中文版 | English
题名

高频GaN驱动芯片关键模块设计

其他题名
DESIGN OF KEY MODULES FOR HIGH FREQUENCY GAN DRIVER CHIP
姓名
姓名拼音
LIU Chang
学号
12132457
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
高源
导师单位
深港微电子学院
论文答辩日期
2023-06-15
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

电动汽车及5G技术的高速发展,使得高频、高效率、高压以及小型化的电源电压转换器的需求量激增,电源电压转换的要求也随之提高。传统的硅基器件难以满足现实需求,氮化镓(GaN)器件与传统硅基器件相比,具有高速、耐压高、低导通阻抗和小寄生电容的优势,能够与高频、高效率、高压的应用场景相适配。

本文基于汽车电子和数据中心等电压转换背景,设计了开环的GaN驱动电路。开环GaN驱动电路的主要设计模块包括片内自举电路、可控制的死区时间调控模块以及高速高抗扰度的电平位移电路。对于GaN驱动电路的核心模块电平位移电路进行了着重设计,采用了电容耦合的多级交叉结构以提升电路的传输速度和dV/dt抗扰度。将所设计的电平位移电路与文献中适用于高速、高频、高压的电平位移电路进行比对。在输入电压为48V,开关频率为10MHz的工作环境中,仿真证明本文所设计的电平位移电路具有最低的传输延时,最低传输延时为450ps,具有200V/nsdV/dt抗扰度和0.07ns的传输延时失配,静态电流为0.14μA本设计基于0.18μm CMOS BCD的工艺,实现了1.8mm2的开环GaN驱动电路。经过测试本文所提出的电平位移电路最小传输延时仅为600ps,同时具有的版图面积为0.0085mm2,均低于引用文献中电平位移电路的性能指标。

本文对于GaN驱动电路同时完成了闭环回路的实现,通过PWM模式下的电压控制方式实现了电压从48V12V的转换,利用Type-II的补偿方式实现了电路的稳定。仿真结果表明在12V输出条件下,电压输出纹波约为24mV。在负载瞬态仿真中,当输出电流从300mA3A的相互转换过程中,其下冲电压为169mV,下冲电压的恢复时间约为3.19μs。过冲电压为146mV,过程电压的恢复时间约为3.54μs。在5MHz的工作频率下,负载电流从300mA3A的仿真过程中,其最低效率为负载电流300mA情况下,效率为83.1%。峰值效率为负载电流在2.4A的情况下,效率为95.2%

其他摘要

With the rapid development of automotive and 5G technology, the demand for high-frequency, high-efficiency, high-voltage, and miniaturized power voltage converters has increased significantly, and the requirements for power voltage conversion have also increased accordingly. Traditional silicon-based devices are unable to meet the current needs, whereas Gallium Nitride (GaN) devices have advantages over traditional silicon-based devices in terms of high speed, high voltage resistance, low on-resistance, and small parasitic capacitance, making them suitable for high-frequency, high-efficiency, and high-voltage applications.

Based on the background of voltage conversion in automotive electronics and data centers, this article presents an open-loop GaN driver circuit design. The main design modules of the open-loop GaN driver circuit include an on-chip bootstrap circuit, a controllable dead-time control module, and a high-speed, high-immunity level shift circuit. The core module of the GaN driver circuit, the level shift circuit, is designed with a capacitively coupled multi-stage cross structure to improve the circuit's transmission speed and dV/dt immunity. The designed level shift circuit is compared with a level shift circuit in literature suitable for high-speed, high-frequency, and high-voltage applications. The simulation results demonstrate that the level shift circuit designed in this article has the lowest transmission delay, with a minimum delay of 450ps, 200V/ns dV/dt immunity, 0.07ns delay mismatch, and a static current of 0.14μA. This design is based on the 0.18μm CMOS BCD process and has achieved an open-loop GaN driver circuit size of 1.8mm2. After testing, the minimum transmission delay of the level shift circuit proposed in this article is only 600ps, and the layout area is 0.0085mm2, which is lower than the performance indicators of the level shift circuit in the reference literature.

This article also achieves closed-loop feedback for the GaN driver circuit, realizing voltage conversion from 48V to 12V through voltage control in PWM mode, and using Type-II compensation to stabilize the circuit. The simulation results show that under the 12V output condition, the voltage output ripple is approximately 24mV. In the transient simulation of the load, when the output current switches from 300mA to 3A, the undershoot voltage is 169mV, and the recovery time of the undershoot voltage is approximately 3.19μs. The overshoot voltage is 146mV, and the recovery time of the overshoot voltage is approximately 3.54μs. At a working frequency of 5MHz, the lowest efficiency during the simulation process of the load current switching from 300mA to 3A is 83.1% under the load current of 300mA, and the peak efficiency is 95.2% when the load current is 2.4A.

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] LIDOW A, MD ROOIJ, STRYDOM J, et al. GaN Transistors for Efficient Power Conversion[M]. 2019.
[2] LUO D, GAO Y, MOK P K T. A GaN Driver for a Bi-Directional Buck/Boost Converter With Three-Level VGS Protection and Optimal-Point Tracking Dead-Time Control [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(5): 2212-24.
[3] TONY, ARMSTRONG, ADI,等.适用于交通运输系统的创新性电源解决方案[J]. 电源世界, 2017(12):4.
[4] KE X, MA D B. A 3-to-40V VIN 10-to-50MHz 12W isolated GaN driver with self-excited tdead minimizer achieving 0.2ns/0.3ns tdead, 7.9% minimum duty ratio and 50V/ns CMTI[C]// 2018 IEEE International Solid - State Circuits Conference - (ISSCC). IEEE, 2018.
[5] KE X, YAN D, SANKMAN J, et al. A 3-to-40-V Automotive-Use GaN Driver With Active Bootstrap Balancing and VSW Dual-Edge Dead-Time Modulation Techniques [J]. IEEE Journal of Solid-State Circuits, 2021, 56(2): 521-30.
[6] CHOI B D. Enhancement of current driving capability in data driver ICs for plasma display panels [J]. IEEE Transactions on Consumer Electronics, 2009, 55(3): 992-7.
[7] KHORASANI M, BEHNAM M, VAN D B L, et al. High-Voltage CMOS Controller for Microfluidics[J]. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3(2):89-96.
[8] KHORASANI M, BERG L, MARSHALL P, et al. Low-power static and dynamic high-voltage CMOS level-shifter circuits[C]// International Symposium on Circuits and Systems (ISCAS 2008), 18-21 May 2008, Sheraton Seattle Hotel, Seattle, Washington, USA. IEEE, 2008.
[9] LI Y M, WEN C B, YUAN B, et al. A high speed and power-efficient level shifter for high voltage buck converter drivers[C]// IEEE International Conference on Solid-state & Integrated Circuit Technology. IEEE, 2010.
[10] LIU Z, LEE H. A synchronous LED driver with dynamic level-shifting and simultaneous peak & valley current sensing for high-brightness lighting applications[C]// IEEE International Midwest Symposium on Circuits & Systems. IEEE, 2013.
[11] MOGHE Y, LEHMANN T, PIESSENS T. Nanosecond Delay Floating High Voltage Level Shifters in a 0.35 μm HV-CMOS Technology [J]. IEEE Journal of Solid-State Circuits, 2011, 46(2): 485-97.
[12] LEHMANN, T. Design of fast low-power floating high-voltage level-shifters[J]. Electronics Letters, 2014, 50(3):202-204.
[13] WITTMANN J, ROSAHL T, WICHT B. A 50V high-speed level shifter with high dv/dt immunity for multi-MHz DCDC converters[C]// ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC). IEEE, 2014.
[14] SONG M K, CHEN L, SANKMAN J, et al. 16.7 A 20V 8.4W 20MHz four-phase GaN DC-DC converter with fully on-chip dual-SR bootstrapped GaN FET driver achieving 4ns constant propagation delay and 1ns switching rise time[C]// Solid-state Circuits Conference. IEEE, 2015.
[15] STRYDOM J, REUSCH D. Design and evaluation of a 10 MHz gallium nitride based 42 V DC-DC converter[C]// 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014. IEEE, 2014.
[16] YANG H A, CHIU C C, LAI S C, et al. 120V/ns output slew rate enhancement technique and high voltage clamping circuit in high integrated gate driver for power GaN FETs[C]// European Solid-state Circuits Conference. IEEE, 2015.
[17] LIU D, HOLLIS S J, DYMOND H C P, et al. Design of 370-ps Delay Floating-Voltage Level Shifters With 30-V/ns Power Supply Slew Tolerance [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(7): 688-92.
[18] LIU D, HOLLIS S J, STARK B H. A New Design Technique for Sub-Nanosecond Delay and 200 V/ns Power Supply Slew-Tolerant Floating Voltage Level Shifters for GaN SMPS [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(3): 1280-90.
[19] CAO J, ZHOU Z K, WANG Z, et al. Design Techniques of Sub-ns Level Shifters With Ultrahigh dV/dt Immunity for Various Wide-Bandgap Applications [J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10447-60.
[20] Efficient Power Conversion Corporation. (2021). EPC8010— Enhancement Mode PowerTransistor.[Online].Available:https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC8010_datasheet.pdf.
[21] QIN Y, MING X, LIN Z, et al. An Anti-Overcharged High-dV/dt-Immunity Capacitive Level Shifter With Dynamic Discharge Control for Half-Bridge GaN Driver[C]// 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021.
[22] MING X, ZHANG Z W, FAN Z W, et al. High Reliability GaN FET Gate Drivers for Next-generation Power Electronics Technology[C]// 2019 IEEE 13th International Conference on ASIC (ASICON). 0.
[23] ZENG H, ZHANG H, GUO J. A 30-V Floating Level Shifter with Sub-700-ps Delay and Sub-300-ps Edge Time for GaN Driver[C]// 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, 2019.
[24] YUAN B, YING J, NG W T, et al. A High-Voltage DC–DC Buck Converter With Dynamic Level Shifter for Bootstrapped High-Side Gate Driver and Diode Emulator [J]. IEEE Transactions on Power Electronics, 2020, 35(7): 7295-304.
[25] YU S, ZHU J, SUN W, et al. A dV S /dt Noise Immunity Improvement Structure Based on Slope Sensing Technology for 200V High Voltage Gate Drive Circuit[C]// 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD). 2020.
[26] CAO J, ZHOU Z, WANG Z, et al. A Sub-Nanosecond Level Shifter with Ultra-High dV/dt Immunity Suitable for Wide-Bandgap Applications[C]// 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020.
[27] MA H, ZEE R V D, NAUTA B. Design and Analysis of a High-Efficiency High-Voltage Class-D Power Output Stage [J]. IEEE Journal of Solid-State Circuits, 2014, 49(7): 1514-24.
[28] NGUYEN V H, LY N, ALAMEH A H, et al. A Versatile 200-V Capacitor-Coupled Level Shifter for Fully Floating Multi-MHz Gate Drivers [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(5): 1625-9.
[29] MING X, ZHANG X, ZHANG Z W, et al. A High-reliability Half-Bridge GaN FET Gate Driver with Advanced Floating Bias Control Techniques[C]// 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD). 2019.
[30] CHEN C J, WANG P Y, LI S T, et al. An Integrated Driver With Bang-Bang Dead-Time Control and Charge Sharing Bootstrap Circuit for GaN Synchronous Buck Converter [J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9503-14.
[31] TASI-FU W, YU-KAI C. Modeling PWM DC/DC converters out of baSiC converter units [J]. IEEE Transactions on Power Electronics, 1998, 13(5): 870-81.
[32] MIDDLEBROOK R D, CUK S. A general unified approach to modelling switching-converter power stages[J]. IEEE, 1976.
[33] CAPEL A , FERRANTE J G, PRAJOUX R. Stability analysis of a PWM-Controlled dc/dc regulator with dc and ac feedback loops[J]. IEEE, 1974.
[34] JONES E A, WANG F F, COSTINETT D. Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 707-19.
[35] PULVIRENTI F, SCALA A L, RAGONESE D, et al. 4-Phase Interleaved Boost Converter With IC Controller for Distributed Photovoltaic Systems [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(11): 3090-102.
[36] J. PANACEK, “Bridging 12 V and 48 V in dual-battery automotive systems,” Texas Instrum.,Dallas,TX,USA,Appl.NoteSLPY009,2018.[Online].Available:http://www.ti.com/lit/wp/slpy009/slpy009.pdf?&ts= 1589714502762.
[37] J. APPL. Phys. 130, 181101 (2021); https://doi.org/10.1063/5.0061354.
[38] CHEN Y, KE X, MA D B. A 10MHz 5-to-40V EMI-regulated GaN power driver with closed-loop adaptive Miller Plateau sensing[C]// 2017 Symposium on VLSI Technology. 2017.
[39] MA H, ZEE R V D, NAUTA B. Design and Analysis of a High-Efficiency High-Voltage Class-D Power Output Stage [J]. IEEE Journal of Solid-State Circuits, 2014, 49(7): 1514-24.
[40] STELLA C G, LAUDANI M, GAITO A, et al. Advantage of the use of an added driver source lead in discrete Power MOSFETs[C]// Applied Power Electronics Conference & Exposition. IEEE, 2014.
[41] LEE S, JUNG S, PARK C, et al. Accurate Dead-Time Control for Synchronous Buck Converter With Fast Error Sensing Circuits [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(11): 3080-9.
[42] ABDULSLAM A, MERCIER P P. 8.2 A Continuous-Input-Current Passive-Stacked Third-Order Buck Converter Achieving 0.7W/mm 2 Power Density and 94% Peak Efficiency[C]// 2019 IEEE International Solid- State Circuits Conference - (ISSCC). IEEE, 2019.
[43] LIU X , HUANG C, MOK P. A High-Frequency Three-Level Buck Converter With Real-Time Calibration and Wide Output Range for Fast-DVS[J]. IEEE Journal of Solid-State Circuits, 2018, PP(2):1-14.
[44] AN015-introducing a family of eGaNFETs for multi-Megahertz Hard switching applications.Efficient Power Conversion Corp.http://epc-co.com/epc/documents.pdf.2019.
[45] SONG M K, CHEN L, SANKMAN J, et al. On-Chip HV Bootstrap Gate Driving for GaN Compatible Power Circuits Operating Above 10 MHz [J]. IEEE Journal of Solid-State Circuits, 2022, 57(3): 942-52.

所在学位评定分委会
材料与化工
国内图书分类号
TN433
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544187
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
刘畅. 高频GaN驱动芯片关键模块设计[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132457-刘畅-南方科技大学-香(4545KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘畅]的文章
百度学术
百度学术中相似的文章
[刘畅]的文章
必应学术
必应学术中相似的文章
[刘畅]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。