[1] GAMOW G. Zur quantentheorie des atomkernes[J]. Zeitschrift für Physik, 1928, 51(3-4):204-212
[2] SIEGERT A J F. On the Derivation of the Dispersion Formula for Nuclear Reactions[J]. PhysRev, 1939, 56(8): 750-752
[3] MAJORANA E. Sulla formazione dello ione molecolare di elio[J]. Il Nuovo Cimento (1924-1942), 1931, 8: 22-28
[4] FESHBACH H. The Optical Model and Its Justification[J]. Annual Review of Nuclear Science,1958, 8(1): 49-104
[5] BREUER H P, PETRUCCIONE F. Oxford Graduate Texts: The Theory of Open QuantumSystems[M]. Oxford University Press, 2002
[6] BREUER H P, LAINE E M, PIILO J, et al. Colloquium : Non-Markovian dynamics in openquantum systems[J]. Rev Mod Phys, 2016, 88(2): 021002
[7] MANZANO D. A short introduction to the Lindblad master equation[J]. AIP Advances, 2020,10(2): 025106
[8] FEYNMAN R, VERNON F. Dynamical symmetries and conserved quantities[J]. Ann Phys,1963, 24: 118-173
[9] CALZETTA E, HU B L. Cambridge Monographs on Mathematical Physics: NonequilibriumQuantum Field Theory[M]. Cambridge University Press, 2008
[10] MAKRIS K G, EL-GANAINY R, CHRISTODOULIDES D N, et al. Beam Dynamics in P TSymmetric Optical Lattices[J]. Phys Rev Lett, 2008, 100(10): 103904
[11] MUSSLIMANI Z H, MAKRIS K G, EL-GANAINY R, et al. Optical Solitons in P T PeriodicPotentials[J]. Phys Rev Lett, 2008, 100(3): 030402
[12] REGENSBURGER A, BERSCH C, MIRI M A, et al. Parity–time synthetic photonic lattices[J]. Nature, 2012, 488(7410): 167-171
[13] WANG H, ZHANG X, HUA J, et al. Topological physics of non-Hermitian optics and photonics:a review[J]. J Opt, 2021, 23(12): 123001
[14] PARTO M, LIU Y G N, BAHARI B, et al. Non-Hermitian and topological photonics: optics atan exceptional point:[J]. Nanophotonics, 2021, 10(1): 403-423
[15] LONGHI S. Parity-time symmetry meets photonics: A new twist in non-Hermitian optics[J].EPL, 2018, 120(6): 64001
[16] STEGMAIER A, IMHOF S, HELBIG T, et al. Topological Defect Engineering and P T Symmetryin Non-Hermitian Electrical Circuits[J]. Phys Rev Lett, 2021, 126(21): 215302
[17] GHATAK A, BRANDENBOURGER M, VAN WEZEL J, et al. Observation of non-Hermitiantopology and its bulk–edge correspondence in an active mechanical metamaterial[J]. Proceedingsof the National Academy of Sciences, 2020, 117(47): 29561-29568
[18] SCHOMERUS H. Nonreciprocal response theory of non-Hermitian mechanical metamaterials:Response phase transition from the skin effect of zero modes[J]. Phys Rev Research, 2020, 2(1): 013058
[19] ZHU X, RAMEZANI H, SHI C, et al. P T -Symmetric Acoustics[J]. Phys Rev X, 2014, 4(3):031042
[20] ZHU W, FANG X, LI D, et al. Simultaneous Observation of a Topological Edge State andExceptional Point in an Open and Non-Hermitian Acoustic System[J]. Phys Rev Lett, 2018,121(12): 124501
[21] ZHANG Z, ROSENDO LóPEZ M, CHENG Y, et al. Non-Hermitian Sonic Second-Order TopologicalInsulator[J]. Phys Rev Lett, 2019, 122(19): 195501
[22] ZHANG L, YANG Y, GE Y, et al. Acoustic non-Hermitian skin effect from twisted windingtopology[J]. Nat Commun, 2021, 12(1): 6297
[23] LEE T E. Anomalous Edge State in a Non-Hermitian Lattice[J]. Phys Rev Lett, 2016, 116(13):133903
[24] KAWABATA K, BESSHO T, SATO M. Classification of Exceptional Points and Non-HermitianTopological Semimetals[J]. Phys Rev Lett, 2019, 123(6): 066405
[25] LEYKAM D, BLIOKH K Y, HUANG C, et al. Edge Modes, Degeneracies, and TopologicalNumbers in Non-Hermitian Systems[J]. Phys Rev Lett, 2017, 118(4): 040401
[26] YAO S, WANG Z. Edge States and Topological Invariants of Non-Hermitian Systems[J]. PhysRev Lett, 2018, 121(8): 086803
[27] DING K, MA G, XIAO M, et al. Emergence, Coalescence, and Topological Properties ofMultiple Exceptional Points and Their Experimental Realization[J]. Phys Rev X, 2016, 6(2):021007
[28] BERGHOLTZ E J, BUDICH J C, KUNST F K. Exceptional topology of non-Hermitian systems[J]. Rev Mod Phys, 2021, 93(1): 015005
[29] HELBIG T, HOFMANN T, IMHOF S, et al. Generalized bulk–boundary correspondence innon-Hermitian topolectrical circuits[J]. Nat Phys, 2020, 16(7): 747-750
[30] LUO X W, ZHANG C. Higher-Order Topological Corner States Induced by Gain and Loss[J].Phys Rev Lett, 2019, 123(7): 073601
[31] YANG Z, CHIU C K, FANG C, et al. Jones Polynomial and Knot Transitions in Hermitian andnon-Hermitian Topological Semimetals[J]. Phys Rev Lett, 2020, 124(18): 186402
[32] BORGNIA D S, KRUCHKOV A J, SLAGER R J. Non-Hermitian Boundary Modes and Topology[J]. Phys Rev Lett, 2020, 124(5): 056802
[33] XUE H, WANG Q, ZHANG B, et al. Non-Hermitian Dirac Cones[J]. Phys Rev Lett, 2020, 124(23): 236403
[34] SONG F, YAO S, WANG Z. Non-Hermitian Skin Effect and Chiral Damping in Open QuantumSystems[J]. Phys Rev Lett, 2019, 123(17): 170401
[35] SONG A Y, SUN X Q, DUTT A, et al. P T -Symmetric Topological Edge-Gain Effect[J]. PhysRev Lett, 2020, 125(3): 033603
[36] ZHOU H, LEE J Y. Periodic table for topological bands with non-Hermitian symmetries[J].Phys Rev B, 2019, 99(23): 235112
[37] LIU T, ZHANG Y R, AI Q, et al. Second-Order Topological Phases in Non-Hermitian Systems[J]. Phys Rev Lett, 2019, 122(7): 076801
[38] KAWABATA K, HIGASHIKAWA S, GONG Z, et al. Topological unification of time-reversaland particle-hole symmetries in non-Hermitian physics[J]. Nat Commun, 2019, 10(1): 297
[39] LIANG S D, HUANG G Y. Topological invariance and global Berry phase in non-Hermitiansystems[J]. Phys Rev A, 2013, 87(1): 012118
[40] SATO M, HASEBE K, ESAKI K, et al. Time-Reversal Symmetry in Non-Hermitian Systems[J]. Progress of Theoretical Physics, 2012, 127(6): 937-974
[41] YANG C N, LEE T D. Statistical Theory of Equations of State and Phase Transitions. I. Theoryof Condensation[J]. Phys Rev, 1952, 87(3): 404-409
[42] LEE T D, YANG C N. Statistical Theory of Equations of State and Phase Transitions. II. LatticeGas and Ising Model[J]. Phys Rev, 1952, 87(3): 410-419
[43] FISHER M E. Yang-Lee Edge Singularity and ϕ 3 Field Theory[J]. Phys Rev Lett, 1978, 40(25): 1610-1613
[44] CARDY J L. Conformal Invariance and the Yang-Lee Edge Singularity in Two Dimensions[J].Phys Rev Lett, 1985, 54(13): 1354-1356
[45] MAASSARANI Z, SERBAN D. Non-unitary conformal field theory and logarithmic operatorsfor disordered systems[J]. Nuclear Physics B, 1997, 489(3): 603-625
[46] BENDER C M, BOETTCHER S, JONES H F, et al. Bound states of non-Hermitian quantumfield theories[J]. Physics Letters A, 2001, 291(4): 197-202
[47] CASTRO-ALVAREDO O A, DOYON B, RAVANINI F. Irreversibility of the renormalizationgroup flow in non-unitary quantum field theory*[J]. J Phys A: Math Theor, 2017, 50(42):424002
[48] ALEXANDRE J, BENDER C M, MILLINGTON P. Light neutrino masses from a non-Hermitian Yukawa theory[J]. J Phys: Conf Ser, 2017, 873(1): 012047
[49] BIANCHINI D, CASTRO-ALVAREDO O A, DOYON B. Entanglement entropy of non-unitaryintegrable quantum field theory[J]. Nuclear Physics B, 2015, 896: 835-880
[50] BENDER C M, MILTON K A. A nonunitary version of massless quantum electrodynamicspossessing a critical point[J]. J Phys A: Math Gen, 1999, 32(7): L87
[51] FRING A, TAIRA T. Pseudo-Hermitian approach to Goldstone’s theorem in non-Abeliannon-Hermitian quantum field theories[J]. Phys Rev D, 2020, 101(4): 045014
[52] MOFFAT J W. Noncommutative quantum gravity[J]. Physics Letters B, 2000, 491(3): 345-352
[53] ARAGEORGIS A, EARMAN J, RUETSCHE L. Weyling the time away: the non-unitaryimplementability of quantum field dynamics on curved spacetime[J]. Studies in History andPhilosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 2002, 33(2): 151-184
[54] MANNHEIM P. Astrophysical evidence for the non-Hermitian but PT-symmetric Hamiltonianof conformal gravity[J]. Fortschritte der Physik, 2013, 61(2-3): 140-154
[55] YEşILTAş . Non-Hermitian Dirac Hamiltonian in Three-Dimensional Gravity and Pseudosupersymmetry[J]. Advances in High Energy Physics, 2015, 2015: e484151
[56] LV C, ZHANG R, ZHAI Z, et al. Curving the space by non-Hermiticity[J]. Nat Commun, 2022,13(1): 2184
[57] JU C Y, MIRANOWICZ A, MINGANTI F, et al. Einstein’s quantum elevator: Hermitizationof non-Hermitian Hamiltonians via a generalized vielbein formalism[J]. Phys Rev Research,2022, 4(2): 023070
[58] ASHIDA Y, GONG Z, UEDA M. Non-Hermitian physics[J]. Advances in Physics, 2020, 69(3): 249-435
[59] BENDER C M, BOETTCHER S. Real Spectra in Non-Hermitian Hamiltonians Having PTSymmetry[J]. Phys Rev Lett, 1998, 80: 5243-5246
[60] CHIU C K, TEO J C Y, SCHNYDER A P, et al. Classification of topological quantum matterwith symmetries[J]. Rev Mod Phys, 2016, 88(3): 035005
[61] CHEN X, GU Z C, LIU Z X, et al. Symmetry-Protected Topological Orders in InteractingBosonic Systems[J]. Science, 2012, 338(6114): 1604-1606
[62] CHEN X, GU Z C, LIU Z X, et al. Symmetry protected topological orders and the groupcohomology of their symmetry group[J]. Phys Rev B, 2013, 87(15): 155114
[63] GONG Z, ASHIDA Y, KAWABATA K, et al. Topological Phases of Non-Hermitian Systems[J]. Phys Rev X, 2018, 8: 031079
[64] KAWABATA K, SHIOZAKI K, UEDA M, et al. Symmetry and Topology in Non-HermitianPhysics[J]. Phys Rev X, 2019, 9: 041015
[65] LIU C H, JIANG H, CHEN S. Topological classification of non-Hermitian systems with reflectionsymmetry[J]. Phys Rev B, 2019, 99: 125103
[66] XI W, ZHANG Z H, GU Z C, et al. Classification of topological phases in one dimensionalinteracting non-Hermitian systems and emergent unitarity[J]. Science Bulletin, 2021, 66(17):1731-1739
[67] BERRY M. Physics of Nonhermitian Degeneracies[J]. Czechoslovak Journal of Physics, 2004,54(10): 1039-1047
[68] LEE C H. Exceptional Bound States and Negative Entanglement Entropy[J]. Phys Rev Lett,2022, 128: 010402
[69] YANG Z, SCHNYDER A P, HU J, et al. Fermion Doubling Theorems in Two-DimensionalNon-Hermitian Systems for Fermi Points and Exceptional Points[J]. Phys Rev Lett, 2021, 126:086401
[70] KOZII V, FU L. Non-Hermitian Topological Theory of Finite-Lifetime Quasiparticles: Predictionof Bulk Fermi Arc Due to Exceptional Point[A]. 2017. arXiv: 1708.05841
[71] TZENG Y C, JU C Y, CHEN G Y, et al. Hunting for the non-Hermitian exceptional points withfidelity susceptibility[J]. Phys Rev Res, 2021, 3: 013015
[72] MANDAL I, BERGHOLTZ E J. Symmetry and Higher-Order Exceptional Points[J]. Phys RevLett, 2021, 127: 186601
[73] TANG W, JIANG X, DING K, et al. Exceptional nexus with a hybrid topological invariant[J].Science, 2020, 370(6520): 1077-1080
[74] TANG W, DING K, MA G. Experimental realization of non-Abelian permutations in a threestatenon-Hermitian system[J]. National Science Review, 2022, 9(11)
[75] GUO C X, CHEN S, DING K, et al. Exceptional Non-Abelian Topology in Multiband Non-Hermitian Systems[A]. 2022. arXiv: 2210.17031
[76] ZHANG Q, ZHAO L, LIU X, et al. Experimental Characterization of Three-Band Braid Relationsin Non-Hermitian Acoustic Systems[A]. 2022. arXiv: 2212.07609
[77] DING K, MA G, XIAO M, et al. Emergence, Coalescence, and Topological Properties of MultipleExceptional Points and Their Experimental Realization[J]. Phys Rev X, 2016, 6: 021007
[78] HATANO N, NELSON D R. Vortex pinning and non-Hermitian quantum mechanics[J]. PhysRev B, 1997, 56: 8651-8673
[79] HATANO N, NELSON D R. Non-Hermitian delocalization and eigenfunctions[J]. Phys RevB, 1998, 58: 8384-8390
[80] LI L, LEE C H, GONG J. Topological Switch for Non-Hermitian Skin Effect in Cold-AtomSystems with Loss[J]. Phys Rev Lett, 2020, 124: 250402
[81] GUO C X, LIU C H, ZHAO X M, et al. Exact Solution of Non-Hermitian Systems with GeneralizedBoundary Conditions: Size-Dependent Boundary Effect and Fragility of the Skin Effect[J]. Phys Rev Lett, 2021, 127: 116801
[82] SONG F, YAO S, WANG Z. Non-Hermitian Topological Invariants in Real Space[J]. Phys RevLett, 2019, 123(24): 246801
[83] SU W P, SCHRIEFFER J R, HEEGER A J. Soliton excitations in polyacetylene[J]. Phys RevB, 1980, 22: 2099-2111
[84] SU W P, SCHRIEFFER J R, HEEGER A J. Solitons in Polyacetylene[J]. Phys Rev Lett, 1979,42: 1698-1701
[85] KUNST F K, EDVARDSSON E, BUDICH J C, et al. Biorthogonal Bulk-Boundary Correspondencein Non-Hermitian Systems[J]. Phys Rev Lett, 2018, 121: 026808
[86] YANG Z, ZHANG K, FANG C, et al. Non-Hermitian Bulk-Boundary Correspondence andAuxiliary Generalized Brillouin Zone Theory[J]. Phys Rev Lett, 2020, 125: 226402
[87] REITHMAIER J P, SęK G, LöFFLER A, et al. Strong coupling in a single quantum dot–semiconductor microcavity system[J]. Nature, 2004, 432(7014): 197-200
[88] ZHANG W, OUYANG X, HUANG X, et al. Observation of Non-Hermitian Topology withNonunitary Dynamics of Solid-State Spins[J]. Phys Rev Lett, 2021, 127: 090501
[89] WU Y, LIU W, GENG J, et al. Observation of parity-time symmetry breaking in a single-spinsystem[J]. Science, 2019, 364(6443): 878-880
[90] NAKAMURA Y, PASHKIN Y A, TSAI J S. Coherent control of macroscopic quantum statesin a single-Cooper-pair box[J]. Nature, 1999, 398(6730): 786-788
[91] GUTHRIE A, SATRYA C D, CHANG Y C, et al. Cooper-Pair Box Coupled to Two Resonators:An Architecture for a Quantum Refrigerator[J]. Phys Rev Applied, 2022, 17(6): 064022
[92] FITZPATRICK M, SUNDARESAN N M, LI A C Y, et al. Observation of a Dissipative PhaseTransition in a One-Dimensional Circuit QED Lattice[J]. Phys Rev X, 2017, 7: 011016
[93] HUANG Y, YIN Z Q, YANG W L. Realizing a topological transition in a non-Hermitian quantumwalk with circuit QED[J]. Phys Rev A, 2016, 94: 022302
[94] CALDEIRA A O, LEGGETT A J. Quantum tunnelling in a dissipative system[J]. Annals ofPhysics, 1983, 149(2): 374-456
[95] COULE D H, MARTIN J. Quantum cosmology and open universes[J]. Phys Rev D, 2000, 61(6): 063501
[96] SHANDERA S, AGARWAL N, KAMAL A. Open quantum cosmological system[J]. Phys RevD, 2018, 98(8): 083535
[97] GORINI V, KOSSAKOWSKI A, SUDARSHAN E C G. Completely positive dynamical semigroupsof N‐level systems[J]. Journal of Mathematical Physics, 1976, 17(5): 821-825
[98] LINDBLAD G. On the generators of quantum dynamical semigroups[J]. Comm Math Phys,1976, 48(2): 119-130
[99] WEIMER H, KSHETRIMAYUM A, ORúS R. Simulation methods for open quantum manybodysystems[J]. Rev Mod Phys, 2021, 93(1): 015008
[100] BENGURIA R, KAC M. Quantum Langevin Equation[J]. Phys Rev Lett, 1981, 46(1): 1-4
[101] FORD G W, LEWIS J T, O’CONNELL R F. Quantum Langevin equation[J]. Phys Rev A, 1988,37(11): 4419-4428
[102] PAN L, CHEN X, CHEN Y, et al. Non-Hermitian linear response theory[J]. Nature Physics,2020, 16(7): 767–771
[103] WISEMAN H, MILBURN G. Quantum Measurement and Control[M]. Cambridge: CambridgeUniversity Press, 2010
[104] BELLOMO B, LO FRANCO R, COMPAGNO G. Non-Markovian Effects on the Dynamics ofEntanglement[J]. Phys Rev Lett, 2007, 99(16): 160502
[105] PIILO J, MANISCALCO S, HÄRKÖNEN K, et al. Non-Markovian Quantum Jumps[J]. PhysRev Lett, 2008, 100(18): 180402
[106] DE VEGA I, ALONSO D. Dynamics of non-Markovian open quantum systems[J]. Rev ModPhys, 2017, 89(1): 015001
[107] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J]. RevMod Phys, 2009, 81: 865-942
[108] LAFLORENCIE N. Quantum entanglement in condensed matter systems[J]. Physics Reports,2016, 646: 1-59
[109] ZENG B, CHEN X, ZHOU D L, et al. Quantum information meets quantum matter[M].Springer, 2019
[110] PEREZ-GARCIA D, VERSTRAETE F, WOLF M M, et al. Matrix Product State Representations[M]. arXiv, 2007
[111] ORúS R. A practical introduction to tensor networks: Matrix product states and projectedentangled pair states[J]. Annals of Physics, 2014, 349: 117-158
[112] NISHIOKA T. Entanglement entropy: Holography and renormalization group[J]. Rev ModPhys, 2018, 90: 035007
[113] EISERT J, CRAMER M, PLENIO M B. Colloquium: Area laws for the entanglement entropy[J]. Rev Mod Phys, 2010, 82: 277-306
[114] NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information: 10th AnniversaryEdition[M]. Cambridge University Press, 2010
[115] WOLF M M, VERSTRAETE F, HASTINGS M B, et al. Area Laws in Quantum Systems:Mutual Information and Correlations[J]. Phys Rev Lett, 2008, 100(7): 070502
[116] EISERT J, CRAMER M, PLENIO M B. Colloquium : Area laws for the entanglement entropy[J]. Rev Mod Phys, 2010, 82(1): 277-306
[117] BRANDãO F G S L, HORODECKI M. An area law for entanglement from exponential decayof correlations[J]. Nature Phys, 2013, 9(11): 721-726
[118] BRAVYI S, HASTINGS M B, VERSTRAETE F. Lieb-Robinson Bounds and the Generationof Correlations and Topological Quantum Order[J]. Phys Rev Lett, 2006, 97(5): 050401
[119] VERSTRAETE F, MURG V, CIRAC J. Matrix product states, projected entangled pair states,and variational renormalization group methods for quantum spin systems[J]. Advances inPhysics, 2008, 57(2): 143-224
[120] CIRAC J I, PéREZ-GARCíA D, SCHUCH N, et al. Matrix product states and projected entangledpair states: Concepts, symmetries, theorems[J]. Rev Mod Phys, 2021, 93(4): 045003
[121] VERSTRAETE F, WOLF M M, PEREZ-GARCIA D, et al. Criticality, the Area Law, andthe Computational Power of Projected Entangled Pair States[J]. Phys Rev Lett, 2006, 96(22):220601
[122] CINCIO L, DZIARMAGA J, RAMS M M. Multiscale Entanglement Renormalization Ansatzin Two Dimensions: Quantum Ising Model[J]. Phys Rev Lett, 2008, 100(24): 240603
[123] EVENBLY G, VIDAL G. Quantum Criticality with the Multi-scale Entanglement RenormalizationAnsatz[M]//AVELLA A, MANCINI F. Springer Series in Solid-State Sciences: StronglyCorrelated Systems: Numerical Methods. Berlin, Heidelberg: Springer, 2013: 99-130
[124] SWINGLE B. Entanglement Entropy and the Fermi Surface[J]. Phys Rev Lett, 2010, 105(5):050502
[125] OGAWA N, TAKAYANAGI T, UGAJIN T. Holographic Fermi surfaces and entanglemententropy[J]. J High Energ Phys, 2012, 2012(1): 125
[126] LUITZ D J, PLAT X, ALET F, et al. Universal logarithmic corrections to entanglement entropiesin two dimensions with spontaneously broken continuous symmetries[J]. Phys Rev B, 2015, 91:155145
[127] KITAEV A, PRESKILL J. Topological Entanglement Entropy[J]. Phys Rev Lett, 2006, 96(11):110404
[128] LEVIN M, WEN X G. Detecting Topological Order in a Ground State Wave Function[J]. PhysRev Lett, 2006, 96(11): 110405
[129] LUNDGREN R, CHUA V, FIETE G A. Entanglement entropy and spectra of the onedimensionalKugel-Khomskii model[J]. Phys Rev B, 2012, 86(22): 224422
[130] WOLF M M. Violation of the Entropic Area Law for Fermions[J]. Phys Rev Lett, 2006, 96(1):010404
[131] LAFLORENCIE N. Scaling of entanglement entropy in the random singlet phase[J]. Phys RevB, 2005, 72(14): 140408
[132] REFAEL G, MOORE J E. Entanglement Entropy of Random Quantum Critical Points in OneDimension[J]. Phys Rev Lett, 2004, 93(26): 260602
[133] FAGOTTI M, CALABRESE P, MOORE J E. Entanglement spectrum of random-singlet quantumcritical points[J]. Phys Rev B, 2011, 83(4): 045110
[134] LIU H, SUH S J. Entanglement Tsunami: Universal Scaling in Holographic Thermalization[J].Phys Rev Lett, 2014, 112(1): 011601
[135] D’ALESSIO L, KAFRI Y, POLKOVNIKOV A, et al. From quantum chaos and eigenstatethermalization to statistical mechanics and thermodynamics[J]. Advances in Physics, 2016, 65(3): 239-362
[136] KAUFMAN A M, TAI M E, LUKIN A, et al. Quantum thermalization through entanglementin an isolated many-body system[J]. Science, 2016, 353(6301): 794-800
[137] ABANIN D A, ALTMAN E, BLOCH I, et al. Colloquium : Many-body localization, thermalization,and entanglement[J]. Rev Mod Phys, 2019, 91(2): 021001
[138] PERES A. Separability Criterion for Density Matrices[J]. Phys Rev Lett, 1996, 77: 1413-1415
[139] PLENIO M B. Logarithmic Negativity: A Full Entanglement Monotone That is not Convex[J].Phys Rev Lett, 2005, 95: 090503
[140] CHUNG M C, PESCHEL I. Density-matrix spectra of solvable fermionic systems[J]. Phys RevB, 2001, 64(6): 064412
[141] PESCHEL I. Calculation of reduced density matrices from correlation functions[J]. Journal ofPhysics A: Mathematical and General, 2003, 36(14): L205-L208
[142] PESCHEL I, EISLER V. Reduced density matrices and entanglement entropy in free latticemodels[J]. Journal of Physics A: Mathematical and Theoretical, 2009, 42(50): 504003
[143] GRAY R M, DAVISSON L D. The Society for Industrial and Applied Mathematics: Introductionto Toeplitz and Circulant Matrices[M]. SIAM, 2006
[144] JIN B Q, KOREPIN V E. Quantum Spin Chain, Toeplitz Determinants and the Fisher—HartwigConjecture[J]. Journal of Statistical Physics, 2004, 116(1): 79-95
[145] BASOR E L, TRACY C A. The Fisher-Hartwig conjecture and generalizations[J]. Physica A:Statistical Mechanics and its Applications, 1991, 177(1): 167-173
[146] LUTTINGER J M. An Exactly Soluble Model of a Many‐Fermion System[J]. Journal ofMathematical Physics, 1963, 4(9): 1154-1162
[147] COLEMAN S. Quantum sine-Gordon equation as the massive Thirring model[J]. Phys Rev D,1975, 11(8): 2088-2097
[148] MATTIS D C. Theory of quasimagnetic impurity in a metal: An exactly soluble model ofinteracting electrons[J]. Annals of Physics, 1975, 89(1): 45-67
[149] HALDANE F D M. ’Luttinger liquid theory’ of one-dimensional quantum fluids. I. Propertiesof the Luttinger model and their extension to the general 1D interacting spinless Fermi gas[J].Journal of Physics C: Solid State Physics, 1981, 14(19): 2585
[150] EFETOV K B, LARKIN A I. Nonzero spin pairing in layer superconductors and in quasi-onedimensionalsuperconductors[J]. Zh Eksp Teor Fiz, v 68, no 1, pp 155-163, 1975
[151] SéNéCHAL D. An Introduction to Bosonization[M]//SéNéCHAL D, TREMBLAY A M,BOURBONNAIS C. CRM Series in Mathematical Physics: Theoretical Methods for StronglyCorrelated Electrons. New York, NY: Springer, 2004: 139-186
[152] TSVELIK A M. Cambridge Monographs on Mathematical Physics: Bosonization of StronglyCorrelated Systems[M]. Cambridge University Press, 1998
[153] 易伟柱, 奚文杰, 陈伟强. 重整化平均场理论及其在铜氧化物高温超导材料中的应用[J].低温物理学报, 2020, 42(2): 59-67
[154] DI FRANCESCO P, MATHIEU P, SéNéCHAL D. Graduate Texts in Contemporary Physics:Conformal Field Theory[M]. Springer, 1997
[155] BELAVIN A A, POLYAKOV A M, ZAMOLODCHIKOV A B. Infinite conformal symmetryin two-dimensional quantum field theory[J]. Nuclear Physics B, 1984, 241(2): 333-380
[156] CARDY J L. Conformal invariance and surface critical behavior[J]. Nuclear Physics B, 1984,240(4): 514-532
[157] CARDY J L. Conformal invariance and universality in finite-size scaling[J]. Journal of PhysicsA: Mathematical and General, 1984, 17(7): L385
[158] CARDY J. Cambridge Lecture Notes in Physics: Scaling and Renormalization in StatisticalPhysics[M]. Cambridge University Press, 1996
[159] BAXTER R J. Exactly Solved Models in Statistical Mechanics[M]. Academic Press, 1982
[160] MUSSARDO G. Oxford Graduate Texts: Statistical Field Theory: An Introduction to ExactlySolved Models in Statistical Physics[M]. Oxford University Press, 2010
[161] POLCHINSKI J. String Theory[M]. Cambridge University Press, 1998
[162] NIELSEN H, NINOMIYA M. A no-go theorem for regularizing chiral fermions[J]. PhysicsLetters B, 1981, 105(2): 219 - 223
[163] ADLER S L. Axial-Vector Vertex in Spinor Electrodynamics[J]. Phys Rev, 1969, 177: 2426-2438
[164] BELL J S, JACKIW R W. A PCAC puzzle: 𝜋0 → 𝛾𝛾 in the 𝜎-model[J]. Nuovo Cimento, 1969,60(CERN-TH-920): 47-61
[165] ALVAREZ-GAUMé L, WITTEN E. Gravitational anomalies[J]. Nuclear Physics B, 1984, 234(2): 269 - 330
[166] STONE M. Edge waves in the quantum Hall effect[J]. Annals of Physics, 1991, 207(1): 38 -52
[167] WILSON K. Erice lecture notes, 1975[J]. Susskind, Lectures at Les Houches Summer School,1976
[168] SUSSKIND L. Lattice fermions[J]. Phys Rev D, 1977, 16: 3031-303993参考文献
[169] DRELL S D, WEINSTEIN M, YANKIELOWICZ S. Strong-coupling field theory. I. Variationalapproach to 𝜑4 theory[J]. Phys Rev D, 1976, 14: 487-516
[170] DEMARCO M, WEN X G. A Single Right-Moving Free Fermion Mode on an Ultra-Local1 + 1 d Spacetime Lattice[A]. 2018. arXiv:1805.03663
[171] WANG J, WEN X G. Solution to the 1 + 1 dimensional gauged chiral Fermion problem[J].Phys Rev D, 2019, 99: 111501
[172] KIKUKAWA Y. Why is the mission impossible? Decoupling the mirror Ginsparg–Wilsonfermions in the lattice models for two-dimensional Abelian chiral gauge theories[J]. Progressof Theoretical and Experimental Physics, 2019, 2019(7)
[173] WANG J, WEN X G. Non-Perturbative Regularization of 1+ 1D Anomaly-Free Chiral Fermionsand Bosons: On the equivalence of anomaly matching conditions and boundary gapping rules[A]. 2013. arXiv:1307.7480
[174] DEMARCO M, WEN X G. A Novel Non-Perturbative Lattice Regularization of an Anomaly-Free 1 + 1𝑑 Chiral 𝑆𝑈(2) Gauge Theory[A]. 2017. arXiv:1706.04648
[175] DEMARCO M A. Chiral Phases on the Lattice[A]. 2022. arXiv:2203.01427
[176] LEE J Y, AHN J, ZHOU H, et al. Topological Correspondence between Hermitian and Non-Hermitian Systems: Anomalous Dynamics[J]. Phys Rev Lett, 2019, 123: 206404
[177] LEE T E. Anomalous Edge State in a Non-Hermitian Lattice[J]. Phys Rev Lett, 2016, 116:133903
[178] LEYKAM D, BLIOKH K Y, HUANG C, et al. Edge Modes, Degeneracies, and TopologicalNumbers in Non-Hermitian Systems[J]. Phys Rev Lett, 2017, 118: 040401
[179] YAO S, WANG Z. Edge States and Topological Invariants of Non-Hermitian Systems[J]. PhysRev Lett, 2018, 121: 086803
[180] KAWABATA K, BESSHO T, SATO M. Classification of Exceptional Points and Non-HermitianTopological Semimetals[J]. Phys Rev Lett, 2019, 123: 066405
[181] ZHANG X X, FRANZ M. Non-Hermitian Exceptional Landau Quantization in Electric Circuits[J]. Phys Rev Lett, 2020, 124: 046401
[182] BORGNIA D S, KRUCHKOV A J, SLAGER R J. Non-Hermitian Boundary Modes and Topology[J]. Phys Rev Lett, 2020, 124: 056802
[183] LONGHI S. Non-Bloch-Band Collapse and Chiral Zener Tunneling[J]. Phys Rev Lett, 2020,124: 066602
[184] LEE T E, CHAN C K. Heralded Magnetism in Non-Hermitian Atomic Systems[J]. Phys RevX, 2014, 4: 041001
[185] PESKIN M E. An introduction to quantum field theory[M]. CRC press, 2018
[186] BERTLMANN R A. Anomalies in quantum field theory: Vol. 91[M]. Oxford university press,2000
[187] FUJIKAWA K. Path-Integral Measure for Gauge-Invariant Fermion Theories[J]. Phys Rev Lett,1979, 42: 1195-1198
[188] BLUMENHAGEN R, PLAUSCHINN E. Introduction to conformal field theory: with applicationsto string theory: Vol. 779[M]. Springer Science & Business Media, 2009
[189] KARSTEN L H. Lattice fermions in euclidean space-time[J]. Physics Letters B, 1981, 104(4):315 - 319
[190] CHERNODUB M N. The Nielsen–Ninomiya theorem, PT-invariant non-Hermiticity and single8-shaped Dirac cone[J]. Journal of Physics A: Mathematical and Theoretical, 2017, 50(38):385001
[191] BRODY D C. Biorthogonal quantum mechanics[J]. Journal of Physics A: Mathematical andTheoretical, 2013, 47(3): 035305
[192] FRANCESCO P, MATHIEU P, SÉNÉCHAL D. Conformal field theory[M]. Springer Science& Business Media, 2012
[193] GONG Z, ASHIDA Y, KAWABATA K, et al. Topological Phases of Non-Hermitian Systems[J]. Phys Rev X, 2018, 8: 031079
[194] EZAWA M. Non-Hermitian higher-order topological states in nonreciprocal and reciprocalsystems with their electric-circuit realization[J]. Phys Rev B, 2019, 99: 201411
[195] LIU S, MA S, YANG C, et al. Gain- and Loss-Induced Topological Insulating Phase in a Non-Hermitian Electrical Circuit[J]. Phys Rev Applied, 2020, 13: 014047
[196] KATO T. Perturbation theory for linear operators[M]. Springer Science & Business Media,2013
[197] BERRY M. Physics of Nonhermitian Degeneracies[J]. Czechoslovak Journal of Physics, 2004,54(10): 1039-1047
[198] HEISS W D. Exceptional points of non-Hermitian operators[J]. J Phys A: Math Gen, 2004, 37(6): 2455-2464
[199] ASHIDA Y, GONG Z, UEDA M. Non-Hermitian physics[J]. Advances in Physics, 2020, 69(3): 249-435
[200] HEISS W D. The physics of exceptional points[J]. J Phys A: Math Theor, 2012, 45(44): 444016
[201] DING K, MA G, XIAO M, et al. Emergence, Coalescence, and Topological Properties of MultipleExceptional Points and Their Experimental Realization[J]. Phys Rev X, 2016, 6: 021007
[202] WU Q, SOLUYANOV A A, BZDUšEK T. Non-Abelian band topology in noninteracting metals[J]. Science, 2019, 365(6459): 1273-1277
[203] MIRI M A, ALù A. Exceptional points in optics and photonics[J]. Science, 2019, 363(6422):eaar7709
[204] ÖZDEMIR K, ROTTER S, NORI F, et al. Parity–time symmetry and exceptional points inphotonics[J]. Nat Mater, 2019, 18(8): 783-798
[205] KAWABATA K, SHIOZAKI K, UEDA M, et al. Symmetry and Topology in Non-HermitianPhysics[J]. Phys Rev X, 2019, 9(4): 041015
[206] LAI Y H, LU Y K, SUH M G, et al. Observation of the exceptional-point-enhanced Sagnaceffect[J]. Nature, 2019, 576(7785): 65-69
[207] KAWABATA K, ASHIDA Y, UEDA M. Information Retrieval and Criticality in Parity-Time-Symmetric Systems[J]. Phys Rev Lett, 2017, 119(19): 190401
[208] DóRA B, HEYL M, MOESSNER R. The Kibble-Zurek mechanism at exceptional points[J].Nat Commun, 2019, 10(1): 2254
[209] LIAO Q, LEBLANC C, REN J, et al. Experimental Measurement of the Divergent QuantumMetric of an Exceptional Point[J]. Phys Rev Lett, 2021, 127(10): 107402
[210] HU H, ZHAO E. Knots and Non-Hermitian Bloch Bands[J]. Phys Rev Lett, 2021, 126: 010401
[211] YANG Z, CHIU C K, FANG C, et al. Jones Polynomial and Knot Transitions in Hermitian andnon-Hermitian Topological Semimetals[J]. Phys Rev Lett, 2020, 124: 186402
[212] TANG W, JIANG X, DING K, et al. Exceptional nexus with a hybrid topological invariant[J].Science, 2020, 370(6520): 1077-1080
[213] ZHANG G Q, CHEN Z, XU D, et al. Exceptional Point and Cross-Relaxation Effect in a HybridQuantum System[J]. PRX Quantum, 2021, 2: 020307
[214] GAO T, ESTRECHO E, BLIOKH K Y, et al. Observation of non-Hermitian degeneracies in achaotic exciton-polariton billiard[J]. Nature, 2015, 526(7574): 554-558
[215] HEISS D. Circling exceptional points[J]. Nature Phys, 2016, 12(9): 823-824
[216] HEISS W D, MüLLER M, ROTTER I. Collectivity, phase transitions, and exceptional pointsin open quantum systems[J]. Phys Rev E, 1998, 58(3): 2894-2901
[217] DOPPLER J, MAILYBAEV A A, BöHM J, et al. Dynamically encircling an exceptional pointfor asymmetric mode switching[J]. Nature, 2016, 537(7618): 76-79
[218] HASSAN A U, ZHEN B, SOLJAčIć M, et al. Dynamically Encircling Exceptional Points:Exact Evolution and Polarization State Conversion[J]. Phys Rev Lett, 2017, 118(9): 093002
[219] DEMBOWSKI C, GRÄF H D, HARNEY H L, et al. Experimental Observation of the TopologicalStructure of Exceptional Points[J]. Phys Rev Lett, 2001, 86: 787-790
[220] LI A, DONG J, WANG J, et al. Hamiltonian Hopping for Efficient Chiral Mode Switching inEncircling Exceptional Points[J]. Phys Rev Lett, 2020, 125: 187403
[221] MILBURN T J, DOPPLER J, HOLMES C A, et al. General description of quasiadiabaticdynamical phenomena near exceptional points[J]. Phys Rev A, 2015, 92: 052124
[222] YU F, ZHANG X L, TIAN Z N, et al. General Rules Governing the Dynamical Encircling ofan Arbitrary Number of Exceptional Points[J]. Phys Rev Lett, 2021, 127: 253901
[223] LIU Q, LI S, WANG B, et al. Efficient Mode Transfer on a Compact Silicon Chip by EncirclingMoving Exceptional Points[J]. Phys Rev Lett, 2020, 124: 153903
[224] KLAIMAN S, GüNTHER U, MOISEYEV N. Visualization of Branch Points in P T -SymmetricWaveguides[J]. Phys Rev Lett, 2008, 101(8): 080402
[225] ZHEN B, HSU C W, IGARASHI Y, et al. Spawning rings of exceptional points out of Diraccones[J]. Nature, 2015, 525(7569): 354-358
[226] CERJAN A, RAMAN A, FAN S. Exceptional Contours and Band Structure Design in Parity-Time Symmetric Photonic Crystals[J]. Phys Rev Lett, 2016, 116(20): 20390296参考文献
[227] LONGHI S. Spectral singularities and Bragg scattering in complex crystals[J]. Phys Rev A,2010, 81(2): 022102
[228] FENG L, WONG Z J, MA R M, et al. Single-mode laser by parity-time symmetry breaking[J].Science, 2014, 346(6212): 972-975
[229] PENG B, ÖZDEMIR K, ROTTER S, et al. Loss-induced suppression and revival of lasing[J]. Science, 2014, 346(6207): 328-332
[230] LIU W, WU Y, DUAN C K, et al. Dynamically Encircling an Exceptional Point in a RealQuantum System[J]. Phys Rev Lett, 2021, 126: 170506
[231] DING L, SHI K, ZHANG Q, et al. Experimental Determination of 𝒫𝒯-Symmetric ExceptionalPoints in a Single Trapped Ion[J]. Phys Rev Lett, 2021, 126: 083604
[232] NAGHILOO M, ABBASI M, JOGLEKAR Y N, et al. Quantum state tomography across theexceptional point in a single dissipative qubit[J]. Nat Phys, 2019, 15(12): 1232-1236
[233] ASHIDA Y, UEDA M. Full-Counting Many-Particle Dynamics: Nonlocal and Chiral Propagationof Correlations[J]. Phys Rev Lett, 2018, 120(18): 185301
[234] DEMBOWSKI C, DIETZ B, GRÄF H D, et al. Encircling an exceptional point[J]. Phys RevE, 2004, 69: 056216
[235] WONG Z J, XU Y L, KIM J, et al. Lasing and anti-lasing in a single cavity[J]. Nature Photon,2016, 10(12): 796-801
[236] HASSANI GANGARAJ S A, MONTICONE F. Topological Waveguiding near an ExceptionalPoint: Defect-Immune, Slow-Light, and Loss-Immune Propagation[J]. Phys Rev Lett, 2018,121(9): 093901
[237] CHEN W, KAYA ÖZDEMIR Ş, ZHAO G, et al. Exceptional points enhance sensing in anoptical microcavity[J]. Nature, 2017, 548(7666): 192-196
[238] HODAEI H, HASSAN A U, WITTEK S, et al. Enhanced sensitivity at higher-order exceptionalpoints[J]. Nature, 2017, 548(7666): 187-191
[239] ZHANG M, SWEENEY W, HSU C W, et al. Quantum Noise Theory of Exceptional PointAmplifying Sensors[J]. Phys Rev Lett, 2019, 123: 180501
[240] XU Y, WANG S T, DUAN L M. Weyl Exceptional Rings in a Three-Dimensional DissipativeCold Atomic Gas[J]. Phys Rev Lett, 2017, 118(4): 045701
[241] TANG W, DING K, MA G. Direct Measurement of Topological Properties of an ExceptionalParabola[J]. Phys Rev Lett, 2021, 127: 034301
[242] DING K, MA G, ZHANG Z Q, et al. Experimental Demonstration of an Anisotropic ExceptionalPoint[J]. Phys Rev Lett, 2018, 121: 085702
[243] VIDAL G, LATORRE J I, RICO E, et al. Entanglement in Quantum Critical Phenomena[J].Phys Rev Lett, 2003, 90(22): 227902
[244] CALABRESE P, CARDY J. Entanglement entropy and quantum field theory[J]. J Stat Mech:Theor Exp, 2004, 2004(06): P06002
[245] CALABRESE P, CARDY J. Entanglement entropy and conformal field theory[J]. Journal ofPhysics A: Mathematical and Theoretical, 2009, 42(50): 504005
[246] HERVIOU L, REGNAULT N, BARDARSON J H. Entanglement spectrum and symmetries innon-Hermitian fermionic non-interacting models[J]. SciPost Phys, 2019, 7(5): 069
[247] GUO Y B, YU Y C, HUANG R Z, et al. Entanglement entropy of non-Hermitian free fermions[J]. J Phys: Condens Matter, 2021, 33(47): 475502
[248] BIANCHINI D, CASTRO-ALVAREDO O, DOYON B, et al. Entanglement entropy of nonunitaryconformal field theory[J]. Journal of Physics A: Mathematical and Theoretical, 2014,48(4): 04FT01
[249] LOOTENS L, VANHOVE R, HAEGEMAN J, et al. Galois Conjugated Tensor Fusion Categoriesand Nonunitary Conformal Field Theory[J]. Phys Rev Lett, 2020, 124(12): 120601
[250] COUVREUR R, JACOBSEN J L, SALEUR H. Entanglement in Nonunitary Quantum CriticalSpin Chains[J]. Phys Rev Lett, 2017, 119(4): 040601
[251] XU W T, SCHUCH N. Characterization of topological phase transitions from a non-Abeliantopological state and its Galois conjugate through condensation and confinement order parameters[J]. Phys Rev B, 2021, 104(15): 155119
[252] BIANCHINI D, RAVANINI F. Entanglement entropy from corner transfer matrix in Forrester–Baxter non-unitary RSOS models[J]. Journal of Physics A: Mathematical and Theoretical,2016, 49(15): 154005
[253] CHANG P Y, YOU J S, WEN X, et al. Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory[J]. Phys Rev Research, 2020, 2(3):033069
[254] CHEN C Y, LAO B X, YU X Y, et al. Galois conjugates of string-net model[J]. Phys Rev D,2022, 105: 065009
[255] YARKONY D R. Diabolical conical intersections[J]. Rev Mod Phys, 1996, 68: 985-1013
[256] KAUSCH H G. Curiosities at c=-2[A]. 1995
[257] SCAFFIDI T, PARKER D E, VASSEUR R. Gapless Symmetry-Protected Topological Order[J]. Phys Rev X, 2017, 7: 041048
[258] VERRESEN R, THORNGREN R, JONES N G, et al. Gapless Topological Phases andSymmetry-Enriched Quantum Criticality[J]. Phys Rev X, 2021, 11: 041059
[259] YIN C, JIANG H, LI L, et al. Geometrical meaning of winding number and its characterizationof topological phases in one-dimensional chiral non-Hermitian systems[J]. Phys Rev A, 2018,97: 052115
[260] AROUCA R, LEE C H, MORAIS SMITH C. Unconventional scaling at non-Hermitian criticalpoints[J]. Phys Rev B, 2020, 102(24): 245145
[261] FRUCHART M, HANAI R, LITTLEWOOD P B, et al. Non-reciprocal phase transitions[J].Nature, 2021, 592(7854): 363-369
[262] BENINI F, IOSSA C, SERONE M. Conformality Loss, Walking, and 4D Complex ConformalField Theories at Weak Coupling[J]. Phys Rev Lett, 2020, 124(5): 051602
[263] GORBENKO V, RYCHKOV S, ZAN B. Walking, weak first-order transitions, and complexCFTs[J]. J High Energ Phys, 2018, 2018(10): 108
[264] KAPLAN D B, LEE J W, SON D T, et al. Conformality lost[J]. Phys Rev D, 2009, 80(12):125005
[265] MA H, HE Y C. Shadow of complex fixed point: Approximate conformality of Q > 4 Pottsmodel[J]. Phys Rev B, 2019, 99(19): 195130
[266] MICHISHITA Y, PETERS R. Equivalence of Effective Non-Hermitian Hamiltonians in theContext of Open Quantum Systems and Strongly Correlated Electron Systems[J]. Phys RevLett, 2020, 124(19): 196401
[267] CHEN W Q, WU Y S, XI W, et al. Fate of Quantum Anomalies for 1d lattice chiral fermionwith a simple non-Hermitian Hamiltonian[J]. Journal of High Energy Physics, 2023, 2023(5):90
[268] ZHANG C, LEVIN M. Exactly Solvable Model for a Deconfined Quantum Critical Point in1D[J]. Phys Rev Lett, 2023, 130(2): 026801
[269] HUSE D A, FISHER M E. Commensurate melting, domain walls, and dislocations[J]. PhysRev B, 1984, 29(1): 239-270
[270] NYCKEES S, MILA F. Commensurate-incommensurate transition in the chiral Ashkin-Tellermodel[J]. Phys Rev Res, 2022, 4: 013093
[271] WHITSITT S, SAMAJDAR R, SACHDEV S. Quantum field theory for the chiral clock transitionin one spatial dimension[J]. Phys Rev B, 2018, 98: 205118
[272] SENTHIL T, VISHWANATH A, BALENTS L, et al. Deconfined Quantum Critical Points[J].Science, 2004, 303(5663): 1490-1494
[273] JIANG S, MOTRUNICH O. Ising ferromagnet to valence bond solid transition in a onedimensionalspin chain: Analogies to deconfined quantum critical points[J]. Phys Rev B, 2019,99(7): 075103
[274] WANG C, NAHUM A, METLITSKI M A, et al. Deconfined Quantum Critical Points: Symmetriesand Dualities[J]. Phys Rev X, 2017, 7(3): 031051
[275] ROBERTS B, JIANG S, MOTRUNICH O I. Deconfined quantum critical point in one dimension[J]. Phys Rev B, 2019, 99(16): 165143
[276] HUANG R Z, LU D C, YOU Y Z, et al. Emergent symmetry and conserved current at a onedimensionalincarnation of deconfined quantum critical point[J]. Phys Rev B, 2019, 100(12):125137
[277] LIU W Y, HASIK J, GONG S S, et al. Emergence of Gapless Quantum Spin Liquid fromDeconfined Quantum Critical Point[J]. Phys Rev X, 2022, 12(3): 031039
[278] YI W Z, LIN H J, LIN Z X, et al. Temporal evolution of one-dimensional fermion liquid withparticle loss[A]. 2021
[279] TURNER A M, POLLMANN F, BERG E. Topological phases of one-dimensional fermions:An entanglement point of view[J]. Phys Rev B, 2011, 83: 075102
[280] TURNER A M, ZHANG Y, VISHWANATH A. Band Topology of Insulators via the EntanglementSpectrum[A]. 2010. arXiv: 0909.3119
[281] WYBO E, POLLMANN F, SONDHI S L, et al. Visualizing quasiparticles from quantum entanglementfor general one-dimensional phases[J]. Phys Rev B, 2021, 103(11): 11512099参考文献
[282] LEE C H. Exceptional Bound States and Negative Entanglement Entropy[J]. Phys Rev Lett,2022, 128: 010402
[283] GEHLEN G V. Critical and off-critical conformal analysis of the Ising quantum chain in animaginary field[J]. J Phys A: Math Gen, 1991, 24(22): 5371-5399
[284] GEHLEN G V. Non-hermitian tricriticality in the blume?capel model with imaginary field[M]//Perspectives on Solvable Models. WORLD SCIENTIFIC, 1995: 59-81
[285] KORFF C. PTsymmetry of the non-Hermitian XX spin-chain: non-local bulk interaction fromcomplex boundary fields[J]. J Phys A: Math Theor, 2008, 41(29): 295206
[286] CARLSTRÖM J, STÅLHAMMAR M, BUDICH J C, et al. Knotted non-Hermitian metals[J].Phys Rev B, 2019, 99: 161115
[287] ASHIDA Y, FURUKAWA S, UEDA M. Parity-time-symmetric quantum critical phenomena[J]. Nat Commun, 2017, 8(1): 15791
[288] LI L, LEE C H, GONG J. Topological Switch for Non-Hermitian Skin Effect in Cold-AtomSystems with Loss[J]. Phys Rev Lett, 2020, 124(25): 250402
[289] PAN L, CHEN X, CHEN Y, et al. Non-Hermitian linear response theory[J]. Nat Phys, 2020,16(7): 767-771
[290] ALTLAND A, FLEISCHHAUER M, DIEHL S. Symmetry Classes of Open Fermionic QuantumMatter[J]. Phys Rev X, 2021, 11(2): 021037
[291] LIEU S, MCGINLEY M, COOPER N R. Tenfold Way for Quadratic Lindbladians[J]. PhysRev Lett, 2020, 124(4): 040401
[292] YU L W, DENG D L. Unsupervised Learning of Non-Hermitian Topological Phases[J]. PhysRev Lett, 2021, 126(24): 240402
[293] GONG Z, ASHIDA Y, KAWABATA K, et al. Topological Phases of Non-Hermitian Systems[J]. Phys Rev X, 2018, 8(3): 031079
[294] HARARI G, BANDRES M A, LUMER Y, et al. Topological insulator laser: Theory[J]. Science,2018, 359(6381): eaar4003
[295] HATANO N, NELSON D R. Localization Transitions in Non-Hermitian Quantum Mechanics[J]. Phys Rev Lett, 1996, 77: 570-573
[296] WANG X R, GUO C X, KOU S P. Defective edge states and number-anomalous bulk-boundarycorrespondence in non-Hermitian topological systems[J]. Phys Rev B, 2020, 101: 121116
[297] HU B, ZHANG Z, ZHANG H, et al. Non-Hermitian topological whispering gallery[J]. Nature,2021, 597(7878): 655-659
[298] WANG K, DUTT A, WOJCIK C C, et al. Topological complex-energy braiding of non-Hermitian bands[J]. Nature, 2021, 598(7879): 59-64
[299] BANDRES M A, WITTEK S, HARARI G, et al. Topological insulator laser: Experiments[J].Science, 2018, 359(6381): eaar4005
[300] XIAO L, DENG T, WANG K, et al. Non-Hermitian bulk–boundary correspondence in quantumdynamics[J]. Nat Phys, 2020, 16(7): 761-766100参考文献
[301] ZHAO H, QIAO X, WU T, et al. Non-Hermitian topological light steering[J]. Science, 2019,365(6458): 1163-1166
[302] ZHANG W, OUYANG X, HUANG X, et al. Observation of Non-Hermitian Topology withNonunitary Dynamics of Solid-State Spins[J]. Phys Rev Lett, 2021, 127(9): 090501
[303] CHEN W, ABBASI M, JOGLEKAR Y N, et al. Quantum Jumps in the Non-Hermitian Dynamicsof a Superconducting Qubit[J]. Phys Rev Lett, 2021, 127(14): 140504
[304] OZAWA T, PRICE H M, AMO A, et al. Topological photonics[J]. Rev Mod Phys, 2019, 91(1):015006
[305] LI L, LEE C H, MU S, et al. Critical non-Hermitian skin effect[J]. Nat Commun, 2020, 11(1):5491
[306] SUN X Q, ZHU P, HUGHES T L. Geometric Response and Disclination-Induced Skin Effectsin Non-Hermitian Systems[J]. Phys Rev Lett, 2021, 127(6): 066401
[307] LEE C H, LI L, GONG J. Hybrid Higher-Order Skin-Topological Modes in NonreciprocalSystems[J]. Phys Rev Lett, 2019, 123(1): 016805
[308] MARTINEZ ALVAREZ V M, BARRIOS VARGAS J E, FOA TORRES L E F. Non-Hermitianrobust edge states in one dimension: Anomalous localization and eigenspace condensation atexceptional points[J]. Phys Rev B, 2018, 97(12): 121401
[309] OKUMA N, KAWABATA K, SHIOZAKI K, et al. Topological Origin of Non-Hermitian SkinEffects[J]. Phys Rev Lett, 2020, 124: 086801
[310] YIN S, HUANG G Y, LO C Y, et al. Kibble-Zurek Scaling in the Yang-Lee Edge Singularity[J]. Phys Rev Lett, 2017, 118(6): 065701
[311] ZEUNER J M, RECHTSMAN M C, PLOTNIK Y, et al. Observation of a Topological Transitionin the Bulk of a Non-Hermitian System[J]. Phys Rev Lett, 2015, 115(4): 040402
[312] GE L, STONE A D. Parity-Time Symmetry Breaking beyond One Dimension: The Role ofDegeneracy[J]. Phys Rev X, 2014, 4(3): 031011
[313] ASHIDA Y, FURUKAWA S, UEDA M. Quantum critical behavior influenced by measurementbackaction in ultracold gases[J]. Phys Rev A, 2016, 94(5): 053615
[314] LONGHI S. Topological Phase Transition in non-Hermitian Quasicrystals[J]. Phys Rev Lett,2019, 122(23): 237601
[315] OKUMA N, SATO M. Topological Phase Transition Driven by Infinitesimal Instability: MajoranaFermions in Non-Hermitian Spintronics[J]. Phys Rev Lett, 2019, 123(9): 097701
[316] MIRI M A, ALù A. Exceptional points in optics and photonics[J]. Science, 2019, 363(6422):eaar7709
[317] DENNER M M, SKURATIVSKA A, SCHINDLER F, et al. Exceptional topological insulators[J]. Nat Commun, 2021, 12(1): 5681
[318] MOLINA R A, GONZáLEZ J. Surface and 3D Quantum Hall Effects from Engineering ofExceptional Points in Nodal-Line Semimetals[J]. Phys Rev Lett, 2018, 120(14): 146601
[319] YOKOMIZO K, MURAKAMI S. Non-Bloch Band Theory of Non-Hermitian Systems[J]. PhysRev Lett, 2019, 123(6): 066404
[320] MCDONALD A, PEREG-BARNEA T, CLERK A. Phase-Dependent Chiral Transport andEffective Non-Hermitian Dynamics in a Bosonic Kitaev-Majorana Chain[J]. Phys Rev X, 2018,8(4): 041031
[321] RUDNER M S, LEVITOV L S. Topological Transition in a Non-Hermitian Quantum Walk[J].Phys Rev Lett, 2009, 102(6): 065703
[322] LEE J Y, AHN J, ZHOU H, et al. Topological Correspondence between Hermitian and Non-Hermitian Systems: Anomalous Dynamics[J]. Phys Rev Lett, 2019, 123(20): 206404
[323] SHEN H, ZHEN B, FU L. Topological Band Theory for Non-Hermitian Hamiltonians[J]. PhysRev Lett, 2018, 120(14): 146402
[324] GORINI V, KOSSAKOWSKI A, SUDARSHAN E C G. Completely positive dynamical semigroupsof N‐level systems[J]. J Math Phys, 1976, 17(5): 821-825
[325] AMICO L, FAZIO R, OSTERLOH A, et al. Entanglement in many-body systems[J]. Rev ModPhys, 2008, 80: 517-576
[326] BRANDãO F G S L, HORODECKI M. An area law for entanglement from exponential decayof correlations[J]. Nature Phys, 2013, 9(11): 721-726
[327] DÓRA B, HAQUE M, ZARÁND G. Crossover from Adiabatic to Sudden Interaction Quenchin a Luttinger Liquid[J]. Phys Rev Lett, 2011, 106: 156406
[328] CAZALILLA M A. Effect of Suddenly Turning on Interactions in the Luttinger Model[J]. PhysRev Lett, 2006, 97(15): 156403
[329] FAGOTTI M, CALABRESE P. Evolution of entanglement entropy following a quantumquench: Analytic results for the X Y chain in a transverse magnetic field[J]. Phys Rev A,2008, 78(1): 010306
[330] CALABRESE P, CARDY J. Time Dependence of Correlation Functions Following a QuantumQuench[J]. Phys Rev Lett, 2006, 96(13): 136801
[331] BARDARSON J H, POLLMANN F, MOORE J E. Unbounded Growth of Entanglement inModels of Many-Body Localization[J]. Phys Rev Lett, 2012, 109(1): 017202
[332] SERBYN M, PAPIć Z, ABANIN D A. Universal Slow Growth of Entanglement in InteractingStrongly Disordered Systems[J]. Phys Rev Lett, 2013, 110(26): 260601
[333] MOCA C U U U U P M C, DÓRA B. Universal conductance of a 𝒫𝒯-symmetric Luttingerliquid after a quantum quench[J]. Phys Rev B, 2021, 104: 125124
[334] DÓRA B, MOCA C U U U U P M C. Quantum Quench in 𝒫𝒯-Symmetric Luttinger Liquid[J].Phys Rev Lett, 2020, 124: 136802
[335] BÁCSI A, MOCA C U U U U P M C, DÓRA B. Dissipation-Induced Luttinger Liquid Correlationsin a One-Dimensional Fermi Gas[J]. Phys Rev Lett, 2020, 124: 136401
[336] BÁCSI A, DÓRA B. Dynamics of entanglement after exceptional quantum quench[J]. PhysRev B, 2021, 103: 085137
[337] CAROLLO F, ALBA V. Dissipative quasiparticle picture for quadratic Markovian open quantumsystems[J]. Phys Rev B, 2022, 105: 144305
[338] BÁCSI A, MOCA C U U U U P M C, ZARÁND G, et al. Vaporization Dynamics of a DissipativeQuantum Liquid[J]. Phys Rev Lett, 2020, 125: 266803102参考文献
[339] ALBERTON O, BUCHHOLD M, DIEHL S. Entanglement Transition in a Monitored Free-Fermion Chain: From Extended Criticality to Area Law[J]. Phys Rev Lett, 2021, 126(17):170602
[340] PTASZYńSKI K, ESPOSITO M. Entropy Production in Open Systems: The Predominant Roleof Intraenvironment Correlations[J]. Phys Rev Lett, 2019, 123(20): 200603
[341] OKUMA N, SATO M. Quantum anomaly, non-Hermitian skin effects, and entanglement entropyin open systems[J]. Phys Rev B, 2021, 103(8): 085428
[342] ALBA V, CAROLLO F. Spreading of correlations in Markovian open quantum systems[J].Phys Rev B, 2021, 103(2): L020302
[343] ASHIDA Y, SAITO K, UEDA M. Thermalization and Heating Dynamics in Open GenericMany-Body Systems[J]. Phys Rev Lett, 2018, 121(17): 170402
[344] LI Y, CHEN X, FISHER M P A. Quantum Zeno effect and the many-body entanglement transition[J]. Phys Rev B, 2018, 98: 205136
[345] BENSA J, ŽNIDARIč M. Fastest Local Entanglement Scrambler, Multistage Thermalization,and a Non-Hermitian Phantom[J]. Phys Rev X, 2021, 11(3): 031019
[346] NAHUM A, ROY S, SKINNER B, et al. Measurement and Entanglement Phase Transitionsin All-To-All Quantum Circuits, on Quantum Trees, and in Landau-Ginsburg Theory[J]. PRXQuantum, 2021, 2(1): 010352
[347] SKINNER B, RUHMAN J, NAHUM A. Measurement-Induced Phase Transitions in the Dynamicsof Entanglement[J]. Phys Rev X, 2019, 9(3): 031009
[348] APOLLARO T J G, PALMA G M, MARINO J. Entanglement entropy in a periodically drivenquantum Ising ring[J]. Phys Rev B, 2016, 94(13): 134304
[349] MASKARA N, MICHAILIDIS A, HO W, et al. Discrete Time-Crystalline Order Enabled byQuantum Many-Body Scars: Entanglement Steering via Periodic Driving[J]. Phys Rev Lett,2021, 127(9): 090602
[350] BERDANIER W, KOLODRUBETZ M, VASSEUR R, et al. Floquet Dynamics of Boundary-Driven Systems at Criticality[J]. Phys Rev Lett, 2017, 118(26): 260602
[351] PONTE P, PAPIć Z, HUVENEERS F, et al. Many-Body Localization in Periodically DrivenSystems[J]. Phys Rev Lett, 2015, 114(14): 140401
[352] ALBA V, CAROLLO F. Noninteracting fermionic systems with localized losses: Exact resultsin the hydrodynamic limit[J]. Phys Rev B, 2022, 105: 054303
[353] CALABRESE P. Entanglement and thermodynamics in non-equilibrium isolated quantum systems[J]. Physica A: Statistical Mechanics and its Applications, 2018, 504: 31-44
[354] PROSEN T. Third quantization: a general method to solve master equations for quadratic openFermi systems[J]. New Journal of Physics, 2008, 10(4): 043026
[355] CAI Z, BARTHEL T. Algebraic versus Exponential Decoherence in Dissipative Many-ParticleSystems[J]. Phys Rev Lett, 2013, 111(15): 150403
[356] HILL S, WOOTTERS W K. Entanglement of a Pair of Quantum Bits[J]. Phys Rev Lett, 1997,78(26): 5022-5025
[357] WOOTTERS W K. Entanglement of Formation of an Arbitrary State of Two Qubits[J]. PhysRev Lett, 1998, 80: 2245-2248
[358] CHEN L M, CHEN S A, YE P. Entanglement, non-hermiticity, and duality[J]. SciPost Physics,2021, 11(1): 003
[359] MAITY S, BANDYOPADHYAY S, BHATTACHARJEE S, et al. Growth of mutual informationin a quenched one-dimensional open quantum many-body system[J]. Phys Rev B, 2020, 101(18): 180301
[360] SHARMA A, RABANI E. Landauer current and mutual information[J]. Phys Rev B, 2015, 91(8): 085121
[361] BRODY D C. Biorthogonal quantum mechanics[J]. Journal of Physics A: Mathematical andTheoretical, 2013, 47(3): 035305
[362] HOLZHEY C, LARSEN F, WILCZEK F. Geometric and renormalized entropy in conformalfield theory[J]. Nuclear Physics B, 1994, 424(3): 443-467
[363] CALABRESE P, CARDY J. Entanglement entropy and conformal field theory[J]. Journal ofPhysics A: Mathematical and Theoretical, 2009, 42(50): 504005
[364] ZHOU Y, ZHANG Z, YIN Z, et al. Rapid and unconditional parametric reset protocol fortunable superconducting qubits[J]. Nature Communications, 2021, 12(1): 5924
[365] ABANIN D A, DEMLER E. Measuring Entanglement Entropy of a Generic Many-Body Systemwith a Quantum Switch[J]. Phys Rev Lett, 2012, 109(2): 020504
[366] DALEY A J, PICHLER H, SCHACHENMAYER J, et al. Measuring Entanglement Growth inQuench Dynamics of Bosons in an Optical Lattice[J]. Phys Rev Lett, 2012, 109(2): 020505
[367] CHOO K, VON KEYSERLINGK C W, REGNAULT N, et al. Measurement of the EntanglementSpectrum of a Symmetry-Protected Topological State Using the IBM Quantum Computer[J]. Phys Rev Lett, 2018, 121(8): 086808
[368] DALMONTE M, VERMERSCH B, ZOLLER P. Quantum simulation and spectroscopy ofentanglement Hamiltonians[J]. Nature Physics, 2018, 14(8): 827-831
[369] VARMA A V, DAS S. Simulating many-body non-Hermitian PT -symmetric spin dynamics[J].Phys Rev B, 2021, 104(3): 035153
修改评论