中文版 | English
题名

CMOS 全集成光接收机前端芯片的研究

其他题名
RESEARCH ON CMOS FULLY INTEGRATED OPTICAL RECEIVER FRONT-END
姓名
姓名拼音
WANG Hemiao
学号
12132473
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
潘权
导师单位
深港微电子学院
论文答辩日期
2023-05-18
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

信息技术的发展推动了数据中心流量的持续增长和对高速通信系统的性能需求。相比电缆和无线通信,光通信具有高带宽、高安全性、低功耗和低干扰的优势。而传统的光通信接收机由于封装导致的严重电磁干扰, 且分立的光电转换器件成本过高,难以大规模部署在数据中心内部。基于 标准 CMOS 工艺的全集成光通信接收机能够最大程度地减小封装造成的限制,降低光电器件成本,具有十分广阔的研究意义和商业价值。

本文基于 28 nm CMOS 工艺,研究设计了光接收机前端,包括 CMOS 光电探测器、跨阻放大器电路、单端转差分电路和直流失调消除电路。提出了一种水平 p-well/n-well 结构的光电探测器,使用 DNW 区域消除标准 CMOS 工艺中 P 型衬底引入的缓慢衬底扩散电流,利用 p-well 和 n-well 形成插指结构的水平 PN 结,提高激光吸收效率,降低载流子渡越时间,提升光电探测器带宽。设计了基于反相器架构的三级跨阻放大器电路,将光电探测器输出的电流信号转换为电压信号,同时利用前馈相加的连续时间线性均衡技术拓展带宽,通过反相器片选调整跨阻增益。后续的单端转差分电路将跨阻放大器输出的单端信号转为差分信号,同时利用有源电感进行带宽拓展。直流失调消除电路通过负反馈的方式调整跨阻放大器的输入电流,抑制输出端直流电平的失调。

测试结果表明 CMOS 光电探测器带宽可达 4.2 GHz,响应度为 0.13 A/W。 根据测试结果对光电探测器进行建模,探测器模型和光接收机前端电路联合后仿真结果表明,CMOS 全集成光接收机前端芯片带宽达到了 9 GHz,跨 阻增益为 72 dBΩ。本文首次在 CMOS 全集成光接收机前端芯片中验证了 PAM-4 信号的传输,实现了 30 Gb/s PAM-4 信号的眼图张开。芯片能耗仅为 0.83 pJ/bit,版图面积为 0.64 mm2 。

其他摘要

The development of information technology has driven the continued growth of data center traffic and the performance demand of high-speed communication systems. Compared to electric cable communication and wireless communication, optical communication offers the advantages of high bandwidth, high security, low power consumption and low interference. Traditional optical communication receivers are difficult to deploy inside data centers on a large scale due to expensive optoelectronic conversion devices and electromagnetic interference caused by packaging. Fully integrated optical communication receivers based on standard CMOS processes can minimize the cost and packaging impact and have research significance and commercial value.

This thesis investigates and designs an optical receiver front-end based on 28 nm CMOS process, including a CMOS photodetector, a transimpedance amplifier circuit, a single-ended-to-differential circuit, and a DC offset cancellation circuit. This thesis proposes a horizontal p-well/n-well structure photodetector based on 28 nm CMOS process, using the DNW region to eliminate the slow substrate diffusion current introduced by the P-type substrate in the standard CMOS process, and using the p-well and n-well to form a horizontal PN junction with an inserted finger structure to improve the laser absorption efficiency, reduce the carrier crossing time, and enhance the photodetector bandwidth. The three-stage inverter based transimpedance amplifier circuit converts the current signal from the photodetector output into a voltage signal, while expanding the bandwidth by using the continuous-time linear equalization technique of feed-forward summation, adjusting the transimpedance gain by inverter slides selection. The subsequent single-ended to differential circuit converts the single-ended signal from the transimpedance amplifier into a differential signal, while using an active inductor for bandwidth expansion. The DC offset cancellation circuit adjusts the input current of the transimpedance amplifier by negative feedback to suppress the DC offset at the output.

Test results show that the proposed CMOS photodetector can reach a bandwidth of 4.2 GHz and a responsivity of 0.13 A/W. Modeling photodetectors based on test results, the post-simulation results show that the CMOS fully integrated optical receiver front-end has a bandwidth of 9 GHz and a transimpedance gain of 72 dBΩ. This thesis first verifies the transmission of PAM-4 signals in the CMOS fully integrated optical receiver front-end chip, achieving eye diagram opening of 30 Gb/s PAM-4 signals. The chip energy consumption is only 0.83 pJ/bit, and the chip layout area is 0.64 mm2.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] YOUSRY R, CHEN E, YING Y-M, et al. A 1.7 pJ/bit 112Gb/s XSR transceiver for intra-package communication in 7 nm FinFET technology[C]//2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2021: 42-43.
[2] JIHWAN K. F1.5 Circuit designs for 200+Gb/s electrical transceivers[C]//2023 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2023: 7-23.
[3] LI D, MINOIA G, REPOSSI M, et al. A low-noise design technique for high-speed CMOS optical receivers[J]. IEEE Journal of Solid-State Circuits, 2014, 49(6): 1437-1447.
[4] YU K, LI C, HUANG T-C, et al. 56 Gb/s PAM-4 optical receiver frontend in an advanced FinFET process[C]//2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2015: 56-60.
[5] BHAGAVATHEESWARAN S, CUMMINGS T, TANGEN E, et al. A 56 Gb/s PAM-4 linear transimpedance amplifier in 0.13-μm SiGe BiCMOS technology for optical receivers[C]//2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). IEEE, 2017: 156-160.
[6] FU K-L, LIU S-I. A 64-Gb/s PAM-4 optical receiver with amplitude/phase correction and threshold voltage/data level calibration[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(7): 1726-1735.
[7] HE J, LU D, XUE H, et al. Design of a PAM-4 VCSEL-Based Transceiver Front-End for Beyond-400G Short-Reach Optical Interconnects[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(11): 4345-4357.
[8] LI H, SHARMA J, HSU C-M, et al. A 100Gb/s-8.3 dBm-Sensitivity PAM-4 Optical Receiver with Integrated TIA, FFE and Direct-Feedback DFE in 28 nm CMOS[C]//2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2021: 856-857.
[9] PATEL D, SHARIF-BAKHTIAR A, CARUSONE A C. A 112 Gb/s-8.2 dBm Sensitivity 4-PAM Linear TIA in 16 nm CMOS with Co-Packaged Photodiodes[C]//2022 IEEE Custom Integrated Circuits Conference (CICC). IEEE, 2022: 786-787.
[10] 肖新东. 用于光通信的高速 CMOS 差分光接收机的研究与设计[D]. 天津大学, 2012.
[11] HERMANS C, LEROUX P, STEYAERT M. Gigabit photodiodes in standard digital nanometer CMOS technologies[C]//2003 IEEE Conference on European Solid-State Device Research. IEEE, 2003: 28-30.
[12] ZIMMERMANN H, HEIDE T. A monolithically integrated 1-Gb/s optical receiver in 1-μm CMOS technology[J]. IEEE Photonics Technology Letters, 2001, 13(7): 711-713.
[13] RADOVANOVIC S, ANNEMA A-J, NAUTA B. A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication[J]. IEEE Journal of Solid-State Circuits, 2005, 40(8): 1706-1717.
[14] CHEN W-Z, HUANG S-H, WU G-W, et al. A 3.125 Gbps CMOS fully integrated optical receiver with adaptive analog equalizer[C]//2007 IEEE Asian Solid-State Circuits Conference. IEEE, 2007: 56-57.
[15] TAVERNIER F, STEYAERT M. Power efficient 4.5 Gbit/s optical receiver in 130 nm CMOS with integrated photodiode[C]//2008 IEEE European Solid-State Circuits Conference. IEEE, 2008: 856-859.
[16] LEE D, HAN J, HAN G, et al. An 8.5-Gb/s fully integrated CMOS optoelectronic receiver using slope-detection adaptive equalizer[J]. IEEE Journal of Solid-State Circuits, 2010, 45(12): 2861-2873.
[17] NAYAK S, AHMED A H, SHARKIA A, et al. A 10-Gb/s− 18.8 dBm Sensitivity 5.7 mW Fully-Integrated Optoelectronic Receiver With Avalanche Photodetector in 0.13-μm CMOS[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(8): 3162-3173.
[18] PAN Q, WANG Y, LU Y, et al. An 18-Gb/s fully integrated optical receiver with adaptive cascaded equalizer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 361-369.
[19] RAZAVI B. Limiting amplifiers and output buffers[M]. Design of Integrated Circuits for Optical Communications. McGraw-Hill. 2003: 136-140.
[20] BATES R J. Optical switching and networking handbook[M]. McGraw-Hill Professional, 2001.
[21] HOPKINS H H, KAPANY N S. A flexible fibrescope, using static scanning[J]. Nature, 1954, 173(4392): 39-41.
[22] PAN Q. Optoelectronic receivers in standard CMOS for short-range optical communications[D]. 2014.
[23] KAO K C, HOCKHAM G A. Dielectric-fibre surface waveguides for optical frequencies[C]//Institution of Electrical Engineers. IET, 1966: 28-30.
[24] TAVERNIER F, STEYAERT M S. High-speed optical receivers with integrated photodiode in 130 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2009, 44(10): 2856-2867.
[25] CARUSONE A C, YASOTHARAN H, KAO T. CMOS technology scaling considerations for multi-Gbps optical receivers with integrated photodetectors[J]. IEEE Journal of Solid-State Circuits, 2011, 46(8): 1832-1842.
[26] RADOVANOVIC S, ANNEMA A-J, NAUTA B. A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication[J]. IEEE Journal of Solid-State Circuits, 2005, 40(8): 1706-1717.
[27] GENOE J, COPPEE D, STIENS J H, et al. Calculation of the current response of the spatially modulated light CMOS detector[J]. IEEE Transactions on Electron Devices, 2001, 48(9): 1892-1902.
[28] 杨彬彬. 4×28Gbaud/s PAM4 激光驱动器集成电路设计[D]. 东南大学.
[29] 张宇. 56Gb/s PAM4 CMOS 光接收机集成电路的研究与设计[D]. 南京邮电大学, 2022.
[30] 何睿. 高速光通信系统接收机模拟前端电路设计[D]. 复旦大学, 2014.
[31] 许运达. 面向长距离光通信的光接收机设计研究[D]. 大连: 大连理工大学, 2021.
[32] SCHOLL C A, WATHEN J J, FITCH M J, et al. Evaluation of neural information content from the phase component of a 32-channel frequency-domain fNIRS system[C]//Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics. SPIE, 2021: 1038-1042.
[33] SEDIGHI B, SCHEYTT J C. Low-power SiGe BiCMOS transimpedance amplifier for 25-GBaud optical links[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59(8): 461-465.
[34] ATHARAV A, RAZAVI B. A 56Gb/s 50mW NRZ Receiver in 28 nm CMOS[C]//2021 IEEE International Solid- State Circuits Conference (ISSCC). IEEE, 2021: 360-361.
[35] ATHARAV A, RAZAVI B. A 56-Gb/s 50-mW NRZ Receiver in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2022, 57(1): 54-67.
[36] CHEN E-H, HOSSAIN M, LEIBOWITZ B, et al. A 40-Gb/s serial link transceiver in 28-nm CMOS technology[C]//2014 Symposium on VLSI Circuits Digest of Technical Papers. IEEE, 2014: 78-79.
[37] NAVID R, CHEN E-H, HOSSAIN M, et al. A 40 Gb/s serial link transceiver in 28 nm CMOS technology[J]. IEEE Journal of Solid-State Circuits, 2014, 50(4): 814-827.
[38] CHROSTOWSKI L, HOCHBERG M. Silicon photonics design: from devices to systems[M]. Cambridge University Press, 2015.
[39] ANG K-W, NG J W, LO G-Q, et al. Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium p-i-n photodetector[J]. Applied Physics Letters, 2009, 94(22): 223515.
[40] YOUN J-S, LEE M-J, PARK K-Y, et al. An integrated 12.5-Gb/s optoelectronic receiver with a silicon avalanche photodetectorin standard SiGe BiCMOS technology[J]. Optics express, 2012, 20(27): 28153-28162.
[41] JUNG H-Y, LEE J-M, CHOI W-Y. A high-speed CMOS integrated optical receiver with an under-damped TIA[J]. IEEE Photonics Technology Letters, 2015, 27(13): 1367-1370.
[42] LEE D, HAN J, HAN G, et al. An 8.5-Gb/s fully integrated CMOS optoelectronic receiver using slope-detection adaptive equalizer[J]. IEEE Journal of Solid-State Circuits, 2010, 45(12): 2861-2873.
[43] PAN Q, HOU Z, LI Y, et al. A 0.5-V P-well/deep N-well photodetector in 65-nm CMOS for monolithic 850-nm optical receivers[J]. IEEE Photonics Technology Letters, 2014, 26(12): 1184-1187.
[44] LEE M-J. First CMOS silicon avalanche photodetectors with over 10-GHz bandwidth[J]. IEEE Photonics Technology Letters, 2015, 28(3): 276-279.

所在学位评定分委会
材料与化工
国内图书分类号
TN432
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544394
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
王鹤淼. CMOS 全集成光接收机前端芯片的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132473-王鹤淼-南方科技大学-(6837KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王鹤淼]的文章
百度学术
百度学术中相似的文章
[王鹤淼]的文章
必应学术
必应学术中相似的文章
[王鹤淼]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。