中文版 | English
题名

基于可调谐色散介质的光子时间拉伸模数转换系统

其他题名
PHOTONIC TIME-STRETCHED ANALOG-TO-DIGITAL CONVERTER SYSTEM BASED ON DISPERSION-TUNABLE MEDIUM
姓名
姓名拼音
LI Shangru
学号
12132009
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
邵理阳
导师单位
电子与电气工程系
论文答辩日期
2023-05-15
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

传统电子模数转换器受限于噪声、采样时间抖动、比较器模糊等因素,难以接收高频宽带高速信号。具有高重复频率、低时间抖动、窄脉冲宽度等优点的光子模数转换器能够突破上述电子瓶颈。光子时间拉伸模数转换器是一种基于色散傅里叶变换效应的光子辅助型模数转换器。群速度色散效应能够将输入的宽带射频信号拉伸展宽成低速窄带信号,使得后端低速模数转换器能够对高速宽带信号进行采样,可以有效提升模数转换系统的采样率。

本文设计并实现了一种基于可调谐色散介质的高速光子时间拉伸模数转换系统。啁啾光纤布拉格光栅因其反射带宽和色散系数容易受到应变、温度等外界因素影响而发生变化,适合用作可调谐色散介质。将啁啾光纤布拉格光栅的中心点与直角三角形悬臂梁侧面的中性面对齐,能够实现保持中心波长不变的可调谐色散装置。通过调整悬臂梁自由端的垂直位移,即对光栅施加不同的应变,可以间接调节啁啾光纤布拉格光栅的色散系数。在不同色散系数的作用下,输入射频信号在时域上能够被展宽至不同倍数,因而后端电子模数转换器能够采样到相对应的不同采样点,最终使得系统的总采样率提高。本设计结构简单,无需大色散介质和多级光学放大器,在单一通道中实现了多通道采样的等效效果。本设计能够节省额外的通道和多组器件,在实现高采样率的同时,可以大大节省系统的成本。实验中得到了7组不同的拉伸因子(1.882至2.206),并且成功恢复了频率为2GHz至10GHz的输入射频信号。实验结果表明,系统的总采样率提高了14.4倍,等效采样率提高到288 GSa/s。当输入射频信号频率为2GHz时,得到系统的有效位数为5.55位,拟合所得正弦波形的R平方系数为0.9961,系统具有较好的分辨率。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] WALDEN R H. Analog-to-digital converter survey and analysis[J]. IEEE Journal on Selected Areas in Communications, 1999, 17(4): 539-550.
[2] FARD A M, GUPTA S, JALALI B. Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging[J]. Laser & Photonics Reviews, 2013, 7(2): 207-263.
[3] VALLEY G C. Photonic analog-to-digital converters[J]. Optics Express, 2007, 15(5): 1955-1982.
[4] YANG F, ZOU W W, YU L, et al. Impact of optical-electrical conversion responsivity in sub-sampled photonic analog-to-digital converter[J]. Chinese Optics Letters, 2019, 17(4): 040602.
[5] 李政凯, 张旨遥, 李和平, 等. 高速高精度光学模数转换技术研究进展[J]. 空间电子技术, 2020, 17(04): 117-125.
[6] COPPINGER F, BHUSHAN A S, B J. Photonic time stretch and its application to analog-to-digital conversion[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7):1309-1314.
[7] CAPUTI W J. Stretch - Time-Transformation Technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES7(2): 269-278.
[8] PENG D, ZHANG Z Y, MA Y X, et al. Broadband Linearization in Photonic Time-Stretch Analog-to-Digital Converters[C]//Proceedings of the 25th Wireless and Optical Communication Conference. Chengdu, PEOPLES R CHINA, 2016.
[9] PENG D, ZHANG Z Y, MA Y X, et al. Optimized Single-Shot Photonic Time-Stretch Digitizer Using Complementary Parallel Single-Sideband Modulation Architecture and Digital Signal Processing[J]. IEEE Photonics Journal, 2017, 9(3): 5501514.
[10] JIN R T, ZHANG Y W, PENG D, et al. Photonic Time-Stretch Analog-to-Digital Conversion Based on Complementary Parallel Single-Sideband Modulation Architecture[C]//Proceedings of the International Conference on Optoelectronic and Microelectronic Technology and Application. Nanjing, PEOPLES R CHINA, 2020.
[11] ZHANG Y W, JIN R T, PENG D, et al. Broadband Transient Waveform Digitizer Based on Photonic Time Stretch[J]. Journal of Lightwave Technology, 2021, 39(9): 2880-2887.
[12] 王俊达, 陈颖, 陈向宁. 基于互补型双 MZM 结构的光子时间拉伸模数转换器系统[J]. 中国激光, 2017, 44(12): 239-246.
[13] 王俊达, 陈颖, 陈向宁. 基于互补调制的多通道连续型 PTS-ADC 系统[J]. 激光与光电子学进展, 2018, 55(02): 129-136.
[14] 王俊达, 金瑞, 董洪松, 等. 互补型 M-Z 调制器的 PTS-ADC 去包络技术[J]. 兵器装备工程学报, 2018, 39(06): 144-148.
[15] HE H X, YANG S N, B Y, et al. Photonic time-stretch based on phase modulation for sub-octave applications[J]. Applied Optics, 2021, 60(22): 6487-6494.
[16] YANG B, MA Z, YANG S N, et al. Broadband and linearized photonic time-stretch analog-to-digital converter based on a compact dual-polarization modulator[J]. Applied Optics, 2023, 62(4): 921-926.
[17] MEI Y, XU B Y, CHI H, et al. Harmonics analysis of the photonic time stretch system[J]. Applied Optics, 2016, 55(26): 7222-7228.
[18] MEI Y, XU B Y, CHI H, et al. Spurious-Free Dynamic Range of the Photonic Time-Stretch System[J]. IEEE Photonics Technology Letters, 2017, 29(10): 794-797.
[19] XU Y X, CHI H, JIN T, et al. On the undesired frequency chirping in photonic time-stretch systems[J]. Optics Communications, 2017, 405: 192-196.
[20] STARIKOV R S, NEBAVSKIY V A, Y Z E. Numeric simulation of RF modulated optical pulses propagation in photonic time-stretch system[C]//Proceedings of the 15th Asia-Pacific Conference on Fundamental Problems of Opto- and Microelectronics. Khabarovsk, RUSSIA, 2016.
[21] SINGH K, SREERAJ S J, SRINIVASAN B, et al. Influence of pulse repetition rate on SINAD performance of time-stretched photonic ADCs[C]//Proceedings of the IEEE Workshop on Recent Advances in Photonics. Mumbai, INDIA, 2022.
[22] HAN Y, BOYRAZ O, B J. Ultrawide-band photonic time-stretch A/D converter employing phase diversity[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 53(4):1404-1408.
[23] CHOU J, BOYRAZ O, SOLLI D, et al. Femtosecond real-time single-shot digitizer[J]. Applied Physics Letters, 2007, 91(16): 478-483.
[24] 王俊达, 陈颖, 陈向宁. 基于色散补偿光子晶体光纤的双通道光子时间拉伸模数转换器系统研究[J]. 光学学报, 2017, 37(12): 70-77.
[25] XU C, ZHENG S L, CHEN X Y, et al. Photonic-assisted time-interleaved ADC based on optical delay line[J]. Journal of Optics, 2016, 18(1): 015704.
[26] CRUZ P E D, ALVES T M F, CARTAXO A V T. Relaxing the ADC Sampling Rate in High-Resolution Radar Systems Through Photonic Analogue-to-Digital Conversion[C]//Proceedings of the 20th International Conference on Transparent Optical Networks. Bucharest, ROMANIA, 2018.
[27] YANG S N, WANG J, CHI H, et al. Distortion compensation in continuous time photonic time-stretched ADC based on redundancy detection[J]. Applied Optics, 2021, 60(6): 1646-1652.
[28] MAHJOUBFAR A, CHURKIN D V, BARLAND S, et al. Time stretch and its applications[J]. Nature Photonics, 2017, 11(6): 341-351.
[29] ZHOU Y M, CHAN J C K, B J. A Unified Framework for Photonic Time-Stretch Systems[J]. Laser & Photonics Reviews, 2022, 16(8): 01-17.
[30] CHEN L, DONG X, YANG N N, et al. Pure Temporal Dispersion for Aberration Free Ultrafast Time-Stretch Applications[J]. Journal of Lightwave Technology, 2021, 39(17): 5589-5597.
[31] ROUSSEL E, EVAIN C, LE P M, et al. Observing microscopic structures of a relativistic object using a time-stretch strategy[J]. Scientific Reports, 2015, 5: 10330.
[32] WANG G Q, SHAO L Y, LIU Y B, et al. Low-cost compressive sensing imaging based on spectrum-encoded time-stretch structure[J]. Optics Express, 2021, 29(10): 14931-14940.
[33] XING F J, CHEN H W, LEI C, et al. A 2-GHz discrete-spectrum waveband-division microscopic imaging system[J]. Optics Communications, 2015, 338: 22-26.
[34] TARASOV N, SUGAVANAM S, CHURKIN D. Spatio-temporal generation regimes in quasi-CW Raman fiber lasers[J]. Optics Express, 2015, 23(19): 24189-24194.
[35] 习聪玲, 乔学光, 贾振安. 光纤激光器的研究与发展前景[J]. 光通信技术, 2006(01): 52-54.
[36] YU Z, YONG-ZHI L, DE-SHUANG Z, et al. Evolution of mode-locked technology of fiber lasers[J]. Laser Technology, 2009, 33(2): 162-165.
[37] YE J, MA X Y, ZHANG Y, et al. From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber[J]. PhotoniX, 2021, 2(1): 1-15.
[38] CALOZ C, GUPTA S, ZHANG Q F, et al. Analog Signal Processing[J]. IEEE Microwave Magazine, 2013, 14(6): 87-103.
[39] 刘子溪, 曾成, 夏金松. 高线性度电光调制器研究进展[J]. 中国激光, 2022, 49(12): 202-222.
[40] 雷肇棣. 光电探测器原理及应用[J]. 物理, 1994(04): 220-226.
[41] HAN Y, JALALI B. Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations[J]. Journal of Lightwave Technology, 2003, 21(12): 3085-3103.
[42] 吕方兴, 李飞. 一种基于光时域展宽技术的高速 ADC 研究[J]. 仪表技术与传感器, 2022, 468(01): 93-98.
[43] WEPMAN J A. Analog-to-Digital Converters and their Applications in Radio Receivers[J]. IEEE Communications Magazine, 1995, 33(5): 39-45.
[44] 牛慧, 谭中伟, 卢顺. 光纤中几种新型大色散产生方法研究进展[J]. 激光技术, 2022, 46 (02): 155-162.
[45] PARK H, ASHGARI M, B J, et al. Dispersion Engineering Employing Curved Space Mapping and Chromo-Modal Excitation[C]//Proceedings of the Conference on Lasers and Electro-Optics. San Jose, CA, 2015.
[46] KIM J, BAE J, HAN Y G, et al. Effectively tunable dispersion compensation based on chirped fiber Bragg gratings without central wavelength shift[J]. IEEE Photonics Technology Letters, 2004, 16(3): 849-851.
[47] KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors[J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.
[48] XIAO D R, SHAO L Y, WANG C, et al. Optical sensor network interrogation system based on nonuniform microwave photonic filters[J]. Optics Express, 2021, 29(2): 2564-2576.
[49] XIAO D R, WANG G Q, YU F H, et al. Highly Stable and Precise Demodulation of an FBG-Based Optical Current Sensor Using a Dual-Loop Optoelectronic Oscillator[J]. Journal of Lightwave Technology, 2021, 39(18): 5962-5972.
[50] WANG G Q, XIAO D R, SHAO L Y, et al. An Undersampling Communication System Based on Compressive Sensing and In-Fiber Grating[J]. IEEE Photonics Journal, 2021, 13(6): 1-7.
[51] XIAO D R, WANG G Q, YU F H, et al. Optical curvature sensor with high resolution based on in-line fiber Mach-Zehnder interferometer and microwave photonic filter[J]. Optics Express, 2022, 30(4): 5402-5413.
[52] OTHONOS A. Fiber Bragg gratings[J]. Review of Scientific Instruments, 1997, 68(12): 4309-4341.
[53] NGO N Q, LI S Y, ZHENG R T, et al. Electrically tunable dispersion compensator with fixed center wavelength using fiber Bragg grating[J]. Journal of Lightwave Technology, 2003, 21(6):1568-1575.
[54] DONG X Y, GUAN B O, YUAN S Z, et al. Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength[J]. Optics Communications, 2002, 202(1-3): 91-95.
[55] DONG X Y, SHUM P, NGO N Q, et al. Largely tunable CFBG-based dispersion compensator with fixed center wavelength[J]. Optics Express, 2003, 11(22): 2970-2974.
[56] 董新永, 赵春柳. 基于悬臂梁啁啾调谐的光纤光栅滤波器[J]. 光电子·激光, 2010, 21(10):1455-1458.
[57] LI P, NING T G, JIAN S S. Characteristics of the chirped fiber Bragg grating with strain effect[J]. Microwave and Optical Technology Letters, 2005, 45(1): 39-43.
[58] PENG D, ZHANG Z Y, ZENG Z, et al. Single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser[J]. Optics Express, 2018, 26(6):6519-6531.
[59] CHILDS R B, OBYRNE V A. Multichannel AM Video Transmission Using a High-Power Nd:YAG Laser and Linearized External Modulator[J]. IEEE Journal on Selected Areas in Communications, 1990, 8(7): 1369-1376.
[60] CLARK T R, CURRIE M, MATTHEWS P J. Digitally linearized wide-band photonic link[J]. Journal of Lightwave Technology, 2001, 19(2): 172-179.
[61] NOVAK D, CLARK T R. Broadband adaptive feedforward photonic linearization for high dynamic range signal remoting[C]//Proceedings of the IEEE Military Communications Conference. Orlando, FL, 2007.
[62] WANG W Y, FAN Y Y, WANG R Q, et al. Linearity optimization of multi-octave analog photonic links based on power weighting, polarization multiplexing and bias control[J]. Optics Express, 2021, 29(2): 2077-2089.
[63] CZHANG Q, YU H, FU Z L, et al. A high linear silicon Mach-Zehnder modulator by the dual-series architecture[C]//Proceedings of the Optical Fiber Communications Conference and Exposition. San Diego, CA, 2020.
[64] LIU W, MA J X, ZHANG J Y. A novel scheme to suppress the third-order intermodulation distortion based on dual-parallel Mach-Zehnder modulator[J]. Photonic Network Communications, 2018, 36(1): 140-151.
[65] CHEN S H, ZHOU G Q, ZHOU L J, et al. High-Linearity Fano Resonance Modulator Using a Microring-Assisted Mach-Zehnder Structure[J]. Journal of Lightwave Technology, 2020, 38(13): 3395-3403.

所在学位评定分委会
材料与化工
国内图书分类号
TN792
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544185
专题创新创业学院
推荐引用方式
GB/T 7714
李尚儒. 基于可调谐色散介质的光子时间拉伸模数转换系统[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132009-李尚儒-创新创业学院.(11301KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李尚儒]的文章
百度学术
百度学术中相似的文章
[李尚儒]的文章
必应学术
必应学术中相似的文章
[李尚儒]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。