[1] WALDEN R H. Analog-to-digital converter survey and analysis[J]. IEEE Journal on Selected Areas in Communications, 1999, 17(4): 539-550.
[2] FARD A M, GUPTA S, JALALI B. Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging[J]. Laser & Photonics Reviews, 2013, 7(2): 207-263.
[3] VALLEY G C. Photonic analog-to-digital converters[J]. Optics Express, 2007, 15(5): 1955-1982.
[4] YANG F, ZOU W W, YU L, et al. Impact of optical-electrical conversion responsivity in sub-sampled photonic analog-to-digital converter[J]. Chinese Optics Letters, 2019, 17(4): 040602.
[5] 李政凯, 张旨遥, 李和平, 等. 高速高精度光学模数转换技术研究进展[J]. 空间电子技术, 2020, 17(04): 117-125.
[6] COPPINGER F, BHUSHAN A S, B J. Photonic time stretch and its application to analog-to-digital conversion[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7):1309-1314.
[7] CAPUTI W J. Stretch - Time-Transformation Technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES7(2): 269-278.
[8] PENG D, ZHANG Z Y, MA Y X, et al. Broadband Linearization in Photonic Time-Stretch Analog-to-Digital Converters[C]//Proceedings of the 25th Wireless and Optical Communication Conference. Chengdu, PEOPLES R CHINA, 2016.
[9] PENG D, ZHANG Z Y, MA Y X, et al. Optimized Single-Shot Photonic Time-Stretch Digitizer Using Complementary Parallel Single-Sideband Modulation Architecture and Digital Signal Processing[J]. IEEE Photonics Journal, 2017, 9(3): 5501514.
[10] JIN R T, ZHANG Y W, PENG D, et al. Photonic Time-Stretch Analog-to-Digital Conversion Based on Complementary Parallel Single-Sideband Modulation Architecture[C]//Proceedings of the International Conference on Optoelectronic and Microelectronic Technology and Application. Nanjing, PEOPLES R CHINA, 2020.
[11] ZHANG Y W, JIN R T, PENG D, et al. Broadband Transient Waveform Digitizer Based on Photonic Time Stretch[J]. Journal of Lightwave Technology, 2021, 39(9): 2880-2887.
[12] 王俊达, 陈颖, 陈向宁. 基于互补型双 MZM 结构的光子时间拉伸模数转换器系统[J]. 中国激光, 2017, 44(12): 239-246.
[13] 王俊达, 陈颖, 陈向宁. 基于互补调制的多通道连续型 PTS-ADC 系统[J]. 激光与光电子学进展, 2018, 55(02): 129-136.
[14] 王俊达, 金瑞, 董洪松, 等. 互补型 M-Z 调制器的 PTS-ADC 去包络技术[J]. 兵器装备工程学报, 2018, 39(06): 144-148.
[15] HE H X, YANG S N, B Y, et al. Photonic time-stretch based on phase modulation for sub-octave applications[J]. Applied Optics, 2021, 60(22): 6487-6494.
[16] YANG B, MA Z, YANG S N, et al. Broadband and linearized photonic time-stretch analog-to-digital converter based on a compact dual-polarization modulator[J]. Applied Optics, 2023, 62(4): 921-926.
[17] MEI Y, XU B Y, CHI H, et al. Harmonics analysis of the photonic time stretch system[J]. Applied Optics, 2016, 55(26): 7222-7228.
[18] MEI Y, XU B Y, CHI H, et al. Spurious-Free Dynamic Range of the Photonic Time-Stretch System[J]. IEEE Photonics Technology Letters, 2017, 29(10): 794-797.
[19] XU Y X, CHI H, JIN T, et al. On the undesired frequency chirping in photonic time-stretch systems[J]. Optics Communications, 2017, 405: 192-196.
[20] STARIKOV R S, NEBAVSKIY V A, Y Z E. Numeric simulation of RF modulated optical pulses propagation in photonic time-stretch system[C]//Proceedings of the 15th Asia-Pacific Conference on Fundamental Problems of Opto- and Microelectronics. Khabarovsk, RUSSIA, 2016.
[21] SINGH K, SREERAJ S J, SRINIVASAN B, et al. Influence of pulse repetition rate on SINAD performance of time-stretched photonic ADCs[C]//Proceedings of the IEEE Workshop on Recent Advances in Photonics. Mumbai, INDIA, 2022.
[22] HAN Y, BOYRAZ O, B J. Ultrawide-band photonic time-stretch A/D converter employing phase diversity[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 53(4):1404-1408.
[23] CHOU J, BOYRAZ O, SOLLI D, et al. Femtosecond real-time single-shot digitizer[J]. Applied Physics Letters, 2007, 91(16): 478-483.
[24] 王俊达, 陈颖, 陈向宁. 基于色散补偿光子晶体光纤的双通道光子时间拉伸模数转换器系统研究[J]. 光学学报, 2017, 37(12): 70-77.
[25] XU C, ZHENG S L, CHEN X Y, et al. Photonic-assisted time-interleaved ADC based on optical delay line[J]. Journal of Optics, 2016, 18(1): 015704.
[26] CRUZ P E D, ALVES T M F, CARTAXO A V T. Relaxing the ADC Sampling Rate in High-Resolution Radar Systems Through Photonic Analogue-to-Digital Conversion[C]//Proceedings of the 20th International Conference on Transparent Optical Networks. Bucharest, ROMANIA, 2018.
[27] YANG S N, WANG J, CHI H, et al. Distortion compensation in continuous time photonic time-stretched ADC based on redundancy detection[J]. Applied Optics, 2021, 60(6): 1646-1652.
[28] MAHJOUBFAR A, CHURKIN D V, BARLAND S, et al. Time stretch and its applications[J]. Nature Photonics, 2017, 11(6): 341-351.
[29] ZHOU Y M, CHAN J C K, B J. A Unified Framework for Photonic Time-Stretch Systems[J]. Laser & Photonics Reviews, 2022, 16(8): 01-17.
[30] CHEN L, DONG X, YANG N N, et al. Pure Temporal Dispersion for Aberration Free Ultrafast Time-Stretch Applications[J]. Journal of Lightwave Technology, 2021, 39(17): 5589-5597.
[31] ROUSSEL E, EVAIN C, LE P M, et al. Observing microscopic structures of a relativistic object using a time-stretch strategy[J]. Scientific Reports, 2015, 5: 10330.
[32] WANG G Q, SHAO L Y, LIU Y B, et al. Low-cost compressive sensing imaging based on spectrum-encoded time-stretch structure[J]. Optics Express, 2021, 29(10): 14931-14940.
[33] XING F J, CHEN H W, LEI C, et al. A 2-GHz discrete-spectrum waveband-division microscopic imaging system[J]. Optics Communications, 2015, 338: 22-26.
[34] TARASOV N, SUGAVANAM S, CHURKIN D. Spatio-temporal generation regimes in quasi-CW Raman fiber lasers[J]. Optics Express, 2015, 23(19): 24189-24194.
[35] 习聪玲, 乔学光, 贾振安. 光纤激光器的研究与发展前景[J]. 光通信技术, 2006(01): 52-54.
[36] YU Z, YONG-ZHI L, DE-SHUANG Z, et al. Evolution of mode-locked technology of fiber lasers[J]. Laser Technology, 2009, 33(2): 162-165.
[37] YE J, MA X Y, ZHANG Y, et al. From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber[J]. PhotoniX, 2021, 2(1): 1-15.
[38] CALOZ C, GUPTA S, ZHANG Q F, et al. Analog Signal Processing[J]. IEEE Microwave Magazine, 2013, 14(6): 87-103.
[39] 刘子溪, 曾成, 夏金松. 高线性度电光调制器研究进展[J]. 中国激光, 2022, 49(12): 202-222.
[40] 雷肇棣. 光电探测器原理及应用[J]. 物理, 1994(04): 220-226.
[41] HAN Y, JALALI B. Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations[J]. Journal of Lightwave Technology, 2003, 21(12): 3085-3103.
[42] 吕方兴, 李飞. 一种基于光时域展宽技术的高速 ADC 研究[J]. 仪表技术与传感器, 2022, 468(01): 93-98.
[43] WEPMAN J A. Analog-to-Digital Converters and their Applications in Radio Receivers[J]. IEEE Communications Magazine, 1995, 33(5): 39-45.
[44] 牛慧, 谭中伟, 卢顺. 光纤中几种新型大色散产生方法研究进展[J]. 激光技术, 2022, 46 (02): 155-162.
[45] PARK H, ASHGARI M, B J, et al. Dispersion Engineering Employing Curved Space Mapping and Chromo-Modal Excitation[C]//Proceedings of the Conference on Lasers and Electro-Optics. San Jose, CA, 2015.
[46] KIM J, BAE J, HAN Y G, et al. Effectively tunable dispersion compensation based on chirped fiber Bragg gratings without central wavelength shift[J]. IEEE Photonics Technology Letters, 2004, 16(3): 849-851.
[47] KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors[J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.
[48] XIAO D R, SHAO L Y, WANG C, et al. Optical sensor network interrogation system based on nonuniform microwave photonic filters[J]. Optics Express, 2021, 29(2): 2564-2576.
[49] XIAO D R, WANG G Q, YU F H, et al. Highly Stable and Precise Demodulation of an FBG-Based Optical Current Sensor Using a Dual-Loop Optoelectronic Oscillator[J]. Journal of Lightwave Technology, 2021, 39(18): 5962-5972.
[50] WANG G Q, XIAO D R, SHAO L Y, et al. An Undersampling Communication System Based on Compressive Sensing and In-Fiber Grating[J]. IEEE Photonics Journal, 2021, 13(6): 1-7.
[51] XIAO D R, WANG G Q, YU F H, et al. Optical curvature sensor with high resolution based on in-line fiber Mach-Zehnder interferometer and microwave photonic filter[J]. Optics Express, 2022, 30(4): 5402-5413.
[52] OTHONOS A. Fiber Bragg gratings[J]. Review of Scientific Instruments, 1997, 68(12): 4309-4341.
[53] NGO N Q, LI S Y, ZHENG R T, et al. Electrically tunable dispersion compensator with fixed center wavelength using fiber Bragg grating[J]. Journal of Lightwave Technology, 2003, 21(6):1568-1575.
[54] DONG X Y, GUAN B O, YUAN S Z, et al. Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength[J]. Optics Communications, 2002, 202(1-3): 91-95.
[55] DONG X Y, SHUM P, NGO N Q, et al. Largely tunable CFBG-based dispersion compensator with fixed center wavelength[J]. Optics Express, 2003, 11(22): 2970-2974.
[56] 董新永, 赵春柳. 基于悬臂梁啁啾调谐的光纤光栅滤波器[J]. 光电子·激光, 2010, 21(10):1455-1458.
[57] LI P, NING T G, JIAN S S. Characteristics of the chirped fiber Bragg grating with strain effect[J]. Microwave and Optical Technology Letters, 2005, 45(1): 39-43.
[58] PENG D, ZHANG Z Y, ZENG Z, et al. Single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser[J]. Optics Express, 2018, 26(6):6519-6531.
[59] CHILDS R B, OBYRNE V A. Multichannel AM Video Transmission Using a High-Power Nd:YAG Laser and Linearized External Modulator[J]. IEEE Journal on Selected Areas in Communications, 1990, 8(7): 1369-1376.
[60] CLARK T R, CURRIE M, MATTHEWS P J. Digitally linearized wide-band photonic link[J]. Journal of Lightwave Technology, 2001, 19(2): 172-179.
[61] NOVAK D, CLARK T R. Broadband adaptive feedforward photonic linearization for high dynamic range signal remoting[C]//Proceedings of the IEEE Military Communications Conference. Orlando, FL, 2007.
[62] WANG W Y, FAN Y Y, WANG R Q, et al. Linearity optimization of multi-octave analog photonic links based on power weighting, polarization multiplexing and bias control[J]. Optics Express, 2021, 29(2): 2077-2089.
[63] CZHANG Q, YU H, FU Z L, et al. A high linear silicon Mach-Zehnder modulator by the dual-series architecture[C]//Proceedings of the Optical Fiber Communications Conference and Exposition. San Diego, CA, 2020.
[64] LIU W, MA J X, ZHANG J Y. A novel scheme to suppress the third-order intermodulation distortion based on dual-parallel Mach-Zehnder modulator[J]. Photonic Network Communications, 2018, 36(1): 140-151.
[65] CHEN S H, ZHOU G Q, ZHOU L J, et al. High-Linearity Fano Resonance Modulator Using a Microring-Assisted Mach-Zehnder Structure[J]. Journal of Lightwave Technology, 2020, 38(13): 3395-3403.
修改评论