[1] PENROSE R. Gravitational Collapse and Space-Time Singularities[J]. Phys.rev.lett, 1965, 14 (3): 57-59.
[2] HAWKING S W. The Large Scale Structure of Space-Time[M]. Cambridge Press, 1973.
[3] HAWKING S W, PENROSE R. The Singularities of Gravitational Collapse and Cosmology[J]. Proceedings of the Royal Society of London, 1970, 314(1519): 529-548.
[4] HAYWARD S A. Formation and evaporation of non-singular black holes[J]. Physical Review Letters, 2006, 96(3): 031103.
[5] NICOLINI M P. Black holes in an ultraviolet complete quantum gravity[J]. Physics Letters B, 2011.
[6] BONANNO A, REUTER M. Renormalization group improved black hole spacetimes[J]. Phys.rev.d, 2000, 62(4): 043008.
[7] MODESTO L, PRéMONT-SCHWARZ I. Self-dual black holes in loop quantum gravity: The- ory and phenomenology[J]. Physical Review D, 2009, 80(6): 064041.
[8] SIMPSON A, VISSER M. Regular black holes with asymptotically Minkowski cores[Z]. 2019.
[9] CARBALLO-RUBIO R, DI FILIPPO F, LIBERATI S, et al. Geodesically complete black holes [Z]. 2019.
[10] CLARKE C J S. On the geodesic completeness of causal space-times[J]. Mathematical Pro- ceedings of the Cambridge Philosophical Society, 1971, 69(2): 319-323.
[11] BEEM J K. Conformal changes and geodesic completeness[J]. Communications in Mathemat- ical Physics, 1976, 49(2): 179-186.
[12] V. NAELIKAR J, K. KEMBHAVI A. Space-time singularities and conformal gravity[J/OL]. Lettere Al Nuovo Cimento Series 2, 1977, 19: 517-520. DOI: 10.1007/BF02748215.
[13] NARLIKAR J V. The vanishing likelihood of space-time singularity in quantum conformal cosmology[J]. Foundations of Physics, 1984, 14(5): 443-456.
[14] HAWKING S W, HERTOG T. Living with ghosts[J/OL]. Phys. Rev. D, 2002, 65: 103515. DOI: 10.1103/PhysRevD.65.103515.
[15] MANNHEIM P D. Ghost problems from Pauli-Villars to fourth-order quantum gravity and their resolution[J/OL]. Int. J. Mod. Phys. D, 2020, 29(14): 2043009. DOI: 10.1142/S02182718204 30099.
[16] DONOGHUE J F, MENEZES G. Arrow of Causality and Quantum Gravity[J/OL]. Phys. Rev. Lett., 2019, 123(17): 171601. DOI: 10.1103/PhysRevLett.123.171601.
[17] ASOREY M, LOPEZ J L, SHAPIRO I L. Some remarks on high derivative quantum gravity [J/OL]. Int. J. Mod. Phys. A, 1997, 12: 5711-5734. DOI: 10.1142/S0217751X97002991.
[18] MODESTO L, SHAPIRO I L. Superrenormalizable quantum gravity with complex ghosts [J/OL]. Phys. Lett. B, 2016, 755: 279-284. DOI: 10.1016/j.physletb.2016.02.021.
[19] CORNISH N J. Quantum nonlocal gravity[J/OL]. Mod. Phys. Lett. A, 1992, 7: 631-640. DOI: 10.1142/S0217732392000604.
[20] KUZMIN Y V. THE CONVERGENT NONLOCAL GRAVITATION. (IN RUSSIAN)[J]. Sov. J. Nucl. Phys., 1989, 50: 1011-1014.
[21] TOMBOULIS E T. Superrenormalizable gauge and gravitational theories[A]. 1997. arXiv: hep-th/9702146.
[22] MODESTO L. Super-renormalizable Quantum Gravity[J/OL]. Phys. Rev. D, 2012, 86: 044005. DOI: 10.1103/PhysRevD.86.044005.
[23] MODESTO L, RACHWAL L. Nonlocal quantum gravity: A review[J/OL]. Int. J. Mod. Phys. D, 2017, 26(11): 1730020. DOI: 10.1142/S0218271817300208.
[24] BISWAS T, GERWICK E, KOIVISTO T, et al. Towards singularity and ghost free theories of gravity[J/OL]. Phys. Rev. Lett., 2012, 108: 031101. DOI: 10.1103/PhysRevLett.108.031101.
[25] ANSELMI D, MARINO A. Fakeons and microcausality: light cones, gravitational waves and the Hubble constant[J/OL]. Class. Quant. Grav., 2020, 37(9): 095003. DOI: 10.1088/1361-6 382/ab78d2.
[26] KOSHELEV A S, MODESTO L, RACHWAL L, et al. Occurrence of exact 𝑅2 inflation in non-local UV-complete gravity[J/OL]. JHEP, 2016, 11: 067. DOI: 10.1007/JHEP11(2016)067.
[27] BURZILLÀ N, GIACCHINI B L, NETTO T D P, et al. Higher-order regularity in local and nonlocal quantum gravity[J/OL]. Eur. Phys. J. C, 2021, 81(5): 462. DOI: 10.1140/epjc/s1005 2-021-09238-x.
[28] Slipher V M. The detection of nebular rotation[J]. Lowell Observatory Bulletin, 1914, 2: 66-66.
[29] Pease F G. Radial Velocities of Six Nebulae[J/OL]. pasp, 1915, 27(161): 239. DOI: 10.1086/ 122444.
[30] Slipher V M. Spectrographic Observations of Nebulae[J]. Popular Astronomy, 1915, 23: 21-24.
[31] Pease F G. The Rotation and Radial Velocity of the Spiral Nebula N. G. C. 4594[J/OL]. Proceed- ings of the National Academy of Science, 1916, 2(9): 517-521. DOI: 10.1073/pnas.2.9.517.
[32] Pease F G. The Rotation and Radial Velocity of the Central Part of the Andromeda Nebula [J/OL]. Proceedings of the National Academy of Science, 1918, 4(1): 21-24. DOI: 10.1073/pn as.4.1.21.
[33] MAYALL N. Inclinations of spectrum lines in spirals.[J]. The Astronomical Journal, 1948, 54: 44.
[34] MAYALL N, LINDBLAD P. Mean Rotational Velocities of 56 Galaxies[J]. Astronomy and Astrophysics, 1970, 8: 364.
[35] ALBRECHT, BASCHEK B. The new cosmos: an introduction to astronomy and astrophysics [M]. Springer Science & Business Media, 2013.
[36] DAR A. Tests of general relativity and Newtonian gravity at large distances and the dark matter problem[J]. Nuclear Physics B-Proceedings Supplements, 1992, 28(1): 321-326.
[37] OSTRIKER J P, PEEBLES P, YAHIL A. The size and mass of galaxies, and the mass of the universe[J]. The Astrophysical Journal, 1974, 193: L1-L4.
[38] Dwornik M, Keresztes Z, Gergely L A. Rotation curves in Bose-Einstein Condensate Dark Matter Halos[A/OL]. 2013: arXiv:1312.3715. arXiv: 1312.3715.
[39] Foot R, Vagnozzi S. Dissipative hidden sector dark matter[J/OL]. prd, 2015, 91(2): 023512. DOI: 10.1103/PhysRevD.91.023512.
[40] DWORNIK M, KERESZTES Z, GERGELY L A. Bose-Einstein condensate dark matter model tested by galactic rotation curves[M]//THE THIRTEENTH MARCEL GROSSMANN MEET- ING: On Recent Developments in Theoretical and Experimental General Relativity, Astro- physics and Relativistic Field Theories. World Scientific, 2015: 1279-1281.
[41] NELSON A. On the influence of galaxy magnetic fields on the rotation curves in the outer discs of galaxies[J]. Monthly Notices of the Royal Astronomical Society, 1988, 233(1): 115-121.
[42] HEES A, FAMAEY B, ANGUS G W, et al. Combined Solar System and rotation curve con- straints on MOND[J]. Monthly Notices of the Royal Astronomical Society, 2016, 455(1): 449- 461.
[43] MILGROM M, SANDERS R H. Modified newtonian dynamics rotation curves of very low mass spiral galaxies[J]. The Astrophysical Journal, 2007, 658(1): L17.
[44] MOFFAT J, RAHVAR S. The MOG weak field approximation and observational test of galaxy rotation curves[J]. Monthly Notices of the Royal Astronomical Society, 2013, 436(2): 1439- 1451.
[45] CAPOZZIELLO S, HARKO T, KOIVISTO T S, et al. Galactic rotation curves in hybrid metric- Palatini gravity[J]. Astroparticle Physics, 2013, 50: 65-75.
[46] STABILE A, SCELZA G. Rotation curves of galaxies by fourth order gravity[J]. Physical Review D, 2011, 84(12): 124023.
[47] CAPOZZIELLO S, CARLONI S, TROISI A. Quintessence without scalar fields[A]. 2003.
[48] SCELZA G, STABILE A. Numerical analysis of galactic rotation curves[J]. Astrophysics and Space Science, 2015, 357: 1-9.
[49] FINCH A, SAID J L. Galactic rotation dynamics in f (T) gravity[J]. The European Physical Journal C, 2018, 78: 1-18.
[50] BÖHMER C G, HARKO T, LOBO F S. Dark matter as a geometric effect in f (R) gravity[J]. Astroparticle Physics, 2008, 29(6): 386-392.
[51] SHOJAI F, SHOJAI A. An f (R) f (R) model for dark matter: rotation curves and gravitational lensing[J]. General Relativity and Gravitation, 2014, 46: 1-16.
[52] Mannheim P D, O’Brien J G. Fitting galactic rotation curves with conformal gravity and a global quadratic potential[J/OL]. prd, 2012, 85(12): 124020. DOI: 10.1103/PhysRevD.85.124020.
[53] MANNHEIM P D. Solution to the ghost problem in fourth order derivative theories[J/OL]. Found. Phys., 2007, 37: 532-571. DOI: 10.1007/s10701-007-9119-7.
[54] Milgrom M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis.[J/OL]. apj, 1983, 270: 365-370. DOI: 10.1086/161130.
[55] Sanders R H, Verheijen M A W. Rotation Curves of Ursa Major Galaxies in the Context of Modified Newtonian Dynamics[J/OL]. apj, 1998, 503(1): 97-108. DOI: 10.1086/305986.
[56] DODELSON S. The Real Problem with MOND[J/OL]. Int. J. Mod. Phys. D, 2011, 20: 2749- 2753. DOI: 10.1142/S0218271811020561.
[57] NOJIRI S, ODINTSOV S D. Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models[J]. Physics Reports, 2011, 505(2-4): 59-144.
[58] DE FELICE A, TSUJIKAWA S. f (R) theories[J]. Living Reviews in Relativity, 2010, 13: 1-161.
[59] Fich M, Blitz L, Stark A A. The Rotation Curve of the Milky Way to 2R 0[J/OL]. apj, 1989, 342: 272. DOI: 10.1086/167591.
[60] D. MANNHEIM P. Making the Case for Conformal Gravity[J/OL]. Foundations of Physics - FOUND PHYS, 2011, 42. DOI: 10.1007/s10701-011-9608-6.
[61] D. MANNHEIM P. Mass Generation, the Cosmological Constant Problem, Conformal Sym- metry, and the Higgs Boson[J/OL]. Progress in Particle and Nuclear Physics, 2016, 94. DOI: 10.1016/j.ppnp.2017.02.001.
[62] MODESTO L. Disappearance of the black hole singularity in loop quantum gravity[J]. Physical Review D Particles & Fields, 2004, 70(70): -.
[63] BAMBI C, MODESTO L, RACHWAł L. Spacetime completeness of non-singular black holes in conformal gravity[J]. Journal of Cosmology and Astro-Particle Physics, 2016, 5(5): 003-003.
[64] BAMBI C, CAO Z, MODESTO L. Testing conformal gravity with astrophysical black holes[J].Physical Review D, 2017, 95(6): 064006.
[65] Zhang Q, Modesto L, Bambi C. A general study of regular and singular black hole solutionsin Einstein’s conformal gravity[J/OL]. European Physical Journal C, 2018, 78(6): 506. DOI:10.1140/epjc/s10052-018-5987-6.
[66] MODESTO L, RACHWAL L. Finite conformal quantum gravity and spacetime singularities[J]. Journal of Physics Conference, 2017, 942(1): 012015.
[67] ’t Hooft G. A Class of Elementary Particle Models Without Any Adjustable Real Parameters[J/OL]. Foundations of Physics, 2011, 41(12): 1829-1856. DOI: 10.1007/s10701-011-9586-8.
[68] Modesto L, Zhou T, Li Q. Geometric origin of the galaxies’ dark side[A]. 2021:arXiv:2112.04116. arXiv: 2112.04116.
[69] ENGLERT F, TRUFFIN C, GASTMANS R. Conformal invariance in quantum gravity[J/OL].Nuclear Physics B, 1976, 117: 407-432. DOI: 10.1016/0550-3213(76)90406-5.
[70] ENGLERT F, GUNZIG E, TRUFFIN C, et al. Conformal invariant general relativity with dy- namical symmetry breakdown[J/OL]. Physics Letters B, 1975, 57: 73-77. DOI: 10.1016/0370-2693(75)90247-6.
[71] ZEE A. Einstein gravity emerging from quantum Weyl gravity[J/OL]. Annals of Physics, 1983,151: 431-443. DOI: 10.1016/0003-4916(83)90286-5.
[72] MATSUO N. Einstein gravity as spontaneously broken Weyl gravity[J/OL]. General Relativityand Gravitation, 1990, 22: 561-593. DOI: 10.1007/BF00756230.
[73] MALDACENA J. Einstein Gravity from Conformal Gravity[J]. Eprint Arxiv, 2011.
[74] BOLEN B, CAVAGLIA M. (Anti-) de Sitter black hole thermodynamics and the generalizeduncertainty principle[J]. General Relativity and Gravitation, 2005, 37: 1255-1262.
[75] LI Q, MODESTO L. Galactic Rotation Curves in Conformal Scalar-Tensor Gravity[J/OL]. Grav. Cosmol., 2020, 26(2): 99-117. DOI: 10.1134/S0202289320020085.
[76] LELLI F, MCGAUGH S S, SCHOMBERT J M. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves[J/OL]. Astron. J., 2016, 152: 157. DOI: 10.3847/0004-6256/152/6/157.
修改评论