中文版 | English
题名

构筑高湿度环境下结构稳定的高效低阻可降解空气过滤膜

其他题名
AN EFFICIENT, LOW RESISTANCE, AND BIODEGRADABLE AIR FILTER WITH A STABLE STRUCTURE IN HIGH-HUMIDITY ENVIRONMENTS
姓名
姓名拼音
CHEN Jian
学号
12032251
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
王湘麟
导师单位
材料科学与工程系
论文答辩日期
2023-05-12
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,由于全球工业化快速推进,空气颗粒污染物(PMs)浓度急剧增加,全球因空气污染而死亡的人数逐年增加,仅2016年就有700万人死于空气污染。因此,开发出高过滤效率的空气过滤膜降低空气污染带给人们的伤害在当下具有十分重要的意义。当前对纳米纤维的研究主要集中在提高空气过滤效率与降低阻力压降上,然而,纳米纤维空气过滤膜在不同环境中结构稳定性不同,因此失效时间不同,在高湿度环境中存在大量的水气溶胶,纳米纤维接触水气溶胶后将产生聚并,对过滤性能产生影响,因此研究水气溶胶对纳米纤维结构的影响十分重要;其次,目前对纳米纤维空气过滤膜的研究中使用的材料多为聚丙烯腈(PAN)、聚偏二氟乙烯(PVDF)、聚氨酯(PU)、聚酰胺(PA)等工业纤维,这些工业纤维大多不可降解,废弃后将对生态环境造成巨大伤害。因此,本论文探索了纳米纤维的不同排列方式在接触水气溶胶后产生粘结的程度以及材料亲水性、纳米纤维直径、纤维交叉角度对粘结程度的影响,为确定高湿度环境中纳米纤维空气过滤膜的有效使用时间提供了指导依据。而后本论文选取了在水气溶胶中粘结程度较低的生物可降解材料,通过设计特殊的微-纳米纤维分级结构得到了结构稳定的高效低阻空气过滤材料,为废弃的过滤材料造成的环境污染问题提供了新的解决方案。

其他摘要

In recent years, the concentration of airborne particulate matter (PMs) is increasing because of the rapid progress of global industrialization. In 2016 alone, 7 million people died from air pollution. Therefore, developing high-performance air filters to alleviate air pollution is of great significance. However, current research on nanofiber filters mainly focused on improving the filtration efficiency and reducing the pressure drop of air filters. It is important to study the service life of air filters in a high-humidity environment because the water aerosol will damage the structural stability of nanofiber membranes. Therefore, it is important to study the effect of water aerosol on nanofiber structure. On the other hand, most of the materials used in the current research are nonbiodegradable materials, such as polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), polyurethane (PU), polyamide (PA), etc. These nonbiodegradable nanofiber-based air filters will cause great harm to the environment. Given the above reasons, the coalescent degree of nanofibers after contact with water aerosol was explored. Specifically, the influence of material hydrophilicity, the diameter of nanofibers and nanofiber crossing angle on the degree of nanofiber coalescence were studied. In addition, a biodegradable material poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) was selected to fabricate high air filtration performance air filter with low bonding degree in water aerosols. Eventually, by design synthesis of micro-nanofiber hierarchical structure, high efficiency and low resistance air filters with stable structure (in water aerosol) were obtained.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] KINNEY P L. Climate change, air quality, and human health[J]. American Journal of Preventive Medicine, 2008, 35(5): 459-467.
[2] ZHAO X, LI Y, HUA T, et al. Cleanable Air Filter Transferring Moisture and Effectively Capturing PM2.5[J]. Small, 2017, 13(11): 1603306.
[3] ZHU M, HAN J, WANG F, et al. Electrospun Nanofibers Membranes for Effective Air Filtration[J]. Macromolecular Materials and Engineering, 2017, 302(1): 1600353.
[4] ZHAO X, WANG S, YIN X, et al. Slip-Effect Functional Air Filter for Efficient Purification of PM2.5[J]. Scientific Reports, 2016, 6(1): 35472.
[5] WANG X, DING B, SUN G, et al. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets[J]. Progress In Materials Science, 2013, 58(8): 1173-1243.
[6] YU B, CHEN J, CHEN D, et al. Visualization of the interaction of water aerosol and nanofiber mesh[J]. Physics of Fluids, 2021, 33(9): 092106.
[7] ZHANG R, LIU C, ZHOU G, et al. Morphology and property investigation of primary particulate matter particles from different sources[J]. Nano Research, 2018, 11(6): 3182-3192.
[8] BIAN Y, HUANG Z, OU J, et al. Evolution of anthropogenic air pollutant emissions in Guangdong Province, China, from 2006 to 2015[J]. Atmospheric Chemistry and Physics, 2019, 55(6): 425-431.
[9] KHALLAF M K. The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources[C]. Invironmental Science, 2011.
[10] 闫顺生, 李海花. 细颗粒物 PM2.5 的危害与防治[J]. 科技信息, 2013, 443(15): 38-39.
[11] ALMETWALLY A A, BIN-JUMAH M, ALLAM A A. Ambient air pollution and its influence on human health and welfare: an overview[J]. Environmental Science And Pollution Research, 2020, 27(20): 24815-24830.
[12] KIBBLE A, HARRISON R M. Point sources of air pollution[J]. Occupational medicine, 2005, 55(6): 425-431.
[13] ZHANG Y L, CAO F. Fine particulate matter (PM 2.5) in China at a city level[J]. Scientific Reports, 2015, 5: 14884.
[14] HUANG W-R, HE Z, WANG J-L, et al. Mass Production of Nanowire-Nylon Flexible Transparent Smart Windows for PM2.5 Capture[J]. iScience, 2019, 12: 333-341.
[15] LIU H, ZHANG S, LIU L, et al. High-Performance PM0.3 Air Filters Using Self-Polarized Electret Nanofiber/Nets[J]. Advanced Functional Materials, 2020, 30(13): 1909554.
[16] HEYDER J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery[J]. Proceedings of the American Thoracic Society, 2004, 1(4): 315-320.
[17] GLINIANAIA S V, RANKIN J, BELL R, et al. Does particulate air pollution contribute to infant death? A systematic review[J]. Environmental Health Perspectives, 2004, 112(14): 1365-1371.
[18] LELIEVELD J, EVANS J S, FNAIS M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 2015, 525(7569): 367-371.
[19] 王京丽, 谢庄, 张远航, 等. 北京市大气细粒子的质量浓度特征研究[J]. 气象学报, 2004, 62: 8.
[20] 赵文昌. 空气污染对城市居民的健康风险与经济损失的研究[D]. 上海: 上海交通大学, 2012.
[21] RAMANATHAN V, RAMANA M V. Atmospheric brown clouds: long-range transport and climate impacts[J]. Em-Pittsburgh-Air and Waste Management Association, 2003, (12): 28-33.
[22] 刘惠. 极细二维纳米蛛网空气过滤材料的设计构筑及性能研究[D]: 上海: 东华大学, 2020.
[23] 刘道清. 空气过滤技术研究综述[J]. 环境科学与管理, 2007, 114: 109-113.
[24] FREUNDLICH H. Kapillarchemie und Kolloidchemie[J]. Kolloid-Zeitschrift, 1922, 31(5): 243-246.
[25] 杜琳. 聚合物微分电纺多级结构滤材设计及高效空气过滤应用[D]. 北京: 北京化工大学, 2019.
[26] FRESHWATER D C. Air filtration : C. N. Davies, published by Academic Press, London, 1973; x + 171 pp.; price £4.00[J]. Chemical Engineering Journal, 1973, 6(1): 80.
[27] 向晓东. 现代除尘理论与技术[M]. 冶金工业出版社, 2004.
[28] STEVENS E S. Electrospun Filters for Air Filtration[M]. In Encyclopedia of Polymer Science and Technology. 2003.
[29] XIAO J, LIANG J, ZHANG C, et al. Advanced Materials for Capturing Particulate Matter: Progress and Perspectives[J]. Small Methods, 2018, 2(7): 1800012.
[30] LIU H, CAO C, HUANG J, et al. Progress on particulate matter filtration technology: basic concepts, advanced materials, and performances[J]. Nanoscale, 2020, 12(2): 437-453.
[31] CHEN C Y. Filtration of Aerosols By Fibrous Media[J]. Chemical Reviews, 1955, 55(3): 595-623.
[32] JIANG W, CHEUNG C-S, CHAN C-K, et al. The aerosol penetration through an electret fibrous filter[J]. Chinese Physics, 2006, 15(8): 1864.
[33] SUNDARRAJAN S, TAN K-L, LIM S H, et al. Electrospun Nanofibers for Air Filtration Applications[J]. Procedia Engineering, 2014, 75: 159-163.
[34] 苗振兴. 静电纺丝纳米纤维毡的过滤性能研究[D]. 广州: 华南理工大学, 2015.
[35] SPIELMAN L A, GOREN S L J E S. Model for predicting pressure drop and filtration efficiency in fibrous media[J]. Environmental Science & Technology, 1968, 2: 279-287.
[36] IVES K J. Capture Mechanisms in Filtration[J]. The Scientific Basis of Filtration, 1975, (2): 183-201.
[37] WANG Z, PAN Z. Preparation of hierarchical structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration[J]. Applied Surface Science, 2015, 356: 1168-1179.
[38] STRAIN I N, WU Q, POURRAHIMI A M, et al. Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration[J]. Journal of Materials Chemistry A, 2015, 3(4): 1632-1640.
[39] SHOU D, YE L, FAN J. Gas transport properties of electrospun polymer nanofibers[J]. Polymer, 2014, 55(14): 3149-3155.
[40] JO Y M, HUCHISON R, RAPER J A. Preperation of ceramic membrane filters, frome waste fly ash, suitable for hot gas cleaning[J]. Waste Management & Research, 1996, 14(3): 281-295.
[41] TRIPATHI B P, DUBEY N C, CHOUDHURY S, et al. Antifouling and tunable amino functionalized porous membranes for filtration applications[J]. Journal of Materials Chemistry, 2012, 22(37): 19981.
[42] JO Y M, HUCHISON R, RAPER J A. Preperation of Ceramic Membrane Filters, From Wast Fly Ash, Suitable For Hot Gas Cleaning[J]. Waste Management & Research, 1996, 14(3): 281-295.
[43] LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communication, 2015, 6: 6205.
[44] WANG Z, YAN F, PEI H, et al. Antibacterial and environmentally friendly chitosan/polyvinyl alcohol blend membranes for air filtration[J]. Carbohydrate Polymers, 2018, 198: 241-248.
[45] LOU C-W, SHIH Y-H, HUANG C-H, et al. Filtration Efficiency of Electret Air Filters Reinforced by Titanium Dioxide[J]. Applied Sciences, 2020, 10: 2686.
[46] 李玉瑶. 高孔隙率非织造纤维材料的制备及空气过滤应用研究[D]. 上海: 东华大学, 2020.
[47] LARSEN R I. The adhesion and removal of particles attached to air filter surfaces[J]. American Industrial Hygiene Association Journal, 1958, 19(4): 265-270.
[48] HAJRA M G, MEHTA K A, CHASE G G J S, et al. Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media[J]. Separation and Purification Technology, 2003, 30: 79-88.
[49] MOELTER W, FISSAN H. Structure of a High Efficiency Glass Fiber Filter Medium[J]. Aerosol Science and Technology, 1997, 27(3): 447-461.
[50] ZOU Y, SUN Z, TADA S, et al. Effect of Al addition on low-temperature synthesis of Ti3SiC2 powder[J]. Journal of Alloys and Compounds, 2008, 461(1): 579-584.
[51] 杨振威. 玻纤空气过滤纸原料组成对其过滤性能的影响[D]. 广州: 华南理工大学, 2014.
[52] CHEN G, XIAO H-M, WANG X. Study on parameter optimization of corona charging for melt￾blown polypropylene electret nonwoven web used as air filter [Z]. 9th International Conference on the Properties and Applications of Dielectric Materials. 2009: 389-391
[53] ZHANG J, CHEN G, BHAT G S, et al. Electret characteristics of melt-blown polylactic acid fabrics for air filtration application[J]. Journal of Applied Polymer Science, 2020, 137(4): 48309.
[54] 陈琪琪. 基于剪切变稀的聚合物熔体微分电纺研究[D]. 北京: 北京化工大学, 2021.
[55] 应婷. 多功能微图案化电纺纤维膜的制备及其在乳化态含油废水的应用研究[D]. 上海: 上海师范大学, 2020.
[56] NAM C, LEE S L J S, RYU M, et al. Electrospun nanofiber filters for highly efficient PM2.5 capture[J]. Korean Journal of Chemical Engineering, 2019, 36: 1565-1574.
[57] VINH N D, KIM H-M. Electrospinning Fabrication and Performance Evaluation of Polyacrylonitrile Nanofiber for Air Filter Applications[J]. Applied Sciences, 2016, 6(9): 235.
[58] TEO W E, RAMAKRISHNA S. A review on electrospinning design and nanofibre assemblies[J]. Nanotechnology, 2006, 17(14): R89-R106.
[59] XUE J, WU T, DAI Y, et al. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415.
[60] DARRELL H R, LKSOO C. Nanometre diameter fibres of polymer, produced by electrospinning[J]. Nanotechnology, 1996, 7(3): 216.
[61] RAMAKRISHNA S, FUJIHARA K, TEO W-E, et al. Electrospun nanofibers: solving global issues[J]. Materials Today, 2006, 9(3): 40-50.
[62] BROWN T D, DALTON P D, HUTMACHER D W. Melt electrospinning today: An opportune time for an emerging polymer process[J]. Progress in Polymer Science, 2016, 56: 116-166.
[63] PERSANO L, CAMPOSEO A, TEKMEN C, et al. Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review[J]. Macromolecular Materials and Engineering, 2013, 298(5): 504-520.
[64] KOSTAKOVA E K, SEPS M, POKORNý P, et al. Study of polycaprolactone wet electrospinning process[J]. Express Polymer Letters, 2014, 8(8): 554-564.
[65] LIU Y, DONG L, FAN J, et al. Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning[J]. Journal of Applied Polymer Science, 2011, 120(1): 592-598.
[66] 陈柔羲. 新型气泡静电纺丝技术及自清洁纳米纤维膜的制备[D]. 苏州: 苏州大学, 2016.
[67] ZONG X, KIM K, FANG D, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer, 2002, 43(16): 4403-4412.
[68] FONG H, CHUN I, RENEKER D H. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999, 40(16): 4585-4592.
[69] DEITZEL J M, KLEINMEYER J, HARRIS D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001, 42(1): 261-272.
[70] DING B, KIM H Y, LEE S-C, et al. Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method[J]. Journal of Polymer Science Part B-Polymer Physics, 2002, 40(13): 1261-1268.
[71] 高峰. 纤维滤材过滤特性研究[D]. 天津: 天津大学, 2004.
[72] FRIDRIKH S V, YU J H, BRENNER M P, et al. Controlling the fiber diameter during electrospinning[J]. Physical Review Letters, 2003, 90(14): 144502.
[73] KONG H-Y. Effect of Collection Distance on the Diameter of Electrospun Nanofiber[J]. Heat Transfer Research, 2013, 44(5): 423-427.
[74] DEMIR M M, YILGOR L, YILGOR E, et al. Electrospinning of polyurethane fibers[J]. Polymer, 2002, 43(11): 3303-3309.
[75] DU L, ZHANG Y, LI X, et al. High performance anti-smog window screens via electrospun nanofibers[J]. Journal of Applied Polymer Science, 2020, 137(19): 48657.
[76] HU J, WANG X, DING B, et al. One-step electro-spinning/netting technique for controllably preparing polyurethane nano-fiber/net[J]. Macromolecular Rapid Communications, 2011, 32(21): 1729-1734.
[77] LIU H, ZHANG S, LIU L, et al. A Fluffy Dual‐Network Structured Nanofiber/Net Filter Enables High‐Efficiency Air Filtration[J]. Advanced Functional Materials, 2019, 29(39): 1904108.
[78] ZHANG S, LIU H, TANG N, et al. Spider-Web-Inspired PM(0.3) Filters Based on Self-Sustained Electrostatic Nanostructured Networks[J]. Advanced Materials, 2020, 32(29): e2002361.
[79] ZUO F, ZHANG S, LIU H, et al. Free-Standing Polyurethane Nanofiber/Nets Air Filters for Effective PM Capture[J]. Small, 2017, 13(46): 1702139.
[80] ZHANG S, LIU H, YIN X, et al. Anti-deformed Polyacrylonitrile/Polysulfone Composite Membrane with Binary Structures for Effective Air Filtration[J]. ACS applied materials & interfaces, 2016, 8 12: 8086-8095.
[81] WANG N, RAZA A, SI Y, et al. Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration[J]. Journal of Colloid And Interface Science, 2013, 398: 240-246.
[82] MAO X, BAI Y, YU J, et al. Flexible and Highly Temperature Resistant Polynanocrystalline Zirconia Nanofibrous Membranes Designed for Air Filtration[J]. Journal of the American Ceramic Society, 2016, 99(8): 2760-2768.
[83] TANG X, WANG X, YANG L, et al. Multifunctional nickel nanofiber for effective air purification: PM removal and NO reduction from automobile exhaust[J]. Journal of Materials Science, 2020, 55: 6161-6171.
[84] WANG N, SI Y, WANG N, et al. Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration[J]. Separation and Purification Technology, 2014, 126: 44-51.
[85] ZHANG Y, YUAN S, FENG X, et al. Preparation of Nanofibrous Metal-Organic Framework Filters for Efficient Air Pollution Control[J]. Journal of the American Chemical Society, 2016, 138(18): 5785-5788.
[86] SHEN R, GUO Y, WANG S, et al. Biodegradable Electrospun Nanofiber Membranes as Promising Candidates for the Development of Face Masks[J]. International Journal of Environmental Research and Public Health, 2023, 20(2): 1306.
[87] ALAVI M. Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications[J]. e￾Polymers, 2019, 19: 103-119.
[88] PENG B, YAO Z, WANG X, et al. Cellulose-based materials in wastewater treatment of petroleum industry[J]. Green Energy & Environment, 2020, 5(1): 37-49.
[89] SOUZANDEH H, WANG Y, NETRAVALI A N, et al. Towards Sustainable and Multifunctional Air-Filters: A Review on Biopolymer-Based Filtration Materials[J]. Polymer Reviews, 2019, 59(4): 651-686.
[90] NICOSIA A, KEPPLER T, MüLLER F A, et al. Cellulose acetate nanofiber electrospun on nylon substrate as novel composite matrix for efficient, heat-resistant, air filters[J]. Chemical Engineering Science, 2016, 153: 284-294.
[91] SUN B, LIN J, LIU M, et al. In Situ Biosynthesis of Biodegradable Functional Bacterial Cellulose for High-Efficiency Particulate Air Filtration[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(4): 1644-1652.
[92] SOUZANDEH H, JOHNSON K S, WANG Y, et al. Soy-Protein-Based Nanofabrics for Highly Efficient and Multifunctional Air Filtration[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20023-20031.
[93] WANG C, WU S, JIAN M, et al. Silk nanofibers as high efficient and lightweight air filter[J]. Nano Research, 2016, 9(9): 2590-2597.
[94] ZHANG B, ZHANG Z G, YAN X, et al. Chitosan nanostructures by in situ electrospinning for high-efficiency PM2.5 capture[J]. Nanoscale, 2017, 9(12): 4154-4161.
[95] MEI L, REN Y, GU Y, et al. Strengthened and Thermally Resistant Poly(lactic acid)-Based Composite Nanofibers Prepared via Easy Stereocomplexation with Antibacterial Effects[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42992-43002.
[96] SOO X Y D, WANG S, YEO C C J, et al. Polylactic acid face masks: Are these the sustainable solutions in times of COVID-19 pandemic?[J]. Science of The Total Environment, 2022, 807: 151084.
[97] WANG Z, ZHAO C, PAN Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration[J]. Journal of Colloid and Interface Science, 2015, 441: 121-129.
[98] WANG L, GAO Y, XIONG J, et al. Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly(lactic acid) electrospinning[J]. Journal of Colloid and Interface Science, 2022, 606: 961-970.
[99] GRASSO G, ZANE D, FOGLIA S, et al. Application of Electrospun Water-Soluble Synthetic Polymers for Multifunctional Air Filters and Face Masks[J]. Molecules, 2022, 27(24): 8753.
[100] DES LIGNERIS E, DUMéE L F, AL-ATTABI R, et al. Mixed Matrix Poly(Vinyl Alcohol)-Copper Nanofibrous Anti-Microbial Air-Microfilters[J]. Membranes (Basel), 2019, 9(7): 87.
[101] AYODEJI O J, KHYUM M M O, AFOLABI R T, et al. Preparation of surface-functionalized electrospun PVA nanowebs for potential remedy for SARS-CoV-2[J]. Journal of Hazardous Materials Advances, 2022, 7: 100128.
[102]CELEBIOGLU A, UYAR T. Cyclodextrin short-nanofibers using sacrificial electrospun polymeric matrix for VOC removal[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 90(1): 135-141.
[103] YAN W, SHI M, DONG C, et al. Applications of tannic acid in membrane technologies: A review[J]. Advances in Colloid and Interface Science, 2020, 284: 102267.
[104] KIM J, CHAN HONG S, BAE G N, et al. Electrospun Magnetic Nanoparticle-Decorated Nanofiber Filter and Its Applications to High-Efficiency Air Filtration[J]. Environmental Science & Technology, 2017, 51(20): 11967-11975.
[105] LI H, WANG Z, ZHANG H, et al. Nanoporous PLA/(Chitosan Nanoparticle) Composite Fibrous Membranes with Excellent Air Filtration and Antibacterial Performance[J]. Polymers, 2018, 10(10): 1085.
[106] PAN W, WANG J-P, SUN X-B, et al. Ultra uniform metal−organic framework-5 loading along electrospun chitosan/polyethylene oxide membrane fibers for efficient PM2.5 removal[J]. Journal of Cleaner Production, 2021, 291: 125270.
[107] LI K, LI C, TIAN H, et al. Multifunctional and Efficient Air Filtration: A Natural Nanofilter Prepared with Zein and Polyvinyl Alcohol[J]. Macromolecular Materials and Engineering, 2020, 305(8): 2000239.
[108]CHING C, KAPLAN D L, THOMAS E L. Biodegradable Polymers and Packaging[J]. Materials Science, 1993: 225-232.
[109] TEBALDI M L, MAIA A L C, POLETTO F, et al. Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Current advances in synthesis methodologies, antitumor applications and biocompatibility[J]. Journal of Drug Delivery Science and Technology, 2019, 51: 115-126.
[110] 赵作显. PHA/PLA 共混纤维的研制及其结构与性能[D]. 苏州: 苏州大学, 2019
[111] SANG L, HYEONG K, WANG M, et al. Nanofabrication of microbial polyester by electrospinning promotes cell attachment[J]. Macromolecular Research, 2004, 12(4): 374-378.
[112] GONG W B, CHENG T, LIU Q G, et al. Surgical repair of abdominal wall defect with biomimetic nano/microfibrous hybrid scaffold[J]. Materials Science and Engineering: C, 2018, 93(1): 828-837.
[113] CHENG M, QIN Z Y, HU S, et al. Achieving Long-Term Sustained Drug Delivery for Electrospun Biopolyester Nanofibrous Membranes by Introducing Cellulose Nanocrystals[J]. ACS Biomaterials Science and Engineering: C, 2017, 3(8): 1666-1676.

所在学位评定分委会
材料科学与工程
国内图书分类号
TQ340.64
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544403
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
陈健. 构筑高湿度环境下结构稳定的高效低阻可降解空气过滤膜[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032251-陈健-材料科学与工程系(2906KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈健]的文章
百度学术
百度学术中相似的文章
[陈健]的文章
必应学术
必应学术中相似的文章
[陈健]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。