[LOUIS P, FLINT H J. Formation of propionate and butyrate by the human colonic microbiota [J]. Environ Microbiol, 2017, 19(1): 29-41.
[2] AREFIN M S, REDOUTE J M, YUCE M R. Integration of Low-Power ASIC and MEMS Sensors for Monitoring Gastrointestinal Tract Using a Wireless Capsule System [J]. IEEE J Biomed Health Inform, 2018, 22(1): 87-97.
[3] CHENG C, WU Y, LI X, et al. A wireless, ingestible pH sensing capsule system based on iridium oxide for monitoring gastrointestinal health [J]. Sensors and Actuators B: Chemical, 2021, 349.
[4] MACKAY R S, JACOBSON B. Endoradiosonde [J]. Nature, 1957, 179(4572): 1239-1240.
[5] JACOBSON B, MACKAY R S. A pH-endoradiosonde [J]. Lancet, 1957, 272(6981): 1224.
[6] FARRAR J T, ZWORYKIN V K, BAUM J. Pressure-sensitive telemetering capsule for study of gastrointestinal motility [J]. Science, 1957, 126(3280): 975-976.
[7] STEIGER C, ABRAMSON A, NADEAU P, et al. Ingestible electronics for diagnostics and therapy [J]. Nature Reviews Materials, 2018, 4(2): 83-98.
[8] O'BRIEN C, HOYT R W, BULLER M J, et al. Telemetry pill measurement of core temperature in humans during active heating and cooling [J]. Med Sci Sports Exerc, 1998, 30(3): 468-472.
[9] MCCAFFREY C, CHEVALERIAS O, O'MATHUNA C, et al. Swallowable-Capsule Technology [J]. IEEE Pervasive Computing, 2008, 7(1): 23-29.
[10] IDDAN G, MERON G, GLUKHOVSKY A, et al. Wireless capsule endoscopy [J]. Nature, 2000, 405(6785): 417.
[11] XIN L, LIAO Z, JIANG Y P, et al. Indications, detectability, positive findings, total enteroscopy, and complications of diagnostic double-balloon endoscopy: a systematic review of data over the first decade of use [J]. Gastrointest Endosc, 2011, 74(3): 563-570.
[12] FAJARDO N R, WISE J L, LOCKE G R, et al. Esophageal Perforation after Placement of Wireless Bravo pH Probe [J]. American Journal of Gastroenterology, 2005, 100.
[13] CAO Z, WANG X, PANG Y, et al. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment [J]. Nat Commun, 2019, 10(1): 5783.
[14] MIMEE M, NADEAU P, HAYWARD A, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health [J]. Science, 2018, 360(6391): 915-918.
[15] LECHARDEUR D, CESSELIN B, LIEBL U, et al. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis [J]. J Biol Chem, 2012, 287(7): 4752-4758.
[16] NOBLES C L, CLARK J R, GREEN S I, et al. A dual component heme biosensor that integrates heme transport and synthesis in bacteria [J]. J Microbiol Methods, 2015, 118: 7-17.
[17] GHAFAR-ZADEH E, SAWAN M, THERRIAULT D. A 0.18-μm CMOS capacitive sensor Lab-on-Chip [J]. Sensors and Actuators A: Physical, 2008, 141(2): 454-462.
[18] SINGH R R, LENG L, GUENTHER A, et al. A CMOS-Microfluidic Chemiluminescence Contact Imaging Microsystem [J]. IEEE Journal of Solid-State Circuits, 2012, 47(11): 2822-2833.
[19] DAEFFLER K N, GALLEY J D, SHETH R U, et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation [J]. Mol Syst Biol, 2017, 13(4): 923.
[20] KALANTAR-ZADEH K, BEREAN K J, HA N, et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut [J]. Nature Electronics, 2018, 1(1): 79-87.
[21] GIBSON G R, PROBERT H M, LOO J V, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics [J]. Nutr Res Rev, 2004, 17(2): 259-275.
[22] MATHUR R, AMICHAI M, CHUA K S, et al. Methane and hydrogen positivity on breath test is associated with greater body mass index and body fat [J]. J Clin Endocrinol Metab, 2013, 98(4): E698-702.
[23] ONG D K, MITCHELL S B, BARRETT J S, et al. Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome [J]. J Gastroenterol Hepatol, 2010, 25(8): 1366-1373.
[24] OU J Z, YAO C K, ROTBART A, et al. Human intestinal gas measurement systems: in vitro fermentation and gas capsules [J]. Trends Biotechnol, 2015, 33(4): 208-213.
[25] CARBONERO F, BENEFIEL A C, GASKINS H R. Contributions of the microbial hydrogen economy to colonic homeostasis [J]. Nat Rev Gastroenterol Hepatol, 2012, 9(9): 504-518.
[26] LEVITT M D. Volume and composition of human intestinal gas determined by means of an intestinal washout technic [J]. N Engl J Med, 1971, 284(25): 1394-1398.
[27] MAJOR G, PRITCHARD S, MURRAY K, et al. Colon Hypersensitivity to Distension, Rather Than Excessive Gas Production, Produces Carbohydrate-Related Symptoms in Individuals With Irritable Bowel Syndrome [J]. Gastroenterology, 2017, 152(1): 124-33 e2.
[28] RUMESSEN J J, GUDMAND-HOYER E. Functional bowel disease: malabsorption and abdominal distress after ingestion of fructose, sorbitol, and fructose-sorbitol mixtures [J]. Gastroenterology, 1988, 95(3): 694-700.
[29] SHIN W. Medical applications of breath hydrogen measurements [J]. Anal Bioanal Chem, 2014, 406(16): 3931-3939.
[30] DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome [J]. Nature, 2014, 505(7484): 559-563.
[31] ROTBART A, YAO C K, HA N, et al. Designing an in-vitro gas profiling system for human faecal samples [J]. Sensors and Actuators B: Chemical, 2017, 238: 754-764.
[32] BRADEN B, LEMBCKE B, KUKER W, et al. 13C-breath tests: current state of the art and future directions [J]. Dig Liver Dis, 2007, 39(9): 795-805.
[33] PAL A, NADIGER V G, GOSWAMI D, et al. Conformal, waterproof electronic decals for wireless monitoring of sweat and vaginal pH at the point-of-care [J]. Biosens Bioelectron, 2020,160: 112206
[34] BELLINGER A M, JAFARI M, GRANT T M, et al. Oral, ultra-long-lasting drug delivery: Application toward malaria elimination goals [J]. Sci Transl Med, 2016, 8(365): 365ra157.
[35] KIRTANE A R, HUA T, HAYWARD A, et al. A once-a-month oral contraceptive [J]. Sci Transl Med, 2019, 11(521).
[36] LIU X, STEIGER C, LIN S, et al. Ingestible hydrogel device [J]. Nat Commun, 2019, 10(1): 493.
[37] KOZIOLEK M, GRIMM M, BECKER D, et al. Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap((R)) System [J]. J Pharm Sci, 2015, 104(9): 2855-2863.
[38] HOUGHTON L A, READ N W, HEDDLE R, et al. Motor activity of the gastric antrum, pylorus, and duodenum under fasted conditions and after a liquid meal [J]. Gastroenterology, 1988, 94(6): 1276-1284.
[39] LIU J, PANG Y, ZHANG S, et al. Triggerable tough hydrogels for gastric resident dosage forms [J]. Nat Commun, 2017, 8(1): 124.
[40] SUN B, WANG Z, HE Q, et al. Porous double network gels with high toughness, high stretchability and fast solvent-absorption [J]. Soft Matter, 2017, 13(38): 6852-6857.
[41] BETTINGER C J. Materials Advances for Next-Generation Ingestible Electronic Medical Devices [J]. Trends Biotechnol, 2015, 33(10): 575-585.
[42] LIU X, TANG T C, THAM E, et al. Stretchable living materials and devices with hydrogel elastomer hybrids hosting programmed cells [J]. Proc Natl Acad Sci U S A, 2017, 114(9): 2200-2205.
[43] DRURY J L, MOONEY D J. Hydrogels for tissue engineering: scaffold design variables and applications [J]. Biomaterials, 2003, 24(24): 4337-4351.
[44] RON E S, BROMBERG L E. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery [J]. Adv Drug Deliv Rev, 1998, 31(3): 197-221.
[45] QIU Y, PARK K. Environment-sensitive hydrogels for drug delivery [J]. Advanced Drug Delivery Reviews, 2012, 64: 49-60.
[46] QURESHI D, NAYAK S K, MAJI S, et al. Environment sensitive hydrogels for drug delivery applications [J]. European Polymer Journal, 2019, 120.
[47] SCHILD H G. Poly(N-isopropylacrylamide): experiment, theory and application [J]. Progress in Polymer Science, 1992, 17(2): 163-249.
[48] FEIL H, BAE Y H, FEIJEN J, et al. Mutual influence of pH and temperature on the swelling of ionizable and thermosensitive hydrogels [J]. Macromolecules, 2002, 25(20): 5528-5530.
[49] LI B, THOMPSON M E. Phase transition in amphiphilic poly(N-isopropylacrylamide): controlled gelation [J]. Phys Chem Chem Phys, 2018, 20(19): 13623-13631.
[50] TIMOTHY B, KIM D, YOO S I, et al. Tuning of volume phase transition for poly(N isopropylacrylamide) ionogels by copolymerization with solvatophilic monomers [J]. Soft Matter,2018, 14(37): 7664-7670.
[51] YU H, GRAINGER D W. Thermo-sensitive swelling behavior in crosslinked N isopropylacrylamide networks: Cationic, anionic, and ampholytic hydrogels [J]. Journal of Applied Polymer Science, 1993, 49(9): 1553-1563.
[52] SUZUKI Y, TOMONAGA K, KUMAZAKI M, et al. Change in phase transition behavior of an NIPA gel induced by solvent composition: hydrophobic effect [J]. Polymer Gels and Networks, 1996, 4(2): 129-142.
[53] WANG C, STEWART R J, KOPECEK J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains [J]. Nature, 1999, 397(6718): 417-420.
[54] FIRESTONE B A, SIEGEL R A. Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels [J]. Journal of Applied Polymer Science, 1991, 43(5): 901-914.
[55] FALAMARZIAN M, VARSHOSAZ J. The effect of structural changes on swelling kinetics of polybasic/hydrophobic pH-sensitive hydrogels [J]. Drug Dev Ind Pharm, 1998, 24(7): 667-669.
[56] PEPPAS N A, KLIER J. Controlled release by using poly(methacrylic acid-g-ethylene glycol) hydrogels [J]. Journal of Controlled Release, 1991, 16(1-2): 203-214.
[57] CHIU H C, HSIUE G H, LEE Y P, et al. Synthesis and characterization of pH-sensitive dextran hydrogels as a potential colon-specific drug delivery system [J]. J Biomater Sci Polym Ed, 1999, 10(5): 591-608.
[58] MARKLAND P, ZHANG Y, AMIDON G L, et al. A pH- and ionic strength-responsive polypeptide hydrogel: Synthesis, characterization, and preliminary protein release studies [J]. Journal of Biomedical Materials Research, 1999, 47(4): 595-602.
[59] KASI V, SEDAGHAT S, ALCARAZ A M, et al. Low-Cost Flexible Glass-Based pH Sensor via Cold Atmospheric Plasma Deposition [J]. ACS Appl Mater Interfaces, 2022, 14(7): 9697-9710.
[60] TANG Y, ZHONG L, WANG W, et al. Recent Advances in Wearable Potentiometric pH Sensors [J]. Membranes (Basel), 2022, 12(5).
[61] CHUNG H J, SULKIN M S, KIM J S, et al. Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia [J]. Adv Healthc Mater, 2014, 3(1): 59-68.
[62] BEZBARUAH A N, ZHANG T C. Fabrication of anodically electrodeposited iridium oxide film pH microelectrodes for microenvironmental studies [J]. Anal Chem, 2002, 74(22): 5726-5733.
[63] LINDFORS T, IVASKA A. pH sensitivity of polyaniline and its substituted derivatives [J]. Journal of Electroanalytical Chemistry, 2002, 531(1): 43-52.
[64] LEWENSTAM A, BOBACKA J, IVASKA A. Mechanism of ionic and redox sensitivity of p-type conducting polymers [J]. Journal of Electroanalytical Chemistry, 1994, 368(1-2): 23-31.
[65] WEI D, LINDFORS T, KARNSTRöM C, et al. Electrosynthesis and characterisation of poly(N methylaniline) in organic solvents [J]. Journal of Electroanalytical Chemistry, 2005, 575(1): 19-26.
[66] ALAM A U, QIN Y, NAMBIAR S, et al. Polymers and organic materials-based pH sensors for healthcare applications [J]. Progress in Materials Science, 2018, 96: 174-216.
[67] BANDODKAR A J, HUNG V W, JIA W, et al. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring [J]. Analyst, 2013, 138(1): 123-128.
[68] RAHIMI R, OCHOA M, PARUPUDI T, et al. A low-cost flexible pH sensor array for wound assessment [J]. Sensors and Actuators B: Chemical, 2016, 229: 609-617.
[69] KARYAKINA E E, NEFTYAKOVA L V, KARYAKIN A A. A Novel Potentiometric Glucose Biosensor Based on Polyaniline Semiconductor Films [J]. Analytical Letters, 1994, 27(15): 2871-2882.
[70] WANG R, ZHAI Q, ZHAO Y, et al. Stretchable gold fiber-based wearable electrochemical sensor toward pH monitoring [J]. J Mater Chem B, 2020, 8(16): 3655-3660.
[71] YOON J H, KIM K H, BAE N H, et al. Fabrication of newspaper-based potentiometric platforms for flexible and disposable ion sensors [J]. J Colloid Interface Sci, 2017, 508: 167-173.
[72] SONG Y, MIN J, YU Y, et al. Wireless battery-free wearable sweat sensor powered by human motion [J]. Sci Adv, 2020, 6(40).
[73] IBARRA L E, TARRES L, BONGIOVANNI S, et al. Assessment of polyaniline nanoparticles toxicity and teratogenicity in aquatic environment using Rhinella arenarum model [J]. Ecotoxicol Environ Saf, 2015, 114: 84-92.
[74] MANJAKKAL L, SZWAGIERCZAK D, DAHIYA R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives [J]. Progress in Materials Science, 2020, 109.
[75] GUINOVART T, VALDéS-RAMíREZ G, WINDMILLER J R, et al. Bandage-Based Wearable Potentiometric Sensor for Monitoring Wound pH [J]. Electroanalysis, 2014, 26(6): 1345-1353.
[76] MANJAKKAL L, NúñEZ C G, DANG W, et al. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes [J]. Nano Energy, 2018, 51: 604-612.
[77] DANG W, MANJAKKAL L, NAVARAJ W T, et al. Stretchable wireless system for sweat pH monitoring [J]. Biosens Bioelectron, 2018, 107: 192-202.
[78] HUBBLE L J, WANG J. Sensing at Your Fingertips: Glove‐based Wearable Chemical Sensors [J]. Electroanalysis, 2018.
[79] FOG A, BUCK R P. Electronic semiconducting oxides as pH sensors [J]. Sensors and Actuators, 1984, 5(2): 137-146.
[80] TRASATTI S. Physical electrochemistry of ceramic oxides [J]. Electrochimica Acta, 1991, 36(2): 225-241.
[81] MIHELL J A, ATKINSON J K. Planar thick-film pH electrodes based on ruthenium dioxide hydrate [J]. Sensors and Actuators B: Chemical, 1998, 48(1-3): 505-511.
[82] LIAO Y-H, CHOU J-C. Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol–gel method [J]. Materials Chemistry and Physics, 2009, 114(2-3): 542-548.
[83] AL-HILLI S, WILLANDER M. The pH Response and Sensing Mechanism of n-Type ZnO/Electrolyte Interfaces [J]. Sensors (Basel), 2009, 9(9): 7445-7480.
[84] CHEN M, JIN Y, QU X, et al. Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment [J]. Sensors and Actuators B: Chemical, 2014, 192: 399-405.
[85] KURZWEIL P. Precious metal oxides for electrochemical energy converters: Pseudocapacitance and pH dependence of redox processes [J]. Journal of Power Sources, 2009, 190(1): 189-200.
[86] YATES D E, LEVINE S, HEALY T W. Site-binding model of the electrical double layer at the oxide/water interface [J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1974, 70(0).
[87] MANJAKKAL L, DJURDJIC E, CVEJIN K, et al. Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors [J]. Electrochimica Acta, 2015, 168: 246-255.
[88] WU Z-S, WANG D-W, REN W, et al. Anchoring Hydrous RuO2 on Graphene Sheets for High Performance Electrochemical Capacitors [J]. Advanced Functional Materials, 2010, 20(20): 3595-3602.
[89] KATSUBE T, LAUKS I, ZEMEL J N. pH-sensitive sputtered iridium oxide films [J]. Sensors and Actuators, 1981, 2: 399-410.
[90] KREIDER K. Iridium oxide thin-film stability in high-temperature corrosive solutions [J]. Sensors and Actuators B: Chemical, 1991, 5(1-4): 165-169.
[91] KWON D-H, CHO B-W, KIM C-S, et al. Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET [J]. Sensors and Actuators B: Chemical, 1996, 34(1-3): 441-445.
[92] ITO Y. Long-term drift mechanism of Ta2O5 gate pH-ISFETs [J]. Sensors and Actuators B: Chemical, 2000, 64(1-3): 152-155.
[93] KURZWEIL P. Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of the-Art and Outlook [J]. Sensors (Basel), 2009, 9(6): 4955-4985.
[94] BISDIKIAN C. An overview of the Bluetooth wireless technology [J]. IEEE Communications Magazine, 2001, 39(12): 86-94.
[95] SAIRAM K V S S S S, GUNASEKARAN N, REDD S R. Bluetooth in wireless communication [J]. IEEE Communications Magazine, 2002, 40(6): 90-96.
[96] LEE J S, NAH H, MOON H-J, et al. Controllable delivery system: A temperature and pH responsive injectable hydrogel from succinylated chitosan [J]. Applied Surface Science, 2020, 528.
[97] ZHU L, LIU Y, WANG F, et al. Preparation and the swelling properties of sodium alginate graft poly (acrylic acid-co-2-acrylamide-2-methyl propane sulfonic acid)graphene oxide hydrogel composite [J]. Advances in Polymer Technology, 2018, 37(8): 2885-2893.
[98]MANOKRUANG K, LEE D S. Albumin-conjugated pH/thermo responsive poly(amino urethane) multiblock copolymer as an injectable hydrogel for protein delivery [J]. Macromol Biosci, 2013,13(9): 1195-1203.
[99] ZHENG Z, BIAN S, LI Z, et al. Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing [J]. Carbohydr Polym, 2020, 249: 116826.
[100]HE L, FULLENKAMP D E, RIVERA J G, et al. pH responsive self-healing hydrogels formed by boronate-catechol complexation [J]. Chem Commun (Camb), 2011, 47(26): 7497-7499.
修改评论