[1] NIU Y, LI Y, JIN D, et al. A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges[J]. Wireless networks, 2015, 21: 2657-2676.
[2] 刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2020,10(3): 467-484.
[3] BAYKAS T, SUM C S, LAN Z, et al. IEEE 802.15. 3c: The first IEEE wireless standard for data rates over 1 Gb/s[J]. IEEE Communications Magazine, 2011, 49(7): 114-121.
[4] NITSCHE T, CORDEIRO C, FLORES A B, et al. IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi[J]. IEEE Communications Magazine, 2014, 52 (12): 132-141.
[5] GHASEMPOUR Y, DA SILVA C R, CORDEIRO C, et al. IEEE 802.11 ay: Next-generation 60 GHz communication for 100 Gb/s Wi-Fi[J]. IEEE Communications Magazine, 2017, 55(12): 186-192.
[6] ROH W, SEOL J Y, PARK J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results[J]. IEEE communications magazine, 2014, 52(2): 106-113.
[7] MARTIN-VEGA F J, AGUAYO-TORRES M C, GOMEZ G, et al. Key technologies, modeling approaches, and challenges for millimeter-wave vehicular communications[J]. IEEE Communications Magazine, 2018, 56(10): 28-35.
[8] 潘成康, 王爱玲, 刘建军, 等. 无线感知通信一体化关键技术分析[J]. 无线电通信技术,2021, 47(2): 143-148.
[9] PAUL B, CHIRIYATH A R, BLISS D W. Survey of RF Communications and Sensing Convergence Research[J/OL]. IEEE Access, 2017, 5: 252-270. DOI: 10.1109/ACCESS.2016.26 39038.
[10] PATOLE S M, TORLAK M, WANG D, et al. Automotive radars: A review of signal processing techniques[J/OL]. IEEE Signal Processing Magazine, 2017, 34(2): 22-35. DOI: 10.1109/MS P.2016.2628914.
[11] DENG H, HIMED B. Interference Mitigation Processing for Spectrum-Sharing Between Radar and Wireless Communications Systems[J/OL]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1911-1919. DOI: 10.1109/TAES.2013.6558027.
[12] AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J/OL]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1138-1152. DOI: 10.1109/TAES.2014.120731.
[13] LIU F, MASOUROS C, LI A, et al. MIMO Radar and Cellular Coexistence: A Power-Efficient Approach Enabled by Interference Exploitation[J/OL]. IEEE Transactions on Signal Processing, 2018, 66(14): 3681-3695. DOI: 10.1109/TSP.2018.2833813.
[14] NIU K, WANG X, ZHANG F, et al. Rethinking Doppler Effect for Accurate Velocity Estimation With Commodity WiFi Devices[J/OL]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2164-2178. DOI: 10.1109/JSAC.2022.3155523.
[15] LI W, PIECHOCKI R J, WOODBRIDGE K, et al. Passive WiFi Radar for Human Sensing Using a Stand-Alone Access Point[J/OL]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 1986-1998. DOI: 10.1109/TGRS.2020.3006387.
[16] AZIZAH R N, LEE Y S, JUNG J J, et al. Gesture Recognition for Note Generation in VR Rhythm Game[C/OL]//2021 International Conference on Information Networking (ICOIN). 2021: 521-524. DOI: 10.1109/ICOIN50884.2021.9333868.
[17] MARCHELLUS M, PARK I K. Deep Learning for 3D Human Motion Prediction: State-of the-Art and Future Trends[J/OL]. IEEE Access, Vol 10, Pp 35919-35931 (2022), 2022. https: //doi.org/10.1109/ACCESS.2022.3163269.
[18] YOO M, NA Y, SONG H, et al. Motion Estimation and Hand Gesture Recognition-Based Human–UAV Interaction Approach in Real Time[J/OL]. Sensors, Vol 22, Iss 2513, p 2513 (2022), 2022. https://doi.org/10.3390/s22072513.
[19] MARTINEZ J, BLACK M J, ROMERO J. On Human Motion Prediction Using Recurrent Neural Networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
[20] LI C, WANG B. Hand Gesture Recognition in Complex Background Based on improved Deep Residual Learning network[C/OL]//2021 International Symposium on Computer Technology and Information Science (ISCTIS). 2021: 239-245. DOI: 10.1109/ISCTIS51085.2021.00057.
[21] YU Y, WANG X, ZHONG Z, et al. ROS-based UAV control using hand gesture recognition [C/OL]//2017 29th Chinese Control And Decision Conference (CCDC). 2017: 6795-6799. DOI: 10.1109/CCDC.2017.7978402.
[22] FLINTOFF Z, JOHNSTON B, LIAROKAPIS M. Single-Grasp, Model-Free Object Classification using a Hyper-Adaptive Hand, Google Soli, and Tactile Sensors[C/OL]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018: 1943-1950. DOI: 10.1109/IROS.2018.8594166.
[23] ZHAO M, LI T, ALSHEIKH M A, et al. Through-Wall Human Pose Estimation Using Radio Signals[C/OL]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 7356-7365. DOI: 10.1109/CVPR.2018.00768.
[24] 王亚龙. 基于毫米波雷达的手势识别研究[D/OL]. 2020. DOI: 10.27005/d.cnki.gdzku.2020.001928.
[25] YU J T, YEN L, TSENG P H. mmWave Radar-based Hand Gesture Recognition using Range Angle Image[C/OL]//2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). 2020: 1-5. DOI: 10.1109/VTC2020-Spring48590.2020.9128573.
[26] SUN H, CHIA L G, RAZUL S G. Through-Wall Human Sensing With WiFi Passive Radar [J/OL]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2135-2148. DOI: 10.1109/TAES.2021.3069767.
[27] LI W, BOCUS M J, TANG C, et al. A Taxonomy of WiFi Sensing: CSI vs Passive WiFi Radar [C/OL]//2020 IEEE Globecom Workshops (GC Wkshps). 2020: 1-6. DOI: 10.1109/GCWkshops50303.2020.9367546.
[28] QIAN K, WU C, ZHENG Y, et al. Widar: Decimeter-Level Passive Tracking via Velocity Monitoring with Commodity Wi-Fi[C]//Acm International Symposium. 2017.
[29] QIAN K, WU C, ZHANG Y, et al. Widar2.0: Passive Human Tracking with a Single Wi-Fi Link[Z]. 2018.
[30] ZHANG Y, ZHENG Y, QIAN K, et al. Widar3.0: Zero-Effort Cross-Domain Gesture Recognition with Wi-Fi[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021: 1-1. DOI: 10.1109/TPAMI.2021.3105387.
[31] WANG H, ZHANG D, MA J, et al. Human Respiration Detection with Commodity Wifi Devices: Do User Location and Body Orientation Matter?[C/OL]//UbiComp ’16: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY, USA: Association for Computing Machinery, 2016: 25–36. https: //doi.org/10.1145/2971648.2971744.
[32] ZENG Y, WU D, XIONG J, et al. FarSense: Pushing the Range Limit of WiFi-Based Respiration Sensing with CSI Ratio of Two Antennas[J/OL]. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2019, 3(3). https://doi.org/10.1145/3351279.
[33] NIU K, ZHANG F, WANG X, et al. Understanding WiFi Signal Frequency Features for Position-Independent Gesture Sensing[J/OL]. IEEE Transactions on Mobile Computing, 2022, 21(11): 4156-4171. DOI: 10.1109/TMC.2021.3063135.
[34] CHARAN G, ALRABEIAH M, ALKHATEEB A. Vision-Aided 6G Wireless Communications: Blockage Prediction and Proactive Handoff[J/OL]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10193-10208. DOI: 10.1109/TVT.2021.3104219.
[35] ALRABEIAH M, HREDZAK A, ALKHATEEB A. Millimeter Wave Base Stations with Cameras: Vision-Aided Beam and Blockage Prediction[C]//2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). 2020.
[36] DEMIRHAN U, ALKHATEEB A. Radar Aided Proactive Blockage Prediction in Real-World Millimeter Wave Systems[C/OL]//ICC 2022 - IEEE International Conference on Communications. 2022: 4547-4552. DOI: 10.1109/ICC45855.2022.9838438.
[37] WU S, CHAKRABARTI C, ALKHATEEB A. LiDAR-Aided Mobile Blockage Prediction in Real-World Millimeter Wave Systems[C/OL]//2022 IEEE Wireless Communications and Networking Conference (WCNC). 2022: 2631-2636. DOI: 10.1109/WCNC51071.2022.9771651.
[38] ALI Z, DUEL-HALLEN A, HALLEN H. Early Warning of mmWave Signal Blockage and AoA Transition Using sub-6 GHz Observations[J/OL]. IEEE Communications Letters, 2020, 24(1): 207-211. DOI: 10.1109/LCOMM.2019.2952602.
[39] ALRABEIAH M, ALKHATEEB A. Deep Learning for mmWave Beam and Blockage Prediction Using Sub-6 GHz Channels[J/OL]. IEEE Transactions on Communications, 2020, 68(9): 5504-5518. DOI: 10.1109/TCOMM.2020.3003670.
[40] SHAH S H A, SHARMA M, RANGAN S. LSTM-Based Multi-Link Prediction for mmWave and Sub-THz Wireless Systems[C/OL]//ICC 2020 - 2020 IEEE International Conference on Communications (ICC). 2020: 1-6. DOI: 10.1109/ICC40277.2020.9148975.
[41] YU L, ZHANG J, ZHANG Y, et al. Long-Range Blockage Prediction Based on Diffraction Fringe Characteristics for mmWave Communications[J/OL]. IEEE Communications Letters, 2022, 26(7): 1683-1687. DOI: 10.1109/LCOMM.2022.3168077.
[42] LI X, YU L, ZHANG Y, et al. Diffraction Characteristics Aided Blockage and Beam Prediction for mmWave Communications[C/OL]//2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). 2022: 1-5. DOI: 10.1109/VTC2022-Spring54318.2022.9860926.
[43] ZHANG T, LIU J, GAO F. Vision Aided Beam Tracking and Frequency Handoff for mmWave Communications[C/OL]//IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2022: 1-2. DOI: 10.1109/INFOCOMWKSHPS54753.2022.9798197.
[44] JORNET J M, AKYILDIZ I F. Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band[J/OL]. IEEE Transactions on Wireless Communications, 2011, 10(10): 3211-3221. DOI: 10.1109/TWC.2011.081011.100545.
[45] ANDERSON C, RAPPAPORT T, BAE K, et al. In-building wideband multipath characteristics at 2.5 and 60 GHz[C/OL]//Proceedings IEEE 56th Vehicular Technology Conference: volume 1.2002: 97-101 vol.1. DOI: 10.1109/VETECF.2002.1040310.
[46] 盛仲. 考虑人体遮挡效应的室内 60GHz 频段毫米波传播特性研究[D]. 南京邮电大学,2018.
[47] MALANOWSKI M, KULPA K, KULPA J, et al. Analysis of detection range of FM-based passive radar[J]. IET Radar, Sonar & Navigation, 2014, 8(2): 153-159.
[48] LAURI A, COLONE F, CARDINALI R, et al. Analysis and emulation of FM radio signals for passive radar[C]//2007 IEEE Aerospace Conference. IEEE, 2007: 1-10.
[49] TAN D K, SUN H, LU Y, et al. Passive radar using global system for mobile communication signal: theory, implementation and measurements[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(3): 116-123.
[50] LU Y, TAN D, SUN H. Air target detection and tracking using a multi-channel GSM based passive radar[C]//2007 International Waveform Diversity and Design Conference. IEEE, 2007: 122-126.
[51] BARTOLETTI S, CONTI A, WIN M Z. Passive radar via LTE signals of opportunity[C/OL]// 2014 IEEE International Conference on Communications Workshops (ICC). 2014: 181-185. DOI: 10.1109/ICCW.2014.6881193.
[52] EVERS A, JACKSON J A. Cross-ambiguity characterization of communication waveform features for passive radar[J/OL]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3440-3455. DOI: 10.1109/TAES.2015.140622.
[53] ABDULLAH R R, SALAH A A, ISMAIL A, et al. Ground moving target detection using LTE based passive radar[C/OL]//2015 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET). 2015: 70-75. DOI: 10.1109/ICRAMET.2015.7380777.
[54] LIU C, ZHAO J, ZHANG H, et al. Feasibility Analysis and Target Detection Technology of Passive Radar Based on 5G Signal[C/OL]//2022 14th International Conference on Wireless Communications and Signal Processing (WCSP). 2022: 533-537. DOI: 10.1109/WCSP55476.2022.10039347.
[55] SAMCZYńSKI P, ABRATKIEWICZ K, PłOTKA M, et al. 5G Network-Based Passive Radar [J/OL]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-9. DOI: 10.1109/ TGRS.2021.3137904.
[56] WANG W, LIU A X, SHAHZAD M, et al. Understanding and Modeling of WiFi Signal Based Human Activity Recognition[C/OL]//MobiCom ’15: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. New York, NY, USA: Association for Computing Machinery, 2015: 65–76. https://doi.org/10.1145/2789168.2790093.
[57] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016.
[58] VASISH D, KUMAR S, KATABI D. Decimeter-Level Localization with a Single WiFi Access Point[C]//13th USENIX Symposium on Networked Systems Design and Implementationz(NSDI ‘16). 2016: 165-178.
[59] WANG H, ZHANG D, MA J, et al. Human respiration detection with commodity WiFi devices: Do user location and body orientation matter?[C]//Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing. 2016: 25-36.
修改评论