[1] KUO A D. Harvesting energy by improving the economy of human walking[J]. Science, 2005, 309(5741): 1686-1687.
[2] KUO A D, DONELAN J M, RUINA A. Energetic consequences of walking like an inverted pendulum: Step-to-step transitions[J]. Exercise and Sport Sciences Reviews, 2005, 33(2): 88-97.
[3] BASTIEN G J, WILLEMS P A, SCHEPENS B, et al. Effect of load and speed on the energetic cost of human walking[J]. European Journal of Applied Physiology, 2005, 94(1): 76-83.
[4] KUO A D. A simple model of bipedal walking predicts the preferred speed–step length relationship[J]. J. Biomech. Eng., 2001, 123(3): 264-269.
[5] YANG L, ZHANG J, XU Y, et al. Energy performance analysis of a suspended backpack with an optimally controlled variable damper for human load carriage[J]. Mechanism and Machine Theory, 2020, 146: 103738.
[6] WALSH C J, ENDO K, HERR H. A quasi-passive leg exoskeleton for load-carrying augmen tation[J]. International Journal of Humanoid Robotics, 2007, 4(03): 487-506.
[7] VAN DIJK W, VAN DER KOOIJ H, HEKMAN E. A passive exoskeleton with artificial ten dons: Design and experimental evaluation[C]//2011 IEEE International Conference on Reha bilitation Robotics. Zurich: IEEE, 2011: 1-6.
[8] ZOSS A, KAZEROONI H, CHU A. Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX)[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 128-138.
[9] KIM D, CARLO J D, KATZ B, et al. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control: abs/1909.06586[A]. 2019.
[10] BONILLA B L, ASADA H H. A robot on the shoulder: Coordinated human-wearable robot control using coloured petri nets and partial least squares predictions[M]//2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014: 119-125.
[11] PARIETTI F, CHAN K, ASADA H H. Bracing the human body with supernumerary robotic limbs for physical assistance and load reduction[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014: 141-148.
[12] PARIETTI F, ASADA H H. Supernumerary robotic limbs for aircraft fuselage assembly: body stabilization and guidance by bracing[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014: 1176-1183.
[13] PARIETTI F, ASADA H. Supernumerary robotic limbs for human body support[J]. IEEE Transactions on Robotics, 2016, 32(2): 301-311.
[14] PARIETTI F, CHAN K C, HUNTER B, et al. Design and control of supernumerary robotic limbs for balance augmentation[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE, 2015: 5010-5017.
[15] GONZALEZ D J, ASADA H H. Design of extra robotic legs for augmenting human payload capabilities by exploiting singularity and torque redistribution[C]//2018 IEEE International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 4348-4354.
[16] TREERS L, LO R, CHEUNG M, et al. Design and control of lightweight supernumerary robotic limbs for sitting/standing assistance[M]//International Symposium on Experimental Robotics. Springer, 2016: 299-308.
[17] YANG P, YAN H, YANG B, et al. A centaur system for assisting human walking with load carriage[C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022: 5242-5248.
[18] 韦晓晖. 疾驰仿生四足机器人动力学与疾驰机理[D]. 上海: 上海交通大学, 2016.
[19] LI T, LI Q, LIU T, et al. How to carry loads economically: analysis based on a predictive biped model[J]. Journal of Biomechanical Engineering, 2020, 142(4).
[20] LI D, LI T, LI Q, et al. A simple model for predicting walking energetics with elastically suspended backpack[J]. Journal of biomechanics, 2016, 49(16): 4150-4153.
[21] FOISSAC M, MILLET G Y, GEYSSANT A, et al. Characterization of the mechanical properties of backpacks and their influence on the energetics of walking[J]. Journal of biomechanics, 2009, 42(2): 125-130.
[22] ACKERMAN J, SEIPEL J. A model of human walking energetics with an elastically-suspended load[J]. Journal of biomechanics, 2014, 47(8): 1922-1927.
[23] LENG Y, LIN X, YANG L, et al. A model for estimating the leg mechanical work required to walk with an elastically suspended backpack[J]. IEEE Transactions on Human-Machine Systems, 2022, 52(6): 1303-1312.
[24] PARK J H, STEGALL P, ZHANG H, et al. Walking with a backpack using load distribution and dynamic load compensation reduces metabolic cost and adaptations to loads[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 25(9): 1419-1430.
[25] PARK J H, STEGALL P, AGRAWAL S K. Reducing dynamic loads from a backpack during load carriage using an upper body assistive device[J]. Journal of Mechanisms and Robotics, 2016, 8(5).
[26] ROME L C, FLYNN L, GOLDMAN E M, et al. Generating electricity while walking with loads [J]. Science, 2005, 309(5741): 1725-1728.
[27] YANG L, XU Y, ZHANG J, et al. Design of an elastically suspended backpack with a tunable damper[C]//2019 IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO). Beijing, China: IEEE, 2019: 180-185.
[28] XU X, HSIANG S M, MIRKA G A. The effects of a suspended-load backpack on gait[J]. Gait & posture, 2009, 29(1): 151-153.
[29] HE L, XIONG C, ZHANG Q, et al. A backpack minimizing the vertical acceleration of the load improves the economy of human walking[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(9): 1994-2004.
[30] ABE D, YANAGAWA K, NIIHATA S. Effects of load carriage, load position, and walking speed on energy cost of walking[J]. Applied ergonomics, 2004, 35(4): 329-335.
[31] MOSHER R S. Handyman to Hardiman[J]. Sae Transactions, 1968: 588-597.
[32] KAZEROONI H, RACINE J L, HUANG L, et al. On the control of the berkeley lower extremity exoskeleton (BLEEX)[C]//Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE, 2005: 4353-4360.
[33] KAZEROONI H, STEGER R, HUANG L. Hybrid control of the berkeley lower extremity exoskeleton (BLEEX)[J]. The International Journal of Robotics Research, 2006, 25(5-6): 561-573.
[34] BOGUE R. Exoskeletons and robotic prosthetics: A review of recent developments[J]. Industrial Robot: An International Journal, 2009, 36(5): 421-427.
[35] MIURA K, KADONE H, KODA M, et al. The hybrid assistive limb (HAL) for care support successfully reduced lumbar load in repetitive lifting movements[J]. Journal of Clinical Neuroscience, 2018, 53: 276-279.
[36] KUBOTA S, ABE T, KADONE H, et al. Hybrid assistive limb (HAL) treatment for patients with severe thoracic myelopathy due to ossification of the posterior longitudinal ligament (OPLL) in the postoperative acute/subacute phase: A clinical trial[J]. The Journal of Spinal Cord Medicine,2019, 42(4): 517-525.
[37] KAWAMOTO H, KADONE H, SAKURAI T, et al. Modification of hemiplegic compensatory gait pattern by symmetry-based motion controller of HAL[C]//2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015: 4803-4807.
[38] ESQUENAZI A, TALATY M, PACKEL A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. American journal of physical medicine & rehabilitation, 2012, 91(11): 911-921.
[39] TALATY M, ESQUENAZI A, BRICENO J E. Differentiating ability in users of the ReWalkTM powered exoskeleton: An analysis of walking kinematics[C]//2013 IEEE 13th international conference on rehabilitation robotics (ICORR). IEEE, 2013: 1-5.
[40] QUINLIVAN B T, LEE S, MALCOLM P, et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit[J]. Science robotics, 2017, 2(2): eaah4416.
[41] BROWNING R C, MODICA J R, KRAM R, et al. The effects of adding mass to the legs on the energetics and biomechanics of walking[J]. Medicine & Science in Sports & Exercise, 2007, 39(3): 515-525.
[42] GREGORCZYK K N, HASSELQUIST L, SCHIFFMAN J M, et al. Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage[J]. Ergonomics, 2010, 53(10): 1263-1275.
[43] ASBECK A T, DE ROSSI S M, HOLT K G, et al. A biologically inspired soft exosuit for walking assistance[J]. The International Journal of Robotics Research, 2015, 34(6): 744-762.
[44] PARIETTI F, ASADA H H. Independent, voluntary control of extra robotic limbs[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). 2017: 5954-5961.
[45] GONZALEZ D J, ASADA H H. Hybrid open-loop closed-loop control of coupled human-robot balance during assisted stance transition with extra robotic legs[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1676-1683.
[46] KHAZOOM C, CAILLOUETTE P, GIRARD A, et al. A supernumerary robotic leg powered by magnetorheological actuators to assist human locomotion[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5143-5150.
[47] HAO M, ZHANG J, CHEN K, et al. Supernumerary robotic limbs to assist human walking with load carriage[J]. Journal of Mechanisms and Robotics, 2020, 12(6): 061014.
[48] PENALOZA C I, NISHIO S. BMI control of a third arm for multitasking[J]. Science Robotics, 2018, 3(20): eaat1228.
[49] KUO A D, DONELAN J M, RUINA A. Energetic consequences of walking like an inverted pendulum: Step-to-step transitions[J]. Exercise and Sport Sciences Reviews, 2005, 33(2): 88-97.
[50] ROME L C, FLYNN L, YOO T D. Rubber bands reduce the cost of carrying loads[J]. Nature, 2006, 444(7122): 1023-1024.
[51] CHANG Y, WANG W, FU C. A lower limb exoskeleton recycling energy from knee and ankle joints to assist push-off[J]. Journal of Mechanisms and Robotics, 2020, 12(5): 051011.
[52] LIU J, XIONG C, FU C. An ankle exoskeleton using a lightweight motor to create high power assistance for push-off[J]. Journal of Mechanisms and Robotics, 2019, 11(4).
[53] EDEN J, BRÄCKLEIN M, PEREDA J I, et al. Human movement augmentation and how to make it a reality[A]. 2021. arXiv: 2106.08129.
[54] BLEDT G, POWELL M J, KATZ B, et al. MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 2245-2252.
[55] LEE J, HWANGBO J, WELLHAUSEN L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Science Robotics, 2020, 5(47): eabc5986.
[56] HYUN D J, LEE J, PARK S, et al. Implementation of trot-to-gallop transition and subsequent gallop on the MIT Cheetah I[J]. The International Journal of Robotics Research, 2016, 35(13):1627-1650.
[57] FENG S, GU Y, GUO W, et al. An overconstrained robotic leg with coaxial quasi-direct drives for omni-directional ground mobility[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 11477-11484.
[58] LUO J, YE S, SU J, et al. Prismatic Quasi-Direct-Drives for dynamic quadruped locomotion with high payload capacity[J]. International Journal of Mechanical Sciences, 2022, 235:107698.
[59] JIN B, YE S, SU J, et al. Unknown payload adaptive control for quadruped locomotion with proprioceptive linear legs[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(4): 1891- 1899.
[60] NEUMANN D A. Kinesiology of the musculoskeletal system foundations for rehabilitation[M]. 北京: 人民军医出版社, 2014: 638-647.
[61] 熊有伦,李文龙. 机器人学:建模、控制与视觉(第 2 版)[M]. 武汉: 华中科技大学出版社, 2020: 93-189.
[62] LYNCH K M, PARK F C. Modern robotics: Mechanics, Planning, and Control[M]. 英国: 剑 桥大学出版社, 2017: 116-278.
[63] 卞泽坤,王兴兴. 四足机器人控制算法——建模、控制与实践[M]. 北京: 机械工业出版 社, 2022: 43-139.
[64] KNAPIK J J, REYNOLDS K L, HARMAN E. Soldier load carriage: Historical, physiological, biomechanical, and medical aspects[J]. Military Medicine, 2004, 169(1): 45-56.
[65] ANTONELLIS P, MOHAMMADZADEH GONABADI A, MYERS S A, et al. Metabolically efficient walking assistance using optimized timed forces at the waist[J]. Science Robotics, 2022, 7(64): eabh1925.
[66] LENG Y, LIN X, LU Z, et al. A model to predict ground reaction force for elastically-suspended backpacks[J]. Gait & Posture, 2020, 82: 118-125.
[67] BERTRAM J E, RUINA A. Multiple walking speed–frequency relations are predicted by con strained optimization[J]. Journal of Theoretical Biology, 2001, 209(4): 445-453.
[68] DONELAN J M, KRAM R, KUO A D. Simultaneous positive and negative external mechanical work in human walking[J]. Journal of Biomechanics, 2002, 35(1): 117-124.
[69] BROCKWAY J. Derivation of formulae used to calculate energy expenditure in man.[J]. Human Nutrition. Clinical Nutrition, 1987, 41(6): 463-471.
[70] LENG Y, LIN X, HUANG G, et al. Wheel-legged robotic limb to assist human with load carriage: An application for environmental disinfection during COVID-19[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3695-3702.
[71] CHEN X, ZHANG K, LIU H, et al. A probability distribution model-based approach for foot placement prediction in the early swing phase with a wearable imu sensor[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 2595-2604.
[72] CHEN X, CHEN C, WANG Y, et al. A piecewise monotonic gait phase estimation model for controlling a powered transfemoral prosthesis in various locomotion modes[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 9549-9556.
[73] CHEN G, CHAN C K, GUO Z, et al. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy[J]. Critical Reviews™ in Biomedical Engineering, 2013, 41(4-5).
[74] DI CARLO J, WENSING P M, KATZ B, et al. Dynamic locomotion in the mit cheetah 3 through convex model-predictive control[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 1-9.
[75] SEOK S, WANG A, Meng Yee Chuah, et al. Design principles for highly efficient quadrupeds and implementation on the mit cheetah robot[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013: 3307-3312.
[76] PARK H W, WENSING P M, KIM S. High-speed bounding with the MIT Cheetah 2: Control design and experiments[J]. The International Journal of Robotics Research, 2017, 36(2): 167- 192.
[77] JOHN H. MATHEWS K D F. Numerical methods using matlab[M]. 北京: 电子工业出版社, 2017: 177-222.
[78] HYUN D J, SEOK S, LEE J, et al. High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah[J]. The International Journal of Robotics Research, 2014, 33(11): 1417-1445.
修改评论