中文版 | English
题名

异戊烯基转移酶NphB催化合成大麻萜酚机制的理论计算研究

其他题名
THEORETICAL AND COMPUTATIONAL STUDY ON THE MECHANISM OF PRENYLTRANSFERASE NPHB-CATALYZED SYNTHESIS OF CANNABIGEROL
姓名
姓名拼音
TANG Wenyue
学号
12032863
学位类型
硕士
学位专业
070304 物理化学
学科门类/专业学位类别
07 理学
导师
余沛源
导师单位
化学系
论文答辩日期
2023-05-30
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
大麻因其精神活性与成瘾性在世界各国都受到了非常严格的管制。近年来越来越多的研究发现,大麻中的大麻素具有非常广泛的药用价值。因此,相关大麻素的需求日益增长,仅从植物中提取已经满足不了需求。通过基因工程与生物合成途径可以得到高纯度的大麻素,相关领域受到了广泛的关注并在近期取得了一系列重要研究进展。由于大麻植物中的大麻萜酚酸合成酶是一种膜蛋白,较难在微生物中表达,可溶性的芳香异戊烯基转移酶NphB则能够很好代替大麻萜酚酸合成酶催化香叶基化反应。NphB能兼容多种芳香底物,有望成为多种萜类物质的合成平台,但其较低的反应速率以及较差的区域选择性和化学选择性阻碍了NphB的广泛应用。因此,需要对NphB进行改造,力求实现改造后的 NphB只特异性结合一种芳香底物,高选择性地在一个位点高效完成异戊烯基化反应。在本研究中,我们选择橄榄醇作为芳香底物,选择野生型NphB以及能高效、高选择性催化橄榄醇合成大麻萜酚的NphB突变体V49Y/Q161R/S214H/Y288V/H290C作为研究对象,对酶与香叶基焦磷酸和橄榄醇组成的三元复合物进行理论计算研究。我们发现香叶基焦磷酸和镁离子与酶的结合相对牢固,而芳香底物橄榄醇在复合物中的不同构象是造成香叶基化反应区域选择性差异的主要原因。通过对三元复合物分子动力学模拟产生的轨迹进行氢键作用、疏水作用以及结合自由能等方面的深入分析并参考代表帧的三维立体结构,我们揭示了野生型NphB及其突变体中氨基酸残基对底物橄榄醇构象转变过程的重要作用。本研究的结果部分解释了NphB突变体能够高效、高选择性催化橄榄醇香叶基化生成大麻萜酚的原因。同时,基于得到的研究结果,我们还尝试提出了几个有可能促进NphB催化合成大麻萜酚的突变建议。
其他摘要
Cannabis has been strictly regulated in many countries due to its psychoactive and  addictive nature. Recent studies have found that the cannabinoids in cannabis have a wide range of medicinal value. As a result, the demand for related cannabinoids is increasing, and extracting cannabinoids from plants can no longer meet its demand. Genetic engineering and biosynthesis provide an alternative approach to obtain high-purity cannabinoids. This approach has received wide attention and many advances have been made in related research fields. Since cannabigerolic acid synthase CBGAS is a membrane-bound protein and difffficult to be expressed in microorganisms, the soluble aromatic prenyltransferase NphB is a good alternative. NphB is compatible with a variety of aromatic substrates and is expected to serve as a platform for the synthesis of a variety of terpenoids. However, its low reaction rate and poor regio- and chemo-selectivity limit its applications, which highlights the importance of modifying NphB to specifically recognize only one aromatic substrate and catalyze its prenylation selectively and efffficiently at a single site. In this study, olivetol was selected as the aromatic substrate, wild type NphB and its mutant NphB
V49Y/Q161R/S214H/Y288V/H290C, which can efffficiently and selectively catalyze the synthesis of cannabigerol (CBG) from olivetol, were selected as the model system. The trajectories of molecular dynamics simulation of the ternary complex of the enzyme with geranyl pyrophosphate and olivetol were studied for residue fluctuations, conformational changes of substrate, hydrogen bonds, hydrophobicity and binding free energies. It was found that geranyl pyrophosphate and magnesium ion were relatively firmly bound to the enzyme, and the non-polar interaction between olivetol and the enzyme was dominant. The reason why the mutant can catalyze the synthesis of CBG from olivetol with high efffficiency and selectivity was explained, and several beneficial mutations were also proposed.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] YANG Y X, WANG J X, WANG Q, et al. New chromane and chromene meroterpenoids from flowers of Rhododendron rubiginosum Franch. var. rubiginosum[J]. Fitoterapia, 2018, 127: 396-401.
[2] HAPPYANA N, AGNOLET S, MUNTENDAM R, et al. Analysis of cannabinoids in lasermicrodissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR[J]. Phytochemistry, 2013, 87: 51-59.
[3] BONINI S A, PREMOLI M, TAMBARO S, et al. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history[J]. Journal of Ethnopharmacology, 2018, 227: 300-315.
[4] LI H L. An archaeological and historical account of cannabis in China[J]. Economic Botany, 1974, 28(4): 437-448.
[5] TOUW M. The religious and medicinal uses of Cannabis in China, India and Tibet[J]. Journal of Psychoactive Drugs, 1981, 13(1): 23-34.
[6] PILUZZA G, DELOGU G, CABRAS A, et al. Differentiation between fiber and drug types of hemp (Cannabis sativa L.) from a collection of wild and domesticated accessions[J]. Genetic Resources and Crop Evolution, 2013, 60: 2331-2342.
[7] GROTENHERMEN F. The toxicology of cannabis and cannabis prohibition[J]. Chemistry & Biodiversity, 2007, 4(8): 1744-1769.
[8] GAONI Y, MECHOULAM R. Isolation, structure, and partial synthesis of an active constituent of hashish[J]. Journal of the American Chemical Society, 1964, 86(8): 1646-1647.
[9] GERARD C, MOLLEREAU C, VASSART G, et al. Nucleotide sequence of a human cannabinoid receptor cDNA.[J]. Nucleic Acids Research, 1990, 18(23): 7142.
[10] MUNRO S, THOMAS K L, ABU-SHAAR M. Molecular characterization of a peripheral receptor for cannabinoids[J]. Nature, 1993, 365(6441): 61-65.
[11] ZOU S, KUMAR U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system[J]. International Journal of Molecular Sciences, 2018, 19(3): 833-855.
[12] DEVANE W A, HANUŠ L, BREUER A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor[J]. Science, 1992, 258(5090): 1946-1949.
[13] DI MARZO V, FONTANA A, CADAS H, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons[J]. Nature, 1994, 372(6507): 686-691.
[14] PERTWEE R G. Cannabinoid pharmacology: the first 66 years[J]. British Journal of Pharmacology, 2006, 147(S1): S163-S171.
[15] EDERY H, GRUNFELD Y, BEN-ZVI Z, et al. Structural requirements for cannabinoid activity [J]. Annals of the New York Academy of Sciences, 1971, 191(1): 40-53.
[16] DUGGAN P J. The chemistry of cannabis and cannabinoids[J]. Australian Journal of Chemistry, 2021, 74(6): 369-387.
[17] ROMERO P, PERIS A, VERGARA K, et al. Comprehending and improving cannabis specialized metabolism in the systems biology era[J]. Plant Science, 2020, 298: 110571-110589.
[18] GÜLCK T, MØLLER B L. Phytocannabinoids: origins and biosynthesis[J]. Trends in Plant Science, 2020, 25(10): 985-1004.
[19] HANUŠ L O, MEYER S M, MUÑOZ E, et al. Phytocannabinoids: a unified critical inventory[J]. Natural Product Reports, 2016, 33(12): 1357-1392.
[20] ELSOHLY M A, SLADE D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids[J]. Life Sciences, 2005, 78(5): 539-548.
[21] LINCIANO P, CITTI C, LUONGO L, et al. Isolation of a high-affinity cannabinoid for the human CB1 receptor from a medicinal Cannabis sativa variety: Δ9-tetrahydrocannabutol, the butyl homologue of Δ9-tetrahydrocannabinol[J]. Journal of Natural Products, 2019, 83(1): 88-98.
[22] STOUT J M, BOUBAKIR Z, AMBROSE S J, et al. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes[J]. The Plant Journal, 2012, 71(3): 353-365.
[23] GAGNE S J, STOUT J M, LIU E, et al. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides[J]. Proceedings of the National Academy of Sciences, 2012, 109(31): 12811-12816.
[24] FELLERMEIER M, EISENREICH W, BACHER A, et al. Biosynthesis of cannabinoids: Incorporation experiments with 13C-labeled glucoses[J]. European Journal of Biochemistry, 2001, 268(6): 1596-1604.
[25] FELLERMEIER M, ZENK M H. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol[J]. FEBS Letters, 1998, 427(2): 283-285.
[26] LIM K J, LIM Y P, HARTONO Y D, et al. Biosynthesis of nature-inspired unnatural cannabinoids[J]. Molecules, 2021, 26(10): 2914-2943.
[27] TAURA F, SIRIKANTARAMAS S, SHOYAMA Y, et al. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa[J]. FEBS Letters, 2007, 581 (16): 2929-2934.
[28] MORENO-SANZ G. Can you pass the acid test? critical review and novel therapeutic perspectives of Δ9-tetrahydrocannabinolic acid A[J]. Cannabis and Cannabinoid Research, 2016, 1(1): 124-130.
[29] THAKUR G A, DUCLOS JR R I, MAKRIYANNIS A. Natural cannabinoids: templates for drug discovery[J]. Life Sciences, 2005, 78(5): 454-466.
[30] PERTWEE R. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin[J]. British Journal of Pharmacology, 2008, 153(2): 199-215.
[31] FEINBERG I, JONES R, WALKER J, et al. Effeets of marijuana extract and tetrahydrocannabinol on electroencephalographic sleep patterns[J]. Clinical Pharmacology & Therapeutics, 1976, 19(6): 782-794.
[32] HIPPALGAONKAR K, GUL W, ELSOHLY M A, et al. Enhanced solubility, stability, and transcorneal permeability of delta-8-tetrahydrocannabinol in the presence of cyclodextrins[J]. Aaps Pharmscitech, 2011, 12: 723-731.
[33] CASCIO M G, ZAMBERLETTI E, MARINI P, et al. The phytocannabinoid, Δ9-tetrahydrocannabivarin, can act through 5-HT1A receptors to produce antipsychotic effects[J]. British Journal of Pharmacology, 2015, 172(5): 1305-1318.
[34] JADOON K A, RATCLIFFE S H, BARRETT D A, et al. Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study[J]. Diabetes Care, 2016, 39(10): 1777-1786.
[35] NADAL X, DEL RÍO C, CASANO S, et al. Tetrahydrocannabinolic acid is a potent PPAR𝛾 agonist with neuroprotective activity[J]. British Journal of Pharmacology, 2017, 174(23): 4263-4276.
[36] IBEAS BIH C, CHEN T, NUNN A V, et al. Molecular targets of cannabidiol in neurological disorders[J]. Neurotherapeutics, 2015, 12: 699-730.
[37] BUCHTOVA T, LUKAC D, SKROTT Z, et al. Drug–drug interactions of cannabidiol with standard-of-care chemotherapeutics[J]. International Journal of Molecular Sciences, 2023, 24(3): 2885-2910.
[38] RUSSO E B, MARCU J. Cannabis pharmacology: the usual suspects and a few promising leads[J]. Advances in Pharmacology, 2017, 80: 67-134.
[39] MALINOWSKA B, BARANOWSKA-KUCZKO M, KICMAN A, et al. Opportunities, challenges and pitfalls of using cannabidiol as an adjuvant drug in COVID-19[J]. International Journal of Molecular Sciences, 2021, 22(4): 1986-2027.
[40] NGUYEN L C, YANG D, NICOLAESCU V, et al. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses[J]. Science Advances, 2022, 8(8): 6110-6127.
[41] ROCK E M, LIMEBEER C L, PARKER L A. Effect of cannabidiolic acid and Δ9-tetrahydrocannabinol on carrageenan-induced hyperalgesia and edema in a rodent model of inflammatory pain[J]. Psychopharmacology, 2018, 235: 3259-3271.
[42] CLUNY N L, NAYLOR R J, WHITTLE B A, et al. The effects of cannabidiolic acid and cannabidiol on contractility of the gastrointestinal tract of Suncus murinus[J]. Archives of Pharmacal Research, 2011, 34: 1509-1517.
[43] PERTWEE R G, ROCK E M, GUENTHER K, et al. Cannabidiolic acid methyl ester, a stable synthetic analogue of cannabidiolic acid, can produce 5-HT1A receptor-mediated suppression of nausea and anxiety in rats[J]. British Journal of Pharmacology, 2018, 175(1): 100-112.
[44] POLLASTRO F, TAGLIALATELA-SCAFATI O, ALLARA M, et al. Bioactive prenylogous cannabinoid from fiber hemp (Cannabis sativa)[J]. Journal of Natural Products, 2011, 74(9): 2019-2022.
[45] BRIERLEY D I, SAMUELS J, DUNCAN M, et al. A cannabigerol-rich Cannabis sativa extract, devoid offf 9-tetrahydrocannabinol, elicits hyperphagia in rats[J]. Behavioural Pharmacology, 2017, 28(4): 280-284.
[46] CASCIO M G, GAUSON L A, STEVENSON L A, et al. Evidence that the plant cannabinoid cannabigerol is a highly potent 𝛼2-adrenoceptor agonist and moderately potent 5-HT1A receptor antagonist[J]. British Journal of Pharmacology, 2010, 159(1): 129-141.
[47] PAGANO E, MONTANARO V, DI GIROLAMO A, et al. Effect of non-psychotropic plantderived cannabinoids on bladder contractility: focus on cannabigerol[J]. Natural Product Communications, 2015, 10(6): 1009-1012.
[48] SMERIGLIO A, GIOFRÈ S V, GALATI E M, et al. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol[J]. Fitoterapia, 2018, 127: 101-108.
[49] DE PETROCELLIS L, VELLANI V, SCHIANO-MORIELLO A, et al. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8[J]. Journal of Pharmacology and Experimental Therapeutics, 2008, 325(3): 1007-1015.
[50] ROMANO B, BORRELLI F, FASOLINO I, et al. The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis[J]. British Journal of Pharmacology, 2013, 169(1): 213-229.
[51] SHINJYO N, DI MARZO V. The effect of cannabichromene on adult neural stem/progenitor cells[J]. Neurochemistry International, 2013, 63(5): 432-437.
[52] RHEE M H, VOGEL Z, BARG J, et al. Cannabinol derivatives: binding to cannabinoid receptors and inhibition of adenylylcyclase[J]. Journal of Medicinal Chemistry, 1997, 40(20): 3228-3233.
[53] WONG H, CAIRNS B E. Cannabidiol, cannabinol and their combinations act as peripheral analgesics in a rat model of myofascial pain[J]. Archives of Oral Biology, 2019, 104: 33-39.
[54] SALAMI S A, MARTINELLI F, GIOVINO A, et al. It is our turn to get cannabis high: Put cannabinoids in food and health baskets[J]. Molecules, 2020, 25(18): 4036-4059.
[55] BERLACH D M, SHIR Y, WARE M A. Experience with the synthetic cannabinoid nabilone in chronic noncancer pain[J]. Pain Medicine, 2006, 7(1): 25-29.
[56] ABU-SAWWA R, STEHLING C. Epidiolex (cannabidiol) primer: frequently asked questions for patients and caregivers[J]. The Journal of Pediatric Pharmacology and Therapeutics, 2020, 25(1): 75-77.
[57] AIZPURUA-OLAIZOLA O, SOYDANER U, ÖZTÜRK E, et al. Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes[J]. Journal of Natural Products, 2016, 79(2): 324-331.
[58] MARTINEZ A S, LANARIDI O, STAGEL K, et al. Extraction techniques for bioactive compounds of cannabis[J]. Natural Product Reports, 2023, 40: 676-717.
[59] WILKINSON S M, PRICE J, KASSIOU M. Improved accessibility to the desoxy analogues of Δ9-tetrahydrocannabinol and cannabidiol[J]. Tetrahedron Letters, 2013, 54(1): 52-54.
[60] MECHOULAM R, BEN-ZVI Z. Carboxylation of resorcinols with methylmagnesium carbonate. Synthesis of cannabinoid acids[J]. Journal of the Chemical Society D: Chemical Communications, 1969, 7: 343-344.
[61] NGUYEN G N, JORDAN E N, KAYSER O. Synthetic strategies for rare cannabinoids derived from Cannabis sativa[J]. Journal of Natural Products, 2022, 85(6): 1555-1568.
[62] BLATT-JANMAAT K, QU Y. The biochemistry of phytocannabinoids and metabolic engineering of their production in heterologous systems[J]. International Journal of Molecular Sciences, 2021, 22(5): 2454-2472.
[63] KUZUYAMA T, NOEL J P, RICHARD S B. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products[J]. Nature, 2005, 435(7044): 983-987.
[64] BONITZ T, ALVA V, SALEH O, et al. Evolutionary relationships of microbial aromatic prenyltransferases[J]. PloS One, 2011, 6(11): 27336-27343.
[65] JOHNSON B P, SCULL E M, DIMAS D A, et al. Acceptor substrate determines donor specificity of an aromatic prenyltransferase: expanding the biocatalytic potential of NphB[J]. Applied Microbiology and Biotechnology, 2020, 104: 4383-4395.
[66] TSUTSUMI H, URANO N, KATSUYAMA Y, et al. Enzymatic synthesis of non-natural flavonoids by combining geranyl pyrophosphate C6-methyltransferase and aromatic prenyltransferase[J]. Bioscience, Biotechnology, and Biochemistry, 2022, 86(9): 1270-1275.
[67] BOUVIER F, RAHIER A, CAMARA B. Biogenesis, molecular regulation and function of plant isoprenoids[J]. Progress in Lipid Research, 2005, 44(6): 357-429.
[68] BRANDT W, BRÄUER L, GÜNNEWICH N, et al. Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes[J]. Phytochemistry, 2009, 70(15): 1758-1775.
[69] WANG K C, OHNUMA S I. Isoprenyl diphosphate synthases[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2000, 1529(1): 33-48.
[70] WESSJOHANN L A, BRANDT W, THIEMANN T. Biosynthesis and metabolism of cyclopropane rings in natural compounds[J]. Chemical Reviews, 2003, 103(4): 1625-1648.
[71] BOTTA B, DELLE MONACHE G, MENENDEZ P, et al. Novel prenyltransferase enzymes as a tool for flavonoid prenylation[J]. Trends in Pharmacological Sciences, 2005, 26(12): 606-608.
[72] PALSULEDESAI C C, DISTEFANO M D. Protein prenylation: enzymes, therapeutics, and biotechnology applications[J]. ACS Chemical Biology, 2015, 10(1): 51-62.
[73] CHANG H Y, CHENG T H, WANG A H J. Structure, catalysis, and inhibition mechanism of prenyltransferase[J]. IUBMB Life, 2021, 73(1): 40-63.
[74] ZIRPEL B, STEHLE F, KAYSER O. Production of Δ9-tetrahydrocannabinolic acidfrom cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis sativa L.[J]. Biotechnology Letters, 2015, 37: 1869-1875.
[75] ZIRPEL B, DEGENHARDT F, MARTIN C, et al. Engineering yeasts as platform organisms for cannabinoid biosynthesis[J]. Journal of Biotechnology, 2017, 259: 204-212.
[76] LUO X, REITER M A, D’ESPAUX L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567(7746): 123-126.
[77] TAN Z, CLOMBURG J M, GONZALEZ R. Synthetic pathway for the production of olivetolic acid in Escherichia coli[J]. ACS Synthetic Biology, 2018, 7(8): 1886-1896.
[78] QIAN S, CLOMBURG J M, GONZALEZ R. Engineering Escherichia coli as a platform for the in vivo synthesis of prenylated aromatics[J]. Biotechnology and Bioengineering, 2019, 116(5): 1116-1127.
[79] VALLIERE M A, KORMAN T P, WOODALL N B, et al. A cell-free platform for the prenylation of natural products and application to cannabinoid production[J]. Nature Communications, 2019, 10(1): 565-573.
[80] 彭思琪. 大麻二酚酸合成毕赤酵母菌株的构建及优化[D]. 广东: 华南理工大学发酵工程学科硕士学位论文, 2021: 15-88.
[81] CUI G, LI X, MERZ K M. Understanding the substrate selectivity and the product regioselectivity of Orf2-catalyzed aromatic prenylations[J]. Biochemistry, 2007, 46(5): 1303-1311.
[82] KUMANO T, RICHARD S B, NOEL J P, et al. Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities[J]. Bioorganic & Medicinal Chemistry, 2008, 16(17): 8117-8126.
[83] YANG Y, MIAO Y, WANG B, et al. Catalytic mechanism of aromatic prenylation by NphB[J]. Biochemistry, 2012, 51(12): 2606-2618.
[84] FISCHER E. Einfluss der configuration auf die wirkung der enzyme[J]. Berichte der Deutschen Chemischen Gesellschaft, 1894, 27(3): 2985-2993.
[85] KOSHLAND JR D E. The key–lock theory and the induced fit theory[J]. Angewandte Chemie International Edition in English, 1995, 33(23): 2375-2378.
[86] MA B, KUMAR S, TSAI C J, et al. Folding funnels and binding mechanisms[J]. Protein Engineering, 1999, 12(9): 713-720.
[87] GOODSELL D S, MORRIS G M, OLSON A J. Automated docking of flexible ligands: applications of AutoDock[J]. Journal of Molecular Recognition, 1996, 9(1): 1-5.
[88] OSHIRO C M, KUNTZ I D, DIXON J S. Flexible ligand docking using a genetic algorithm[J]. Journal of Computer-Aided Molecular Design, 1995, 9: 113-130.
[89] GOODSELL D S, OLSON A J. Automated docking of substrates to proteins by simulated annealing[J]. Proteins: Structure, Function, and Bioinformatics, 1990, 8(3): 195-202.
[90] HOU T, WANG J, CHEN L, et al. Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search[J]. Protein Engineering, 1999, 12(8): 639-648.
[91] VERLET L. Computer” experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Physical Review, 1967, 159(1): 98-103.
[92] BROOKS B R, BRUCCOLERI R E, OLAFSON B D, et al. CHARMM: a program formacromolecular energy, minimization, and dynamics calculations[J]. Journal of Computational Chemistry, 1983, 4(2): 187-217.
[93] CORNELL W D, CIEPLAK P, BAYLY C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of the American Chemical Society, 1995, 117(19): 5179-5197.
[94] OTT K H, MEYER B. Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations[J]. Journal of Computational Chemistry, 1996, 17(8): 1068-1084.
[95] THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171-108204.
[96] SMITH W, YONG C, RODGER P. DL_POLY: Application to molecular simulation[J]. Molecular Simulation, 2002, 28(5): 385-471.
[97] GALE J D, ROHL A L. The general utility lattice program (GULP)[J]. Molecular Simulation, 2003, 29(5): 291-341.
[98] VAN DER SPOEL D, LINDAHL E, HESS B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718.
[99] CASE D A, CHEATHAM III T E, DARDEN T, et al. The Amber biomolecular simulation programs[J]. Journal of Computational Chemistry, 2005, 26(16): 1668-1688.
[100] PHILLIPS J C, BRAUN R, WANG W, et al. Scalable molecular dynamics with NAMD[J]. Journal of Computational Chemistry, 2005, 26(16): 1781-1802.
[101] BROOKS B R, BROOKS III C L, MACKERELL JR A D, et al. CHARMM: the biomolecular simulation program[J]. Journal of Computational Chemistry, 2009, 30(10): 1545-1614.
[102] KIRKWOOD J G. Statistical mechanics of fluid mixtures[J]. The Journal of Chemical Physics, 1935, 3(5): 300-313.
[103] KITA Y, ARAKAWA T, LIN T Y, et al. Contribution of the surface free energy perturbation to protein-solvent interactions[J]. Biochemistry, 1994, 33(50): 15178-15189.
[104] SOUAILLE M, ROUX B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations[J]. Computer Physics Communications, 2001, 135(1): 40-57.
[105] KOLLMAN P A, MASSOVA I, REYES C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models[J]. Accounts of Chemical Research, 2000, 33(12): 889-897.
[106] DELANO W L, et al. Pymol: An open-source molecular graphics tool[J]. CCP4 Newsl. Protein Crystallogr, 2002, 40(1): 82-92.
[107] FRISCH M, TRUCKS G, SCHLEGEL H, et al. Gaussian 16, Revision A. 03, Gaussian[J]. Inc., Wallingford CT, 2016, 3.
[108] TROTT O, OLSON A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. Journal of Computational Chemistry, 2010, 31(2): 455-461.
[109] JURRUS E, ENGEL D, STAR K, et al. Improvements to the APBS biomolecular solvation software suite[J]. Protein Science, 2018, 27(1): 112-128.
[110] ROE D R, CHEATHAM III T E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data[J]. Journal of Chemical Theory and Computation, 2013, 9(7): 3084-3095.
[111] 夏文豪,陈贤情,李珍珠,逯晓云,王筱,刘诗梦,杨月,黄利辉,李子鹤,王千,江会锋,王文. 异戊烯基转移酶突变体及生产大麻萜酚的方法: 中国,CN114350635A[P]. 2022-04-15.
[112] LIM K J H, HARTONO Y D, XUE B, et al. Structure-guided engineering of prenyltransferase NphB for high-yield and regioselective cannabinoid production[J]. ACS Catalysis, 2022, 12(8): 4628-4639.

所在学位评定分委会
化学
国内图书分类号
O643.31
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544402
专题理学院_化学系
推荐引用方式
GB/T 7714
唐文越. 异戊烯基转移酶NphB催化合成大麻萜酚机制的理论计算研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032863-唐文越-化学系.pdf(6682KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[唐文越]的文章
百度学术
百度学术中相似的文章
[唐文越]的文章
必应学术
必应学术中相似的文章
[唐文越]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。