[1] NI M, LEUNG D Y C, LEUNG M K H. A review on reforming bio-ethanol for hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32: 3238-3247.
[2] GHOSH P C, EMONTS B, JANSSEN H, et al. Ten years of operational experience with a hydrogen-based renewable energy supply system[J]. Solar Energy, 2003, 75(6): 469-478.
[3] FENG Q, YUAN X Z, LIU G, et al. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2017, 366: 33-55.
[4] CARMO M, FRITZ D L, MERGEL J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4901-4934.
[5] SLADE S, CAMPBELL S A, RALPH T R, et al. Ionic conductivity of an extruded Nafion 1100 EW series of membranes[J]. Journal of The Electrochemical Society, 2002, 149(12): A1556.
[6] BARBIR F. PEM electrolysis for production of hydrogen from renewable energy sources[J]. Solar Energy, 2005, 78(5): 661-669.
[7] AYERS K E, ANDERSON E B, CAPUANO C, et al. Research advances towards low cost, high efficiency PEM electrolysis[J]. ECS Transactions, 2010, 33(1): 3-15.
[8] ZHANG N, CHAI Y. Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation[J]. Energy & Environmental Science, 2021, 14(9): 4647-4671.
[9] WU H, WANG Y, SHI Z, et al. Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis[J]. Journal of Materials Chemistry A, 2022, 10(25): 13170-13189.
[10] HUANG Z F, SONG J, DOU S, et al. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis[J]. Matter, 2019, 1(6): 1494-1518.
[11] SHE Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321).
[12] SHI Z, WANG X, GE J, et al. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts[J]. Nanoscale, 2020, 12(25): 13249-13275.
[13] MAN I C, SU H Y, CALLE-VALLEJO F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
[14] WEN Y, CHEN P, WANG L, et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation[J]. Journal of the American Chemical Society, 2021, 143(17): 6482-6490.
[15] SCHWEINAR K, GAULT B, MOUTON I, et al. Lattice oxygen exchange in rutile IrO2 during the oxygen evolution reaction[J]. Journal of Physical Chemistry Letters, 2020, 11(13): 5008-5014.
[16] GEIGER S, KASIAN O, LEDENDECKER M, et al. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nature Catalysis, 2018, 1(7): 508-515.
[17] WANG Y, LIU S, QIN Q, et al. Praseodymium iridium oxide as a competitive electrocatalyst for oxygen evolution reaction in acid media[J]. Science China Materials, 2021, 64(9): 2193-2201.
[18] ZHANG R, DUBOUIS N, BEN OSMAN M, et al. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media[J]. Angewandte Chemie International Edition, 2019, 58(14): 4571-4575.
[19] CHEREVKO S, ZERADJANIN A R, TOPALOV A A, et al. Dissolution of noble metals during oxygen evolution in acidic media[J]. ChemCatChem, 2014, 6(8): 2219-2223.
[20] CHEREVKO S, GEIGER S, KASIAN O, et al. Oxygen evolution activity and stability of iridium in acidic media. Part 2. - Electrochemically grown hydrous iridium oxide[J]. Journal of Electroanalytical Chemistry, 2016, 774: 102-110.
[21] KASIAN O, GROTE J P, GEIGER S, et al. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium[J]. Angewandte Chemie - International Edition, 2018, 57(9): 2488-2491.
[22] CHEREVKO S. Stability and dissolution of electrocatalysts: Building the bridge between model and “real world” systems[J]. Current Opinion in Electrochemistry, 2018, 8: 118-125.
[23] BALAKRISHNAN A, BLANC N, HAGEMANN U, et al. Direct detection of surface species formed on iridium electrocatalysts during the oxygen evolution reaction[J]. Angewandte Chemie, 2021, 133(39): 21566-21573.
[24] ROSSMEISL J, QU Z W, ZHU H, et al. Electrolysis of water on oxide surfaces[J]. Journal of Electroanalytical Chemistry, 2007, 607(1-2): 83-89.
[25] YAO Y, HU S, CHEN W, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nature Catalysis, 2019, 2(4): 304-313.
[26] SANCHEZ CASALONGUE H G, LING NG M, KAYA S, et al. In-situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction[J]. Angewandte Chemie, 2014, 126(28): 7297-7300.
[27] KIM M, PARK J, WANG M, et al. Role of surface steps in activation of surface oxygen sites on Ir nanocrystals for oxygen evolution reaction in acidic media[J]. Applied Catalysis B: Environmental, 2022, 302(August 2021): 120834.
[28] DANILOVIC N, SUBBARAMAN R, CHANG K C, et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments[J]. Angewandte Chemie - International Edition, 2014, 53(51): 14016-14021.
[29] DANILOVIC N, SUBBARAMAN R, CHANG K C, et al. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments[J]. Journal of Physical Chemistry Letters, 2014, 5(14): 2474-2478.
[30] CHEREVKO S, ZERADJANIN A R, TOPALOV A A, et al. Dissolution of noble metals during oxygen evolution in acidic media[J]. ChemCatChem, 2014, 6(8): 2219-2223.
[31] KIM B J, ABBOTT D F, CHENG X, et al. Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide[J]. ACS Catalysis, 2017, 7(5): 3245-3256.
[32] GUNASOORIYA G T K K, NØRSKOV J K. Analysis of acid-stable and active oxides for the oxygen evolution reaction[J]. ACS Energy Letters, 2020, 5(12): 3778-3787.
[33] WANG Z, ZHENG Y R, CHORKENDORFF I, et al. Acid-stable oxides for oxygen electrocatalysis[J]. ACS Energy Letters, 2020, 5(9): 2905-2908.
[34] FRYDENDAL R, PAOLI E A, KNUDSEN B P, et al. Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses[J]. ChemElectroChem, 2014, 1(12): 2075-2081.
[35] ABBOU S, CHATTOT R, MARTIN V, et al. Manipulating the corrosion resistance of SnO2 aerogels through doping for efficient and durable oxygen evolution reaction electrocatalysis in acidic media[J]. ACS Catalysis, 2020, 10(13): 7283-7294.
[36] FABBRI E, HABEREDER A, WALTAR K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catalysis Science and Technology, 2014, 4(11): 3800-3821.
[37] PUTHIYAPURA V K, MAMLOUK M, PASUPATHI S, et al. Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser[J]. Journal of Power Sources, 2014, 269: 451-460.
[38] BEHNAMI FAR V, JAFARZADEH K, SHOOSHTARI GUGTAPEH H, et al. A study on electrical properties of thermally grown TiO2 film at the interface of Ti/RuO2–IrO2–TiO2 anode using Mott-Schottky and electrochemical impedance spectroscopy techniques[J]. Materials Chemistry and Physics, 2020, 256: 123756-123765.
[39] CHA J I, BAIK C, LEE S W, et al. Improved utilization of IrOx on Ti4O7 supports in membrane electrode assembly for polymer electrolyte membrane water electrolyzer[J]. Catalysis Today, 2022, 403: 19-27.
[40] PUTHIYAPURA V K, PASUPATHI S, SU H, et al. Investigation of supported IrO2 as electrocatalyst for the oxygen evolution reaction in proton exchange membrane water electrolyser[J]. International Journal of Hydrogen Energy, 2014, 39(5): 1905-1913.
[41] SUI S, MA L, ZHAI Y. Investigation on the proton exchange membrane water electrolyzer using supported anode catalyst[J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4: 8-11.
[42] POLONSKÝ J, MAZÚR P, PAIDAR M, et al. Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst[J]. International Journal of Hydrogen Energy, 2014, 39(7): 3072-3078.
[43] NIKIFOROV A V., TOMÁS GARCÍA A L, PETRUSHINA I M, et al. Preparation and study of IrO2/SiC-Si supported anode catalyst for high temperature PEM steam electrolysers[J]. International Journal of Hydrogen Energy, 2011, 36(10): 5797-5805.
[44] WANG L, SONG F, OZOUF G, et al. Improving the activity and stability of Ir catalysts for PEM electrolyzer anodes by SnO2:Sb aerogel supports: does V addition play an active role in electrocatalysis?[J]. Journal of Materials Chemistry A, 2017, 5(7): 3172-3178.
[45] CLAUDEL F, DUBAU L, BERTHOMÉ G, et al. Degradation mechanisms of oxygen evolution reaction electrocatalysts: A combined identical-location transmission electron microscopy and X-ray photoelectron spectroscopy study[J]. ACS Catalysis, 2019, 9(5): 4688-4698.
[46] MARSHALL A, BØRRESEN B, HAGEN G, et al. Preparation and characterisation of nanocrystalline IrxSn1-xO2 electrocatalytic powders[J]. Materials Chemistry and Physics, 2005, 94(2-3): 226-232.
[47] OH H S, NONG H N, STRASSER P. Preparation of mesoporous Sb-, F-, and in-doped SnO2 bulk powder with high surface area for use as catalyst supports in electrolytic cells[J]. Advanced Functional Materials, 2015, 25(7): 1074-1081.
[48] OH H S, NONG H N, REIER T, et al. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers[J]. Chemical Science, 2015, 6(6): 3321-3328.
[49] OH H S, NONG H N, REIER T, et al. Electrochemical catalyst-support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2016, 138(38): 12552-12563.
[50] CHAYOUKHI S, GASSOUMI B, DHIFELAOUI H, et al. Structural, optical and mechanical investigations on pure and Co-doped SnO2 thin films samples[J]. Inorganic Chemistry Communications, 2023, 149: 110391.
[51] MATUSSIN S N, MALIK O A, KHAN M M. Evaluation of photoantioxidant activities of SnO2, doped SnO2, and dual-doped SnO2 using artificial neural networks and neuro-fuzzy system[J]. Materials Today Communications, 2022, 32: 103882-103891.
[52] ARIF M, SHAH M Z U, AHMAD S A, et al. High photocatalytic performance of copper-doped SnO2 nanoparticles in degradation of rhodamine B dye[J]. Optical Materials, 2022, 134: 113135-113144.
[53] KHAN D, REHMAN A, RAFIQ M Z, et al. Improving the optical properties of SnO2 nanoparticles through Ni doping by sol-gel technique[J]. Current Research in Green and Sustainable Chemistry, 2021, 4: 100079-100085.
[54] RAJESWARAN P, SHANMUGANATHAN M, SHANMUGA SUNDARI T, et al. A simple fabrication of Mn doped SnO2 nanoparticles towards improved congored degradation photocatalytic activity[J]. Materials Today: Proceedings, 2022, 11: 61-68.
[55] ELAMIN N Y, INDUMATHI T, RANJITH KUMAR E. Evaluation of physicochemical and biological properties of SnO2 and Fe doped SnO2 nanoparticles[J]. Ceramics International, 2023, 49(2): 2388-2393.
[56] BIAN X, LIU B, WANG X, et al. Synergistic oxygen vacancy and Zn-doping on SnO2 nanosheets for enhanced electrochemical CO2 conversion[J]. Materials Today Energy, 2022, 29: 101104-101112.
[57] KIM DAN H, PHAM M K, DANG H P, et al. Incorporation of N in p-type Zn-N-doped SnO2 films by varying N2 content in sputtering gas mixture[J]. Materials Science in Semiconductor Processing, 2023, 155: 107230-107238.
[58] SENOO Y, KAKINUMA K, UCHIDA M, et al. Improvements in electrical and electrochemical properties of Nb-doped SnO2−δ supports for fuel cell cathodes due to aggregation and Pt loading[J]. RSC Advances, 2014, 4(61): 32180-32188.
[59] GAO Z H, GAO K H, YANG Y, et al. Electron dephasing processes in the thin and thick Ta-doped SnO2 films[J]. Physica B: Condensed Matter, 2022, 646: 414290-414297.
[60] SENTHILKUMAR P, RAJA S, RAMESH BABU R, et al. Enhanced electrical and optoelectronic properties of W doped SnO2 thin films[J]. Optical Materials, 2022, 126: 112234-112241.
[61] FAN G, NIE L, WANG H, et al. Ce doped SnO/SnO2 heterojunctions for highly formaldehyde gas sensing at low temperature[J]. Sensors and Actuators B: Chemical, 2022, 373: 132640-132647.
[62] YADAV S, YADAV K, DHAR R, et al. Synthesis and characterization of thermally evaporated Er-doped SnO2 thin films for photonic applications[J]. Micro and Nanostructures, 2023, 174: 207493-207501.
[63] KUMAR P, JAKHAR M, CHAUHAN V, et al. Influence of Dy3+ doping concentration on crystal structure and optical absorption of SnO2 nanoparticles[J]. Materials Today: Proceedings, 2022, 48: 1301-1304.
[64] LEE S S, LEE W J, CHOI Y, et al. Enhanced infrared transmittance by modulation of electrical and optical properties of Sm-doped SnO2 thin films[J]. Applied Surface Science, 2023, 614: 156105-156112.
[65] MEENA D, VERMA V K, DIVYA, et al. Investigation the effect of Zn doping on structural and optical properties of SnO2[J]. Materials Today: Proceedings, 2022, 51: 554-560.
[66] ZHAO L, LI Y, ZHOU Y, et al. Mechanism of high- and low-valence doping on adsorbed oxygen of SnO2-based gas sensors and a strategy to combine the advantages of both dopants[J]. Sensors and Actuators B: Chemical, 2022, 371: 132603.
[67] DAN H K, DANG H P, QUACH U L, et al. Improving structural and electrical properties of p-type Al–N-doped SnO2 films with low Al content by tuning N2 concentration in sputtering gas mixture[J]. Physica B: Condensed Matter, 2023, 650: 414542-414551.
[68] PONCE M A, PARRA R, CASTRO M S, et al. Conductance analysis of (Co, Nb, Fe)-doped SnO2 thick film gas sensors[J]. Journal of Materials Science: Materials in Electronics, 2007, 18(12): 1171-1177.
[69] HAN B, RISCH M, BELDEN S, et al. Screening oxide support materials for OER catalysts in acid[J]. Journal of The Electrochemical Society, 2018, 165(10): F813-F820.
[70] GASH A E, SIMPSON R L, TILLOTSON T M, et al. Making nanostructured pyrotechnics in a beaker[C]//27th International Pyrotechnics Seminar, Grand Junction, CO. United States, 2000: 41-53.
[71] GASH A E, TILLOTSON T M, SATCHER J H, et al. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors[J]. Journal of Non-Crystalline Solids, 2001, 285(1-3): 22-28.
[72] WORSLEY M A, ILSEMANN J, GESING T M, et al. Chlorine-free, monolithic lanthanide series rare earth oxide aerogels via epoxide-assisted sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2019, 89(1): 176-188.
[73] KOEBEL M M, NADARGI D Y, JIMENEZ-CADENA G, et al. Transparent, conducting ATO thin films by epoxide-initiated solgel chemistry: A highly versatile route to mixed-metal oxide films[J]. ACS Applied Materials and Interfaces, 2012, 4(5): 2464-2473.
[74] GASH A E, TILLOTSON T M, SATCHER J H, et al. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors[J]. Journal of Non-Crystalline Solids, 2001, 285(1-3): 22-28.
[75] GASH A E, TILLOTSON T M, SATCHER J H, et al. Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts[J]. Chemistry of Materials, 2001, 13(3): 999-1007.
[76] MAHADIK D B, LEE Y K, PARK C S, et al. Effect of water ethanol solvents mixture on textural and gas sensing properties of tin oxide prepared using epoxide-assisted sol-gel process and dried at ambient pressure[J]. Solid State Sciences, 2015, 50: 1-8.
[77] CHEN Z, XU C, ZHAO F, et al. High-performance oxygen evolution reaction electrocatalysts discovered via high-throughput aerogel synthesis[J]. ACS Catalysis, 2023, 13(1): 601-611.
[78] GASH A E, TILLOTSON T M, SATCHER J H, et al. Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts[J]. Chemistry of Materials, 2001, 13(3): 999-1007.
[79] CALDARARU M, THOMAS M F, BLAND J, et al. Redox processes in Sb-containing mixed oxides used in oxidation catalysis. I. Tin dioxide assisted antimony oxidation in solid state[J]. Applied Catalysis A: General, 2001, 209(1-2): 383-390.
[80] SUN M, LIU J, DONG B. Effects of Sb doping on the structure and properties of SnO2 films[J]. Current Applied Physics, 2020, 20(3): 462-469.
[81] KRISHNAKUMAR T, JAYAPRAKASH R, PINNA N, et al. Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles[J]. Journal of Physics and Chemistry of Solids, 2009, 70(6): 993-999.
[82] DA CUNHA C R, TOFFOLO G H, DOS SANTOS C E I, et al. Structural, optical and chemical characterizations of sol-gel grown tin oxide aerogels[J]. Journal of Non-Crystalline Solids, 2013, 380: 48-52.
[83] TERRIER C, CHATELON J P, BERJOAN R, et al. Sb-doped SnO2 transparent conducting oxide from the sol-gel dip-coating technique[J]. Thin Solid Films, 1995, 263: 37-41.
[84] CORREA BAENA J P, AGRIOS A G. Transparent conducting aerogels of antimony-doped tin oxide[J]. ACS Applied Materials and Interfaces, 2014, 6(21): 19127-19134.
[85] KIKUCHI N, KUSANO E, KISHIO E, et al. Electrical and mechanical properties of SnO2:Nb films for touch screens[J]. Vacuum, 2002, 66(3-4): 365-371.
[86] OZOUF G, BEAUGER C. Niobium- and antimony-doped tin dioxide aerogels as new catalyst supports for PEM fuel cells[J]. Journal of Materials Science, 2016, 51(11): 5305-5320.
[87] CRONAU M, SZABO M, KÖNIG C, et al. How to measure a reliable ionic conductivity? The stack pressure dilemma of microcrystalline sulfide-based solid electrolytes[J]. ACS Energy Letters, 2021, 6(9): 3072-3077.
[88] HOU Q Y, LÜ Z Y, ZHAO C W. Effects of Nb doping concentration on TiO2 electricel conductivity and optical performance[J]. Acta Physica Sinica, 2015, 64(1): 017201-017220.
[89] SIRIPURAM R, RAO P S G, SRIPADA S. Influence of nano crystalline behavior of Nb2O5- Sb2O3- TeO2glass ceramics on structural and thermal studies[J]. Materials Today: Proceedings, 2019, 46: 6344-6357.
[90] SIVULA K. Mott-schottky analysis of photoelectrodes: Sanity checks are needed[J]. ACS Energy Letters, 2021, 6(7): 2549-2551.
[91] HANKIN A, BEDOYA-LORA F E, ALEXANDER J C, et al. Flat band potential determination: Avoiding the pitfalls[J]. Journal of Materials Chemistry A, 2019, 7(45): 26162-26176.
[92] BABIC U, SUERMANN M, BÜCHI F N, et al. Critical review—Identifying critical gaps for polymer electrolyte water electrolysis development[J]. Journal of The Electrochemical Society, 2017, 164(4): F387-F399.
[93] XU J, LIU G, LI J, et al. The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction[J]. Electrochimica Acta, 2012, 59: 105-112.
[94] OH H S, NONG H N, REIER T, et al. Electrochemical catalyst-support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2016, 138(38): 12552-12563.
[95] NONG H N, OH H S, REIER T, et al. Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting[J]. Angewandte Chemie - International Edition, 2015, 54(10): 2975-2979.
[96] OAKTON E, LEBEDEV D, POVIA M, et al. IrO2-TiO2: A High-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction[J]. ACS Catalysis, 2017, 7(4): 2346-2352.
[97] REIER T, TESCHNER D, LUNKENBEIN T, et al. Electrocatalytic oxygen evolution on iridium oxide: Uncovering catalyst-substrate interactions and active iridium oxide species[J]. Journal of The Electrochemical Society, 2014, 161(9): F876-F882.
[98] LIU Y, WANG C, LEI Y, et al. Investigation of high-performance IrO2 electrocatalysts prepared by Adams method[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19460-19467.
[99] HU W, CHEN S, XIA Q. IrO2/Nb-TiO2 electrocatalyst for oxygen evolution reaction in acidic medium[J]. International Journal of Hydrogen Energy, 2014, 39(13): 6967-6976.
[100] LEBEDEV D, COPÉRET C. Small, narrowly distributed iridium nanoparticles supported on indium tin oxide for efficient anodic water oxidation[J]. ACS Applied Energy Materials, 2019, 2(1): 196-200.
[101] GENOVA-KOLEVA R V., ALCAIDE F, ÁLVAREZ G, et al. Supporting IrO2 and IrRuOx nanoparticles on TiO2 and Nb-doped TiO2 nanotubes as electrocatalysts for the oxygen evolution reaction[J]. Journal of Energy Chemistry, 2019, 34: 227-239.
[102] LI D, YAN W, QI R, et al. Development of structurally modified OER catalysts with enhanced performance and longevity for PEM-based electrolytic air dehumidification[J]. International Journal of Hydrogen Energy, 2021, 46(14): 9267-9279.
[103] HARTIG-WEISS A, MILLER M, BEYER H, et al. Iridium oxide catalyst supported on antimony-doped tin oxide for high oxygen evolution reaction activity in acidic media[J]. ACS Applied Nano Materials, 2020, 3(3): 2185-2196.
[104] ZHOU Z, ZAMAN W Q, SUN W, et al. Effective strain engineering of IrO2 toward improved oxygen evolution catalysis through a aatalyst-support system[J]. ChemElectroChem, 2019, 6(17): 4586-4594.
[105] LIN C, LI J L, LI X, et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation[J]. Nature Catalysis, 2021, 4(12): 1012-1023.
[106] PUTHIYAPURA V K, MAMLOUK M, PASUPATHI S, et al. Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser[J]. Journal of Power Sources, 2014, 269: 451-460.
[107] HAN S B, MO Y H, LEE Y S, et al. Mesoporous iridium oxide/Sb-doped SnO2 nanostructured electrodes for polymer electrolyte membrane water electrolysis[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1409-1416.
[108] LIM J, PARK D, JEON S S, et al. Ultrathin IrO2 nanoneedles for electrochemical water oxidation[J]. Advanced Functional Materials, 2018, 28(4): 1-7.
[109] FELIX C, BLADERGROEN B J, LINKOV V, et al. Ex-situ electrochemical characterization of IrO2 synthesized by a modified Adams fusion method for the oxygen evolution reaction[J]. Catalysts, 2019, 9(4): 318-334.
[110] FELIX C, MAIYALAGAN T, PASUPATHI S, et al. Synthesis and optimisation of IrO2 electrocatalysts by Adams fusion method for solid polymer electrolyte electrolysers[J]. Micro and Nanosystemse, 2012, 4(3): 186-191.
[111] HANSEN H A, MAN I C, STUDT F, et al. Electrochemical chlorine evolution at rutile oxide (110) surfaces[J]. Physical Chemistry Chemical Physics, 2010, 12(1): 283-290.
[112] KADAKIA K, DATTA M K, VELIKOKHATNYI O I, et al. Novel (Ir,Sn,Nb)O2 anode electrocatalysts with reduced noble metal content for PEM based water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3001-3013.
[113] PUTHIYAPURA V K, MAMLOUK M, PASUPATHI S, et al. Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser[J]. Journal of Power Sources, 2014, 269: 451-460.
[114] DE PAULI C P, TRASATTI S. Electrochemical surface characterization of IrO2 + SnO2 mixed oxide electrocatalysts[J]. Journal of Electroanalytical Chemistry, 1995, 396(1): 161-168.
[115] XU J, LIAN Z, WEI B, et al. Strong electronic coupling between ultrafine iridium-ruthenium nanoclusters and conductive, acid-stable tellurium nanoparticlesupport for efficient and durable oxygen evolution in acidic and neutral mmedia[J]. ACS Catalysis, 2020, 10(6): 3571-3579.
[116] FREAKLEY S J, RUIZ-ESQUIUS J, MORGAN D J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited[J]. Surface and Interface Analysis, 2017, 49(8): 794-799.
[117] PFEIFER V, JONES T E, VELASCO VÉLEZ J J, et al. The electronic structure of iridium oxide electrodes active in water splitting[J]. Physical Chemistry Chemical Physics, 2016, 18(4): 2292-2296.
[118] PFEIFER V, JONES T E, VELASCO VÉLEZ J J, et al. The electronic structure of iridium and its oxides[J]. Surface and Interface Analysis, 2016, 48(5): 261-273.
[119] XI P, HUANG B, YIN J, et al. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media[J]. Journal of the American Chemical Society, 2020, 142(43): 18378-18386.
[120] LIU W, HERRMANN A K, BIGALL N C, et al. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts[J]. Accounts of Chemical Research, 2015, 48(2): 154-162.
[121] ABBOU S, CHATTOT R, MARTIN V, et al. Manipulating the corrosion resistance of SnO2 aerogels through doping for efficient and durable oxygen evolution reaction Electrocatalysis in Acidic Media[J]. ACS Catalysis, 2020, 10(13): 7283-7294.
[122] BERNICKE M, BERNSMEIER D, PAUL B, et al. Tailored mesoporous Ir/TiOx: Identification of structure-activity relationships for an efficient oxygen evolution reaction[J]. Journal of Catalysis, 2019, 376: 209-218.
[123] MARTÍN A J, MITCHELL S, MONDELLI C, et al. Unifying views on catalyst deactivation[J]. Nature Catalysis, 2022, 5(10): 854-866.
[124] KÖTZ R, NEFF H, STUCKI S. Anodic iridium oxide films: XPS‐Studies of oxidation state changes and O2 evolution[J]. Journal of The Electrochemical Society, 1984, 131(1): 72-77.
[125] BRUNEAUX J, CACHET H, FROMENT M, et al. Structural, electrical and interfacial properties of sprayed SnO2 films[J]. Electrochimica Acta, 1994, 39(8-9): 1251-1257.
修改评论