[1] GEIM A K, GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature, 2013, 499: 419–425.
[2] DUONG D L, YUN S J, LEE Y H. Van der waals layered materials: opportunities and challenges[J]. ACS Nano, 2017, 11: 11803–11830.
[3] NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353: 6298.
[4] DEAN C, YOUNG A F, WANG L, et al. Graphene based heterostructures[J]. Solid State Communications, 2012, 152: 1275–1282.
[5] HAIGH S J, GHOLINIA A, JALIL R, et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices[J]. Nature Materials, 2012, 11: 764–767.
[6] GORBACHEV R V., GEIM A K, KATSNELSON M I, et al. Strong Coulomb drag and broken symmetry in double-layer graphene[J]. Nature Physics, 2012, 8: 896–901.
[7] PONOMARENKO L A, YANG R, MOHIUDDIN T M, et al. Effect of a high-κ environment on charge carrier mobility in graphene[J]. Physical Review Letters, 2009, 102: 100–103.
[8] ZONG X, HU H, OUYANG G, et al. Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications[J]. Light: Science and Applications, 2020, 9: 114.
[9] LIU X, HERSAM M C. Borophene-graphene heterostructures[J]. 2019, 5: 6444.
[10] CHEN Y, SUN M. Two-dimensional WS2/MoS2heterostructures: Properties and applications[J]. Nanoscale, 2021, 13: 5594–5619.
[11] FU L, SUN Y, WU N, et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy[J]. ACS Nano, 2016, 10: 2063–2070.
[12] LI D, XIONG W, JIANG L, et al. Multimodal nonlinear optical imaging of MoS2 and mos2-based van der waals heterostructures[J]. ACS Nano, 2016, 10: 3766–3775.
[13] FLÖRY N, JAIN A, BHARADWAJ P, et al. A WSe2/MoSe2 heterostructure photovoltaic device[J]. Applied Physics Letters, 2015, 107: 2–6.
[14] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669.
[15] NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-temperature quantum hall in graphene[J]. Science, 2007, 315: 1379.
[16] CHANGGU LEE, XIAODING WEI, JEFFREY W. KYSAR, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321: 382–385.
[17] DIAS A C, QU F, AZEVEDO D L, et al. Band structure of monolayer transition-metal dichalcogenides and topological properties of their nanoribbons: Next-nearest-neighbor hopping[J]. Physical Review B, 2018, 98: 075202.
[18] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105: 2–5.
[19] ZHAO W, RIBEIRO R M, TOH M, et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2[J]. Nano Letters, 2013, 13: 5627–5634.
[20] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10: 1271-1275.
[21] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7: 699–712.
[22] SCHREPPLER S, SPETHMANN N, BRAHMS N, et al. The valley Hall effect in MoS2 transistors[J]. Science , 2014, 344: 1486–1489.
[23] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5: 263–275.
[24] TANG S, ZHANG C, WONG Di, et al. Quantum spin Hall state in monolayer 1T’-WTe2[J]. Nature Physics, 2017, 13: 683–687.
[25] FEI Z, ZHAO W, PALOMAKI T A, et al. Ferroelectric switching of a two-dimensional metal[J]. Nature, 2018, 560: 336–339.
[26] ZHANG X, LU Q, LIU W, et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films[J]. Nature Communications, 2021, 12: 2492.
[27] SAJADI E, PALOMAKI T, FEI Z, et al. Gate-induced superconductivity in a monolayer topological insulator[J]. Science, 2018, 362: 922–925.
[28] HŸTCH M J, SNOECK E, KILAAS R. Quantitative measurement of displacement and strain fields from HREM micrographs[J]. Ultramicroscopy, 1998, 74: 131–146.
[29] KEUM D H, CHO S, KIM J H, et al. Bandgap opening in few-layered monoclinic MoTe2[J]. Nature Physics, 2015, 11: 482–486.
[30] WANG L, GUTIÉRREZ-LEZAMA I, BARRETEAU C, et al. Tuning magnetotransport in a compensated semimetal at the atomic scale[J]. Nature Communications, 2015, 6: 1–7.
[31] CHANG T R, XU S Y, CHANG G, et al. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1-xTe2[J]. Nature Communications, 2016, 7: 1–9.
[32] XU X, ZHANG Z, DONG J, et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil[J]. Science Bulletin, 2017, 62: 1074–1080.
[33] CHEN T-A, CHUU C-P, TSENG C-C, et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)[J]. Nature, 2020, 579: 219–223.
[34] LI T, GUO W, MA L, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire[J]. Nature Nanotechnology, 2021, 16: 1201-1207.
[35] LI N, WANG Q, SHEN C, et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors[J]. Nature Electronics, 2020, 3: 711–717.
[36] PACE S, MARTINI L, CONVERTINO D, et al. Synthesis of large-scale monolayer 1T′-MoTe2 and its stabilization via scalable h-BN encapsulation[J]. ACS Nano, 2021, 15: 4213–4225.
[37] KRIVANEK O L, CHISHOLM M F, NICOLOSI V, et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy[J]. Nature, 2010, 464: 571–574.
[38] MOON J Y, KIM M, KIM S Il, et al. Layer-engineered large-area exfoliation of graphene[J]. Science Advances, 2020, 6: 1–8.
[39] RASOOL H I, OPHUS C, KLUG W S, et al. Measurement of the intrinsic strength of crystalline and polycrystalline graphene[J]. Nature Communications, 2013, 4: 1–7.
[40] GMITRA M, KONSCHUH S, ERTLER C, et al. Band-structure topologies of graphene: Spin-orbit coupling effects from first principles[J]. Physical Review B - Condensed Matter and Materials Physics, 2009, 80: 1–5.
[41] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene[J]. Nature, 2005, 438: 201–204.
[42] CHANG K, MEI Z, WANG T, et al. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation[J]. ACS Nano, 2014, 8: 7078–7087.
[43] DAVID L, BHANDAVAT R, SINGH G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano, 2014, 8: 1759–1770.
[44] LIU L, FENG P, SHEN X. Structural and electronic properties of h-BN[J]. Physical Review B - Condensed Matter and Materials Physics, 2003, 68: 1–8.
[45] ACUN A, ZHANG L, BAMPOULIS P, et al. Germanene: The germanium analogue of graphene[J]. Journal of Physics Condensed Matter, 2015, 27: 443002.
[46] ZHU F F, CHEN W J, XU Y, et al. Epitaxial growth of two-dimensional stanene[J]. Nature Materials, 2015, 14: 1020–1025.
[47] MOLLE A, GOLDBERGER J, HOUSSA M, et al. Buckled two-dimensional Xene sheets[J]. Nature Materials, 2017, 16: 163–169.
[48] KIM J, BAIK S S, RYU S H, et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus[J]. Science, 2015, 349: 723–726.
[49] LUO W, ZEMLYANOV D Y, MILLIGAN C A, et al. Surface chemistry of black phosphorus under a controlled oxidative environment[J]. Nanotechnology, 2016, 27: 434002.
[50] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6: 147–150.
[51] QIAN X, LIU J, FU L, et al. Quantum spin hall effect in two-dimensional transition metal dichalcogenides[J]. Science, 2014, 346: 1344–1347.
[52] SAJADI E, PALOMAKI T, FEI Z, et al. Gate-induced superconductivity in a monolayer topological insulator[J]. Science, 2018, 362: 922–925.
[53] YANG Q, WU M, LI J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer[J]. Journal of Physical Chemistry Letters, 2018, 9: 7160–7164.
[54] FEI Z, PALOMAKI T, WU S, et al. Edge conduction in monolayer WTe2[J]. Nature Physics, 2017, 13: 677–682.
[55] YUAN S, LUO X, CHAN H L, et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit[J]. Nature Communications, 2019, 10: 2–7.
[56] QI Y, NAUMOV P G, ALI M N, et al. Superconductivity in Weyl semimetal candidate MoTe2[J]. Nature Communications, 2016, 7: 1–7.
[57] WANG W, KIM S, LIU M, et al. Evidence for an edge supercurrent in the Weyl superconductor MoTe2[J]. Science, 2020, 368: 534–537.
[58] WANG Y, XIAO J, ZHU H, et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping[J]. Nature, 2017, 550: 487–491.
[59] CHO S, KIM S, KIM J H, et al. Phase patterning for ohmic homojunction contact in MoTe2[J]. Science, 2015, 349: 625–628.
[60] HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546: 270–273.
[61] GONG C, LI L, LI Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 2017, 546: 265–269.
[62] Koma A. Van der Waals epitaxy for highly lattice-mismatched systems[J]. Journal of Crystal Growth, 1999, 201: 236-241.
[63] DUAN X, WANG C, SHAW J C, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions[J]. Nature Nanotechnology, 2014, 9: 1024–1030.
[64] ZHANG Y, LV Q, WANG H, et al. Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction[J]. Science, 2022, 378: 169–175.
[65] ZHAO W, FEI Z, SONG T, et al. Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge[J]. Nature Materials, 2020, 19: 503–507.
[66] CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling inmagic-angle graphene superlattices[J]. Nature, 2018, 556: 80–84.
[67] CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556: 43–50.
[68] PARK J M, CAO Y, WATANABE K, et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene[J]. Nature, 2021, 590: 249–255.
[69] NAYLOR C H, PARKIN W M, GAO Z, et al. Large-area synthesis of high-quality monolayer 1T’-WTe2 flakes[J]. 2D Materials, 2017, 4: 021008.
[70] HUANG Y, PAN Y H, YANG R, et al. Universal mechanical exfoliation of large-area 2D crystals[J]. Nature Communications, 2020, 11: 2453.
[71] JIA Y, WANG P, CHIU C L, et al. Evidence for a monolayer excitonic insulator[J]. Nature Physics, 2022, 18(1): 87–93.
[72] HE Q, LI P, WU Z, et al. Molecular beam epitaxy scalable growth of wafer-scale continuous semiconducting monolayer MoTe2 on inert amorphous dielectrics[J]. Advanced Materials, 2019, 31: 1–11.
[73] CHEN J, WANG G, TANG Y, et al. Quantum effects and phase tuning in epitaxial hexagonal and monoclinic MoTe2 monolayers[J]. ACS Nano, 2017, 11: 3282–3288.
[74] EMPANTE T A, ZHOU Y, KLEE V, et al. Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T′, and 1T phases: Tunable properties of MoTe2 films[J]. ACS Nano, 2017, 11: 900–905.
[75] LI J, CHENG S, LIU Z, et al. Centimeter-scale, large-area, few-layer 1T′-WTe2 films by chemical vapor deposition and its long-term dtability in ambient condition[J]. Journal of Physical Chemistry C, 2018, 122: 7005–7012.
[76] ZHOU J, LIU F, LIN J, et al. Large-area and high-quality 2D transition Metal Telluride[J]. Advanced Materials, 2017, 29: 1603471.
[77] PARK J C, YUN S J, KIM H, et al. Phase-Engineered Synthesis of Centimeter-Scale 1T′- and 2H-Molybdenum Ditelluride Thin Films[J]. ACS Nano, 2015, 9: 6548–6554.
[78] HYNEK D J, SINGHANIA R M, XU S, et al. Cm2-scale synthesis of MoTe2 thin films with large grains and layer control[J]. ACS Nano, 2021, 15: 410–418.
[79] SUNG J H, HEO H, SI S, et al. Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy[J]. Nature Nanotechnology, 2017, 12: 1064–1070.
[80] XU X, PAN Y, LIU S, et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2[J]. Science, 2021, 372: 195–200.
[81] KÖNIG M, MOLENKAMP L W, QI X, et al. Quantum spin Hall insulator state in HgTe Quantum Wells[J]. Science, 2007, 318: 766–770.
[82] BERNEVIG B A, HUGHES T L., Zhang S. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314: 1757–1761.
[83] KNEZ I, DU R R, SULLIVAN G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells[J]. Physical Review Letters, 2011, 107: 1–5.
[84] FATEMI V, WU S, CAO Y, et al. Electrically tunable low-density superconductivity in a monolayer topological insulator[J]. Science, 2018, 362: 926–929.
[85] SCOTT J F. Applications of modern ferroelectrics[J]. Science, 2007, 315: 954–959.
[86] DAWBER M K, Rabe M, Scott J F. Physics of thin-film ferroelectric oxides[J]. Reviews of Modern Physics, 2005, 77: 1083-1130.
[87] GAO W, ZHU Y, WANG Y, et al. A review of flexible perovskite oxide ferroelectric films and their application[J]. Journal of Materiomics, 2020, 6: 1–16.
[88] SAKAI H, IKEURA K, BAHRAMY M S, et al. Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe2[J]. Science Advances, 2016, 2: 1–8.
[89] KIM T H, PUGGIONI D, YUAN Y, et al. Polar metals by geometric design[J]. Nature, 2016, 533: 68–72.
[90] BENEDEK N A, BIROL T. "Ferroelectric" metals reexamined: Fundamental mechanisms and design considerations for new materials[J]. Journal of Materials Chemistry C, 2016, 4: 4000–4015.
[91] SHI Y, GUO Y, WANG X, et al. A ferroelectric-like structural transition in a metal[J]. Nature Materials, 2013, 12: 1024–1027.
[92] ANDERSON P W, BLOUNT E I. Symmetry considerations on martensitic transformations: "ferroelectric" metals?[J]. Physical Review Letters, 1965, 14(13): 532.
[93] FATEMI V, GIBSON Q D, WATANABE K, et al. Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe2[J]. Physical Review B, 2017, 95: 1–5.
[94] RAJAPITAMAHUNI A, HOFFMAN J, AHN C H, et al. Examining graphene field effect sensors for ferroelectric thin film studies[J]. Nano Letters, 2013, 13: 4374–4379.
[95] JINDAL A, SAHA A, LI Z, et al. Coupled ferroelectricity and superconductivity in bilayer Td-MoTe2[J]. Nature, 2023, 613: 48–52.
[96] LÜPKE F, WATERS D, DE LA BARRERA S C, et al. Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe2[J]. Nature Physics, 2020, 16: 526–530.
[97] WILLIAMS B, CARTER C B. Transmission Electron Microscopes[M]. Boston, MA: Springer US, 1996: 3-17.
[98] LIN J, ZHOU J, ZULUAGA S, et al. Anisotropic ordering in 1T′ molybdenum and tungsten ditelluride layers alloyed with sulfur and selenium[J]. ACS Nano, 2018, 12: 894–901.
[99] DENG Y, LI P, ZHU C, et al. Controlled synthesis of MoxW1-xTe2 atomic layers with emergent quantum states[J]. ACS Nano, 2021, 15: 11526–11534.
[100] ZHOU W, ZOU X, NAJMAEI S, et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Letters, 2013, 13: 2615–2622.
[101] VAN DER ZANDE A M, HUANG P Y, CHENET D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nature Materials, 2013, 12: 554–561.
[102] CUI J, LI P, ZHOU J, et al. Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1Td -MoTe2[J]. Nature Communications, 2019, 10: 1–8.
[103] RHODES D A, JINDAL A, YUAN N F Q, et al. Enhanced superconductivity in monolayer Td-MoTe2[J]. Nano Letters, 2021, 21: 2505–2511.
[104] NIU K, WENG M, LI S, et al. Direct visualization of large‐scale intrinsic atomic lattice structure and its collective anisotropy in air‐sensitive monolayer 1T’‐ WTe2[J]. Advanced Science, 2021, 8: 2101563.
[105] ZHOU J, LIN J, HUANG X, et al. A library of atomically thin metal chalcogenides[J]. Nature, 2018, 556: 355–359.
[106] LI S, LIN Y C, LIU X Y, et al. Wafer-scale and deterministic patterned growth of monolayer MoS2 via vapor-liquid-solid method[J]. Nanoscale, 2019, 11: 16122–16129.
[107] LI S. Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides[J]. iScience, 2021, 24: 103229.
[108] WANG J, XU X, CHENG T, et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire[J]. Nature Nanotechnology, 2022, 17: 33-38.
[109] LIU L, LI T, MA L, et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire[J]. Nature Nanotechnology, 2022, 605: 69-75.
[110] WANG Q, LI N, TANG J, et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes[J]. Nano Letters, 2020, 20: 7193–7199.
[111] CHO S, KANG S H, YU H S, et al. Te vacancy-driven superconductivity in orthorhombic molybdenum ditelluride[J]. 2D Materials, 2017, 4: 021030.
[112] CHEN W H, KAWAKAMI N, LIN J J, et al. Noncentrosymmetric characteristics of defects on WTe2[J]. Physical Review B, 2022, 106: 1–6.
[113] MUECHLER L, HU W, LIN L, et al. Influence of point defects on the electronic and topological properties of monolayer WTe2[J]. Physical Review B, 2020, 102: 1–6.
[114] HUANG C, NARAYAN A, ZHANG E, et al. Inducing strong superconductivity in WTe2 by a proximity effect[J]. ACS Nano, 2018, 12: 7185–7196.
[115] DEVARAKONDA A, CHECKELSKY J G. Monolayers have the edge[J]. Nature Physics, 2017, 13: 630–631.
[116] SHI Y, KAHN J, NIU B, et al. Imaging quantum spin Hall edges in monolayer WTe2[J]. Science Advances, 2019, 5: 1–7.
[117] PENG L, YUAN Y, LI G, et al. Observation of topological states residing at step edges of WTe2[J]. Nature Communications, 2017, 8: 1–7.
[118] KONONOV A, KONONOV A, ABULIZI G, et al. One-dimensional edge transport in few-layer WTe2[J]. Nano Letters, 2020, 20: 4228–4233.
[119] OK S, MUECHLER L, DI SANTE D, et al. Custodial glide symmetry of quantum spin Hall edge modes in monolayer WTe2[J]. Physical Review B, 2019, 99: 1–5.
[120] WANG G Y, XIE W, XU D, et al. Formation mechanism of twin domain boundary in 2D materials: The case for WTe2[J]. Nano Research, 2019, 12: 569–573.
[121] KIM H W, KANG S H, KIM H J, et al. Symmetry dictated grain boundary state in a two-dimensional topological insulator[J]. Nano Letters, 2020, 20: 5837–5843.
[122] XU K, PAN Y, YE S, et al. Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals[J]. Applied Physics Letters, 2019, 115: 063101.
[123] LIU D, HONG J, WANG X, et al. Diverse atomically sharp interfaces and linear dichroism of 1T’ ReS2-ReSe2 lateral p–n heterojunctions[J]. Advanced Functional Materials, 2018, 28: 1804696.
[124] CHEN X, LEI B, ZHU Y, et al. Diverse spin-polarized in-gap states at grain boundaries of rhenium dichalcogenides induced by unsaturated Re-Re bonding[J]. ACS Materials Letters, 2021, 3: 1513–1520.
[125] LI S, LIN Y C, ZHAO W, et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons[J]. Nature Materials, 2018, 17: 535–542.
[126] YANG S, XU X, XU W, et al. Large-scale vertical 1T′/2H MoTe2 nanosheet-based heterostructures for low contact resistance transistors[J]. ACS Applied Nano Materials, 2020, 3: 10411–10417.
[127] ZHANG X, JIN Z, WANG L, et al. Low contact barrier in 2H/1T′ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition[J]. ACS Applied Materials and Interfaces, 2019, 11: 12777–12785.
[128] XU X, CHEN S, LIU S, et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation[J]. Journal of the American Chemical Society, 2019, 141: 2128–2134.
[129] HOANG A T, SHINDE S M, KATIYAR A K, et al. Orientation-dependent optical characterization of atomically thin transition metal ditellurides[J]. Nanoscale, 2018, 10: 21978–21984.
[130] LIU L, WU J, WU L, et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers[J]. Nature Materials, 2018, 17: 1108–1114.
[131] HULMAN M, SOJKOVÁ M, VÉGSÖ K, et al. Polarized Raman reveals alignment of few-layer MoS2 films[J]. Journal of Physical Chemistry C, 2019, 123: 29468–29475.
[132] ZHANG S, MAO N, ZHANG N, et al. Anomalous polarized raman scattering and large circular intensity differential in layered triclinic ReS2[J]. ACS Nano, 2017, 11: 10366–10372.
[133] CHEN S Y, NAYLOR C H, GOLDSTEIN T, et al. Intrinsic phonon bands in high-quality monolayer T’ molybdenum ditelluride[J]. ACS Nano, 2017, 11: 814–820.
[134] BARONI S, GIRONCOLI S D, CORSO A D, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. 2001, 73: 515-562.
[135] Kresse G, Furthmuller J. Bayesian optimization for calibrating and selecting hybrid-density functional models[J]. Journal of Physical Chemistry A, 2020, 124: 4053–4061.
[136] OHFUCHI M, SEKINE A. Quantum spin hall states in 2D monolayer WTe2/MoTe2 lateral heterojunctions for topological quantum computation[J]. ACS Applied Nano Materials, 2023, 6: 2020–2026.
修改评论