Review Letters, 2002, 89(11): 117901.
[68]Marvin Chandra Wijaya. Comparative Analysis of Performance Run Length (RLE) Data Compression Design by VHDL and Design by Microcontroller[J]. International Journal of Modern Education and Computer Science (IJMECS),2021,13(6).
[69]Gadawe N. T.,Fathi T.A.,Qaddoori S.L.,Hamad R. W.. Synthesis and Implementation of IIR Filter using VHDL Language[J]. IOP Conference Series: Materials Science and Engineering,2021,1152(1).
[70]Sachin Maheshwari,V.A. Bartlett,Izzet Kale. Modelling, simulation and verification of 4-phase adiabatic logic design: A VHDL-Based approach[J]. Integration,2019,67.
[71]Yogesh Misra. Implementation of Fuzzy Based Flow Controller using VHDL[J]. International Journal of Innovative Technology and Exploring Engineering (IJITEE),2019,8(8).
[72]AbdelAtty Heba M., Hassaneen Saly S., Soliman Heba Y.. VHDL implementation of circular shifting‐partial transmit sequence in MIMO OFDM systems[J]. Int. J. Commun. Syst., 2022, 36(3).
[73]Ujjwala S Rawandale,Sanjay R. Ganorkar,Mahesh T. Kolte. VHDL based Design of an Efficient Hearing Aid Filter using an Intelligent Variable-Bandwidth-Filter[J]. nt. J. Adv. Comput. Sci. Appl., 2023, 14(1).
[74]Pedroni V A. Circuit design with vhdl[M]. Cambridge: MIT Press, 2004.
[75]G. Petrone,F. Serra,G. Spagnuolo,E. Monmasson. SoC implementation of a photovoltaic reconfiguration algorithm by exploiting a HLS-based architecture[J]. Mathematics and Computers in Simulation,2018,158.
[76]Byung gyu Lim,Moon ho Kang. HW/SW Co-design For an Ultrasonic Signal Processing System Using Zynq SoC[J]. Journal of the Institute of Electronics and Information Engineers,2014,51(8).
[77]Wang Yonggang,Zhou Xiaoyu,Kong Xiaoguang,Hu Yang,Wang Ran,Kuang Jie,Cao Qiang. Performance analysis and IP Core Implementation of two high performance time-to-digital converters on Xilinx 7-series FPGA[J]. Nuclear Inst. and Methods in Physics Research, A,2021,1020.
[78]Khvatov V. M.,Gavrilov S. V.. Formation of IP-Core Libraries in the User IC Design Flow for FPGAs and RSoCs[J]. Russian Microelectronics,2023,51(7).
[79]贺雪莉.基于FPGA的数字逻辑电路实验设计[J].现代计算机,2022,28(18):67-74.
[80]张新宇. 基于FPGA的高精度时间-数字转换器的设计与实现[D].阜阳师范大学,2022.DOI:10.27846/d.cnki.gfysf.2022.000182.
[81]Saramud M V,Karaseva M V,Kovalev I V,Losev V V. Implementation of processor cores of a fault-tolerant control system on FPGA under external control[J]. Journal of Physics: Conference Series,2022,2388(1).
[82]党宏社,王黎,王晓倩.基于Vivado HLS的FPGA开发与应用研究[J].陕西科技大学学报(自然科学版),2015,33(01):155-159.
[83]Rajesh Kumar Dwivedi,Raghav Dwivedi. FIR Filter Implementation using Matlab Fdatool and Xilinx Vivado[J]. International Journal of Engineering Research and,2017,V6(10).
[84]王奥. 基于FPGA的嵌入式目标检测系统设计与实现[D].西安电子科技大学,2021.DOI:10.27389/d.cnki.gxadu.2021.003190.
[85]杨翠娥.基于FPGA的片上系统设计研究[J].山西电子技术,2021(04):82-84.
[86]K. Pranitha,G. Kavya,M. Arun Kumar. A Detailed Illustration of VLSI Block Design Implementation Process Using VIVADO HLS and Arty Kit[J]. Universal Journal of Electrical and Electronic Engineering,2020,7(3).
[87]An Efficient VLSI Design of 32X32 bit Multiplier using Wallace Tree Algorithm in Vivado HLS and Xilinx ISE Software using VHDL[J]. International Journal of Innovative Technology and Exploring Engineering,2020,9(7).
[88]A Systematic Method for Hardware Software Codesign using Vivado HLS[J]. International Journal of Recent Technology and Engineering,2019,8(4).
[89]https://docs.xilinx.com/v/u/en-US/pg058-blk-mem-gen
[90]Konda Sai Prakash Reddy. Designing Various 64-bit Adders using VHDL in VIVADO[J]. Journal of Innovation in Electronics and Communication Engineering,2019,9(2).
[91]郑志旺. 基于国产FPGA的数据采集存储系统的研究与设计[D].中北大学,2021.DOI:10.27470/d.cnki.ghbgc.2021.001044.
[92]Zhang Yuan Y.,Zhang Lei,Shang Zi Q.,Su Yan R.,Wu Zhao,Yan Fa B.. A New Multichannel Parallel Real-time FFT Algorithm for a Solar Radio Observation System Based on FPGA[J]. Publications of the Astronomical Society of the Pacific,2022,134(1033).
[93]Özbek Assist. Prof. Mehmet Efe,Al-Obaidi Anwer Sabah. Design and Implementation of Hardware to Perform Testing the Matching Packet Header Based on FPGA[J]. IOP Conference Series: Materials Science and Engineering,2021,1105(1).
[94]Wada Takuma,Matsumura Naoki,Yasudo Ryota,Nakano Koji,Ito Yasuaki. Efficient implementations of Bloom filter using block RAMs and DSP slices on the FPGA[J]. Concurrency and Computation: Practice and Experience,2019,33(12).
[95]Nguyen Xuan Thuan,Hoang Trong Thuc,Nguyen Hong Thu,Inoue Katsumi,Pham Cong Kha. An Efficient I/O Architecture for RAM-Based Content-Addressable Memory on FPGA[J]. IEEE Transactions on Circuits and Systems II: Express Briefs,2019,66(3).
[96]Khaleghi Behnam,Asadi Hossein. A Resistive RAM-Based FPGA Architecture Equipped With Efficient Programming Circuitry[J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2018,65(7).
[97]Bhagyashree Ashok Gavhane , Prashant Vitthalrao Kathole. Alternative RAM Mapping Algorithm for Embedded Memory Blocks in FPGA[J]. Journal of Trend in Scientific Research and Development,2018,2(3).
[98]Jarosław Sugier. Simplifying FPGA Implementations of BLAKE Hash Algorithm with Block Memory Resources[J]. Procedia Engineering,2017,178.
[99]Flex Logix; Flex Logix Extends Embedded FPGA-in-SoC Architecture with New Block RAM and DSP Cores[J]. Computer Weekly News,2015.
[100]苟玉玲,曾湘洪.基于FPGA中DDS IP核的设计应用[J].软件,2021,42(01):101-103.
[101]董殿国,侯文.基于FPGA的DDS信号发生器设计[J].电子制作,2023,31(01):16. DOI:10.16589/j.cnki.cn11-3571/tn.2023.01.010.
[102]Qu P,Hu M,Cai X, et al. Design of Scalable Sinusoidal Excitation for Multi-capacitance Sensors[C]//中国自动化学会控制理论专业委员会(Technical Committee on Control Theory, Chinese Association of Automation),中国自动化学会(Chinese Association of Automation),中国系统工程学会(Systems Engineering Society of China).第41届中国控制会议论文集(9).[出版者不详],2022:356-360.DOI:10.26914/c.cnkihy.2022.028738.
[103]Ren Li Min,Xue Xiao,Zheng Yang Bing. The Design of High Precision Arbitrary Waveform Generator Based on DDS Technology and FPGA[J]. Journal of Physics: Conference Series,2021,1820(1).
[104]Pu Wang,Yuming Zhang,Jun Yang. Design and Implementation of Modified DDS Based on FPGA[J]. Procedia Computer Science,2018,131.
[105]Zhang J,Zhang R,Dai Y. Design and FPGA Implementation of DDS Based on Waveform Compression and Taylor Series[C]//东北大学,IEEE新加坡工业电子分会,中国自动化学会信息物理系统控制与决策专业委员会.第29届中国控制与决策会议论文集(3).[出版者不详],2017:1283-1288.
[106]https://docs.xilinx.com/v/u/en-US/pg141-dds-compiler
[107]Zixin Gao,Chen Yang,Yizhuang Xie,Bingyi Li,He Chen,Yu Xie. Design and implementation of a multi-channel space-borne SAR imaging system on Vivado HLS[J]. IEICE Electronics Express,2018,15(10).

所在学位评定分委会
材料科学与工程
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544169
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
何佳鑫. 基于FPGA的超导量子计算专用测控系统搭建[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132839-何佳鑫-量子科学与工程(5774KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[何佳鑫]的文章
百度学术
百度学术中相似的文章
[何佳鑫]的文章
必应学术
必应学术中相似的文章
[何佳鑫]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。