中文版 | English
题名

基于折展结构的可吞服电子胶囊-用于胃部生理监测

其他题名
SWALLOWABLE ELECTRONIC CAPSULES BASED ON FOLDABLE STRUCTURE FOR GASTRIC PHYSIOLOGICAL MONITORING
姓名
姓名拼音
XING Junfei
学号
12132310
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
刘吉
导师单位
机械与能源工程系
论文答辩日期
2021-05-16
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  电子产品与人体的结合有可能对新颖的个性化诊断和治疗策略产生重大影响。例如,可穿戴电子产品的出现使数字设备与身体的接口能够实时测量心率、呼吸、血氧饱和度、血压和血糖水平等生理参数。植入式电子设备具有广泛的功能,包括对心脏、胃肠道和大脑在内的多个器官进行电刺激,以及监测包括心脏和胃肠道在内的人体生理参数。这些系统都需要一系列的人为干预,比如通过手术这种方式来干预,长期手术放置的医疗植入物与引发异物免疫反应有关,此外,植入的装置可能是发生感染的来源,可能需要立即进行手术干预。而对于人体胃肠道的生理监测,可吞服的电子胶囊就体现出巨大的优势,非入侵式的服用方式避免了其他入侵式、半入侵式监测治疗方式所带来的痛苦。通过吞服携带有可摄入传感器的电子胶囊来监测生理状态是一个非常有前景的发展方向,过去几十年,半导体微电子学的快速发展为超低功耗传感、计算和无线通信提供了复杂、高度小型化的平台,这些发展使得研究人员能够通过光学图像、气体、温度和 pH 值来记录患者的依从性和胃肠道评估。然而,电子胶囊直接或选择性地检测胃肠道生理参数的能力受到传感器性能和监测生理参数所需的功率以及电路尺寸的限制。另一方面,电子胶囊因体积过小,会随着胃排空的过程排出体外,难以在胃部长期滞留,从而不能实现在胃部的长期监测。
  多种消化道疾患,如胃溃疡、十二指肠溃疡、功能性消化不良、胃食道逆流和萎缩性胃炎等,都会对胃液 pH 值产生重要影响,因此,长期监测胃液 pH 值变化,不仅可以更好地了解病情的发展趋势,而且还可以收集大量有价值的数据,为进一步研究这些疾患提供重要依据。本文制备了基于锑电极的小型 pH 传感器,该传感器具有稳定性高、响应速度快、漂移低、精度高等优点,传感器采集到的电化学信号通过所设计的滤波放大电路、无线传输电路,将采集到的胃液 pH 值无线传输到个人设备上。同时,为了实现电子胶囊在胃部的长期生理监测,本研究在电子胶囊中引入了一种可控制展开的折展结构,该结构通过一种具有 pH 响应的水凝胶去控制展开,使得胶囊仅在胃液这种酸性环境下才会展开,这种可控制的折展结构也可以避免胶囊在下咽过程中弹开而导致食管堵塞的这种风险。展开后的胶囊的尺寸大于幽门,因此不会因为日常进食或胃蠕动而被冲出幽门,进入肠道,从而实现该电子胶囊在胃部的长期监测。
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[LOUIS P, FLINT H J. Formation of propionate and butyrate by the human colonic microbiota [J]. Environ Microbiol, 2017, 19(1): 29-41.
[2] AREFIN M S, REDOUTE J M, YUCE M R. Integration of Low-Power ASIC and MEMS Sensors for Monitoring Gastrointestinal Tract Using a Wireless Capsule System [J]. IEEE J Biomed Health Inform, 2018, 22(1): 87-97.
[3] CHENG C, WU Y, LI X, et al. A wireless, ingestible pH sensing capsule system based on iridium oxide for monitoring gastrointestinal health [J]. Sensors and Actuators B: Chemical, 2021, 349.
[4] MACKAY R S, JACOBSON B. Endoradiosonde [J]. Nature, 1957, 179(4572): 1239-1240.
[5] JACOBSON B, MACKAY R S. A pH-endoradiosonde [J]. Lancet, 1957, 272(6981): 1224.
[6] FARRAR J T, ZWORYKIN V K, BAUM J. Pressure-sensitive telemetering capsule for study of gastrointestinal motility [J]. Science, 1957, 126(3280): 975-976.
[7] STEIGER C, ABRAMSON A, NADEAU P, et al. Ingestible electronics for diagnostics and therapy [J]. Nature Reviews Materials, 2018, 4(2): 83-98.
[8] O'BRIEN C, HOYT R W, BULLER M J, et al. Telemetry pill measurement of core temperature in humans during active heating and cooling [J]. Med Sci Sports Exerc, 1998, 30(3): 468-472.
[9] MCCAFFREY C, CHEVALERIAS O, O'MATHUNA C, et al. Swallowable-Capsule Technology [J]. IEEE Pervasive Computing, 2008, 7(1): 23-29.
[10] IDDAN G, MERON G, GLUKHOVSKY A, et al. Wireless capsule endoscopy [J]. Nature, 2000, 405(6785): 417.
[11] XIN L, LIAO Z, JIANG Y P, et al. Indications, detectability, positive findings, total enteroscopy, and complications of diagnostic double-balloon endoscopy: a systematic review of data over the first decade of use [J]. Gastrointest Endosc, 2011, 74(3): 563-570.
[12] FAJARDO N R, WISE J L, LOCKE G R, et al. Esophageal Perforation after Placement of Wireless Bravo pH Probe [J]. American Journal of Gastroenterology, 2005, 100.
[13] CAO Z, WANG X, PANG Y, et al. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment [J]. Nat Commun, 2019, 10(1): 5783.
[14] MIMEE M, NADEAU P, HAYWARD A, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health [J]. Science, 2018, 360(6391): 915-918.
[15] LECHARDEUR D, CESSELIN B, LIEBL U, et al. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis [J]. J Biol Chem, 2012, 287(7): 4752-4758.
[16] NOBLES C L, CLARK J R, GREEN S I, et al. A dual component heme biosensor that integrates heme transport and synthesis in bacteria [J]. J Microbiol Methods, 2015, 118: 7-17.
[17] GHAFAR-ZADEH E, SAWAN M, THERRIAULT D. A 0.18-μm CMOS capacitive sensor Lab-on-Chip [J]. Sensors and Actuators A: Physical, 2008, 141(2): 454-462.
[18] SINGH R R, LENG L, GUENTHER A, et al. A CMOS-Microfluidic Chemiluminescence Contact Imaging Microsystem [J]. IEEE Journal of Solid-State Circuits, 2012, 47(11): 2822-2833.
[19] DAEFFLER K N, GALLEY J D, SHETH R U, et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation [J]. Mol Syst Biol, 2017, 13(4): 923.
[20] KALANTAR-ZADEH K, BEREAN K J, HA N, et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut [J]. Nature Electronics, 2018, 1(1): 79-87.
[21] GIBSON G R, PROBERT H M, LOO J V, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics [J]. Nutr Res Rev, 2004, 17(2): 259-275.
[22] MATHUR R, AMICHAI M, CHUA K S, et al. Methane and hydrogen positivity on breath test is associated with greater body mass index and body fat [J]. J Clin Endocrinol Metab, 2013, 98(4): E698-702.
[23] ONG D K, MITCHELL S B, BARRETT J S, et al. Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome [J]. J Gastroenterol Hepatol, 2010, 25(8): 1366-1373.
[24] OU J Z, YAO C K, ROTBART A, et al. Human intestinal gas measurement systems: in vitro fermentation and gas capsules [J]. Trends Biotechnol, 2015, 33(4): 208-213.
[25] CARBONERO F, BENEFIEL A C, GASKINS H R. Contributions of the microbial hydrogen economy to colonic homeostasis [J]. Nat Rev Gastroenterol Hepatol, 2012, 9(9): 504-518.
[26] LEVITT M D. Volume and composition of human intestinal gas determined by means of an intestinal washout technic [J]. N Engl J Med, 1971, 284(25): 1394-1398.
[27] MAJOR G, PRITCHARD S, MURRAY K, et al. Colon Hypersensitivity to Distension, Rather Than Excessive Gas Production, Produces Carbohydrate-Related Symptoms in Individuals With Irritable Bowel Syndrome [J]. Gastroenterology, 2017, 152(1): 124-33 e2.
[28] RUMESSEN J J, GUDMAND-HOYER E. Functional bowel disease: malabsorption and abdominal distress after ingestion of fructose, sorbitol, and fructose-sorbitol mixtures [J]. Gastroenterology, 1988, 95(3): 694-700.
[29] SHIN W. Medical applications of breath hydrogen measurements [J]. Anal Bioanal Chem, 2014, 406(16): 3931-3939.
[30] DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome [J]. Nature, 2014, 505(7484): 559-563.
[31] ROTBART A, YAO C K, HA N, et al. Designing an in-vitro gas profiling system for human faecal samples [J]. Sensors and Actuators B: Chemical, 2017, 238: 754-764.
[32] BRADEN B, LEMBCKE B, KUKER W, et al. 13C-breath tests: current state of the art and future directions [J]. Dig Liver Dis, 2007, 39(9): 795-805.
[33] PAL A, NADIGER V G, GOSWAMI D, et al. Conformal, waterproof electronic decals for wireless monitoring of sweat and vaginal pH at the point-of-care [J]. Biosens Bioelectron, 2020,160: 112206
[34] BELLINGER A M, JAFARI M, GRANT T M, et al. Oral, ultra-long-lasting drug delivery: Application toward malaria elimination goals [J]. Sci Transl Med, 2016, 8(365): 365ra157.
[35] KIRTANE A R, HUA T, HAYWARD A, et al. A once-a-month oral contraceptive [J]. Sci Transl Med, 2019, 11(521).
[36] LIU X, STEIGER C, LIN S, et al. Ingestible hydrogel device [J]. Nat Commun, 2019, 10(1): 493.
[37] KOZIOLEK M, GRIMM M, BECKER D, et al. Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap((R)) System [J]. J Pharm Sci, 2015, 104(9): 2855-2863.
[38] HOUGHTON L A, READ N W, HEDDLE R, et al. Motor activity of the gastric antrum, pylorus, and duodenum under fasted conditions and after a liquid meal [J]. Gastroenterology, 1988, 94(6): 1276-1284.
[39] LIU J, PANG Y, ZHANG S, et al. Triggerable tough hydrogels for gastric resident dosage forms [J]. Nat Commun, 2017, 8(1): 124.
[40] SUN B, WANG Z, HE Q, et al. Porous double network gels with high toughness, high stretchability and fast solvent-absorption [J]. Soft Matter, 2017, 13(38): 6852-6857.
[41] BETTINGER C J. Materials Advances for Next-Generation Ingestible Electronic Medical Devices [J]. Trends Biotechnol, 2015, 33(10): 575-585.
[42] LIU X, TANG T C, THAM E, et al. Stretchable living materials and devices with hydrogel elastomer hybrids hosting programmed cells [J]. Proc Natl Acad Sci U S A, 2017, 114(9): 2200-2205.
[43] DRURY J L, MOONEY D J. Hydrogels for tissue engineering: scaffold design variables and applications [J]. Biomaterials, 2003, 24(24): 4337-4351.
[44] RON E S, BROMBERG L E. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery [J]. Adv Drug Deliv Rev, 1998, 31(3): 197-221.
[45] QIU Y, PARK K. Environment-sensitive hydrogels for drug delivery [J]. Advanced Drug Delivery Reviews, 2012, 64: 49-60.
[46] QURESHI D, NAYAK S K, MAJI S, et al. Environment sensitive hydrogels for drug delivery applications [J]. European Polymer Journal, 2019, 120.
[47] SCHILD H G. Poly(N-isopropylacrylamide): experiment, theory and application [J]. Progress in Polymer Science, 1992, 17(2): 163-249.
[48] FEIL H, BAE Y H, FEIJEN J, et al. Mutual influence of pH and temperature on the swelling of ionizable and thermosensitive hydrogels [J]. Macromolecules, 2002, 25(20): 5528-5530.
[49] LI B, THOMPSON M E. Phase transition in amphiphilic poly(N-isopropylacrylamide): controlled gelation [J]. Phys Chem Chem Phys, 2018, 20(19): 13623-13631.
[50] TIMOTHY B, KIM D, YOO S I, et al. Tuning of volume phase transition for poly(N isopropylacrylamide) ionogels by copolymerization with solvatophilic monomers [J]. Soft Matter,2018, 14(37): 7664-7670.
[51] YU H, GRAINGER D W. Thermo-sensitive swelling behavior in crosslinked N isopropylacrylamide networks: Cationic, anionic, and ampholytic hydrogels [J]. Journal of Applied Polymer Science, 1993, 49(9): 1553-1563.
[52] SUZUKI Y, TOMONAGA K, KUMAZAKI M, et al. Change in phase transition behavior of an NIPA gel induced by solvent composition: hydrophobic effect [J]. Polymer Gels and Networks, 1996, 4(2): 129-142.
[53] WANG C, STEWART R J, KOPECEK J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains [J]. Nature, 1999, 397(6718): 417-420.
[54] FIRESTONE B A, SIEGEL R A. Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels [J]. Journal of Applied Polymer Science, 1991, 43(5): 901-914.
[55] FALAMARZIAN M, VARSHOSAZ J. The effect of structural changes on swelling kinetics of polybasic/hydrophobic pH-sensitive hydrogels [J]. Drug Dev Ind Pharm, 1998, 24(7): 667-669.
[56] PEPPAS N A, KLIER J. Controlled release by using poly(methacrylic acid-g-ethylene glycol) hydrogels [J]. Journal of Controlled Release, 1991, 16(1-2): 203-214.
[57] CHIU H C, HSIUE G H, LEE Y P, et al. Synthesis and characterization of pH-sensitive dextran hydrogels as a potential colon-specific drug delivery system [J]. J Biomater Sci Polym Ed, 1999, 10(5): 591-608.
[58] MARKLAND P, ZHANG Y, AMIDON G L, et al. A pH- and ionic strength-responsive polypeptide hydrogel: Synthesis, characterization, and preliminary protein release studies [J]. Journal of Biomedical Materials Research, 1999, 47(4): 595-602.
[59] KASI V, SEDAGHAT S, ALCARAZ A M, et al. Low-Cost Flexible Glass-Based pH Sensor via Cold Atmospheric Plasma Deposition [J]. ACS Appl Mater Interfaces, 2022, 14(7): 9697-9710.
[60] TANG Y, ZHONG L, WANG W, et al. Recent Advances in Wearable Potentiometric pH Sensors [J]. Membranes (Basel), 2022, 12(5).
[61] CHUNG H J, SULKIN M S, KIM J S, et al. Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia [J]. Adv Healthc Mater, 2014, 3(1): 59-68.
[62] BEZBARUAH A N, ZHANG T C. Fabrication of anodically electrodeposited iridium oxide film pH microelectrodes for microenvironmental studies [J]. Anal Chem, 2002, 74(22): 5726-5733.
[63] LINDFORS T, IVASKA A. pH sensitivity of polyaniline and its substituted derivatives [J]. Journal of Electroanalytical Chemistry, 2002, 531(1): 43-52.
[64] LEWENSTAM A, BOBACKA J, IVASKA A. Mechanism of ionic and redox sensitivity of p-type conducting polymers [J]. Journal of Electroanalytical Chemistry, 1994, 368(1-2): 23-31.
[65] WEI D, LINDFORS T, KARNSTRöM C, et al. Electrosynthesis and characterisation of poly(N methylaniline) in organic solvents [J]. Journal of Electroanalytical Chemistry, 2005, 575(1): 19-26.
[66] ALAM A U, QIN Y, NAMBIAR S, et al. Polymers and organic materials-based pH sensors for healthcare applications [J]. Progress in Materials Science, 2018, 96: 174-216.
[67] BANDODKAR A J, HUNG V W, JIA W, et al. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring [J]. Analyst, 2013, 138(1): 123-128.
[68] RAHIMI R, OCHOA M, PARUPUDI T, et al. A low-cost flexible pH sensor array for wound assessment [J]. Sensors and Actuators B: Chemical, 2016, 229: 609-617.
[69] KARYAKINA E E, NEFTYAKOVA L V, KARYAKIN A A. A Novel Potentiometric Glucose Biosensor Based on Polyaniline Semiconductor Films [J]. Analytical Letters, 1994, 27(15): 2871-2882.
[70] WANG R, ZHAI Q, ZHAO Y, et al. Stretchable gold fiber-based wearable electrochemical sensor toward pH monitoring [J]. J Mater Chem B, 2020, 8(16): 3655-3660.
[71] YOON J H, KIM K H, BAE N H, et al. Fabrication of newspaper-based potentiometric platforms for flexible and disposable ion sensors [J]. J Colloid Interface Sci, 2017, 508: 167-173.
[72] SONG Y, MIN J, YU Y, et al. Wireless battery-free wearable sweat sensor powered by human motion [J]. Sci Adv, 2020, 6(40).
[73] IBARRA L E, TARRES L, BONGIOVANNI S, et al. Assessment of polyaniline nanoparticles toxicity and teratogenicity in aquatic environment using Rhinella arenarum model [J]. Ecotoxicol Environ Saf, 2015, 114: 84-92.
[74] MANJAKKAL L, SZWAGIERCZAK D, DAHIYA R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives [J]. Progress in Materials Science, 2020, 109.
[75] GUINOVART T, VALDéS-RAMíREZ G, WINDMILLER J R, et al. Bandage-Based Wearable Potentiometric Sensor for Monitoring Wound pH [J]. Electroanalysis, 2014, 26(6): 1345-1353.
[76] MANJAKKAL L, NúñEZ C G, DANG W, et al. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes [J]. Nano Energy, 2018, 51: 604-612.
[77] DANG W, MANJAKKAL L, NAVARAJ W T, et al. Stretchable wireless system for sweat pH monitoring [J]. Biosens Bioelectron, 2018, 107: 192-202.
[78] HUBBLE L J, WANG J. Sensing at Your Fingertips: Glove‐based Wearable Chemical Sensors [J]. Electroanalysis, 2018.
[79] FOG A, BUCK R P. Electronic semiconducting oxides as pH sensors [J]. Sensors and Actuators, 1984, 5(2): 137-146.
[80] TRASATTI S. Physical electrochemistry of ceramic oxides [J]. Electrochimica Acta, 1991, 36(2): 225-241.
[81] MIHELL J A, ATKINSON J K. Planar thick-film pH electrodes based on ruthenium dioxide hydrate [J]. Sensors and Actuators B: Chemical, 1998, 48(1-3): 505-511.
[82] LIAO Y-H, CHOU J-C. Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol–gel method [J]. Materials Chemistry and Physics, 2009, 114(2-3): 542-548.
[83] AL-HILLI S, WILLANDER M. The pH Response and Sensing Mechanism of n-Type ZnO/Electrolyte Interfaces [J]. Sensors (Basel), 2009, 9(9): 7445-7480.
[84] CHEN M, JIN Y, QU X, et al. Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment [J]. Sensors and Actuators B: Chemical, 2014, 192: 399-405.
[85] KURZWEIL P. Precious metal oxides for electrochemical energy converters: Pseudocapacitance and pH dependence of redox processes [J]. Journal of Power Sources, 2009, 190(1): 189-200.
[86] YATES D E, LEVINE S, HEALY T W. Site-binding model of the electrical double layer at the oxide/water interface [J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1974, 70(0).
[87] MANJAKKAL L, DJURDJIC E, CVEJIN K, et al. Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors [J]. Electrochimica Acta, 2015, 168: 246-255.
[88] WU Z-S, WANG D-W, REN W, et al. Anchoring Hydrous RuO2 on Graphene Sheets for High Performance Electrochemical Capacitors [J]. Advanced Functional Materials, 2010, 20(20): 3595-3602.
[89] KATSUBE T, LAUKS I, ZEMEL J N. pH-sensitive sputtered iridium oxide films [J]. Sensors and Actuators, 1981, 2: 399-410.
[90] KREIDER K. Iridium oxide thin-film stability in high-temperature corrosive solutions [J]. Sensors and Actuators B: Chemical, 1991, 5(1-4): 165-169.
[91] KWON D-H, CHO B-W, KIM C-S, et al. Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET [J]. Sensors and Actuators B: Chemical, 1996, 34(1-3): 441-445.
[92] ITO Y. Long-term drift mechanism of Ta2O5 gate pH-ISFETs [J]. Sensors and Actuators B: Chemical, 2000, 64(1-3): 152-155.
[93] KURZWEIL P. Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of the-Art and Outlook [J]. Sensors (Basel), 2009, 9(6): 4955-4985.
[94] BISDIKIAN C. An overview of the Bluetooth wireless technology [J]. IEEE Communications Magazine, 2001, 39(12): 86-94.
[95] SAIRAM K V S S S S, GUNASEKARAN N, REDD S R. Bluetooth in wireless communication [J]. IEEE Communications Magazine, 2002, 40(6): 90-96.
[96] LEE J S, NAH H, MOON H-J, et al. Controllable delivery system: A temperature and pH responsive injectable hydrogel from succinylated chitosan [J]. Applied Surface Science, 2020, 528.
[97] ZHU L, LIU Y, WANG F, et al. Preparation and the swelling properties of sodium alginate graft poly (acrylic acid-co-2-acrylamide-2-methyl propane sulfonic acid)graphene oxide hydrogel composite [J]. Advances in Polymer Technology, 2018, 37(8): 2885-2893.
[98]MANOKRUANG K, LEE D S. Albumin-conjugated pH/thermo responsive poly(amino urethane) multiblock copolymer as an injectable hydrogel for protein delivery [J]. Macromol Biosci, 2013,13(9): 1195-1203.
[99] ZHENG Z, BIAN S, LI Z, et al. Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing [J]. Carbohydr Polym, 2020, 249: 116826.
[100]HE L, FULLENKAMP D E, RIVERA J G, et al. pH responsive self-healing hydrogels formed by boronate-catechol complexation [J]. Chem Commun (Camb), 2011, 47(26): 7497-7499.

所在学位评定分委会
材料与化工
国内图书分类号
TB381
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544180
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
邢俊飞. 基于折展结构的可吞服电子胶囊-用于胃部生理监测[D]. 深圳. 南方科技大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132310-邢俊飞-机械与能源工程(3892KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[邢俊飞]的文章
百度学术
百度学术中相似的文章
[邢俊飞]的文章
必应学术
必应学术中相似的文章
[邢俊飞]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。