[1] WADDINGTON C H. The epigenotype. 1942 [J]. Int J Epidemiol, 2012, 41(1): 10-3.
[2] BIRD A. Perceptions of epigenetics [J]. Nature, 2007, 447(7143): 396-8.
[3] BERGER S L, KOUZARIDES T, SHIEKHATTAR R, et al. An operational definition of epigenetics [J]. Genes Dev, 2009, 23(7): 781-3.
[4] KORNBERG R D, THOMAS J O. Chromatin structure; oligomers of the histones [J]. Science, 1974, 184(4139): 865-8.
[5] KAPLAN N, MOORE I K, FONDUFE-MITTENDORF Y, et al. The DNA-encoded nucleosome organization of a eukaryotic genome [J]. Nature, 2009, 458(7236): 362-6.
[6] KORNBERG R D. Chromatin structure: a repeating unit of histones and DNA [J]. Science, 1974, 184(4139): 868-71.
[7] CRANE-ROBINSON C, HEBBES T R, CLAYTON A L, et al. Chromosomal mapping of core histone acetylation by immunoselection [J]. Methods, 1997, 12(1): 48-56.
[8] PECINKA A, MITTELSTEN SCHEID O. Stress-induced chromatin changes: a critical view on their heritability [J]. Plant Cell Physiol, 2012, 53(5): 801-8.
[9] MCKEOWN P C, SPILLANE C. Landscaping plant epigenetics [J]. Methods Mol Biol, 2014, 1112: 1-24.
[10] JENUWEIN T, ALLIS C D. Translating the histone code [J]. Science, 2001, 293(5532): 1074-80.
[11] XU Q, XIE W. Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment [J]. Trends Cell Biol, 2018, 28(3): 237-53.
[12] ZENG Y, CHEN T. DNA methylation reprogramming during mammalian development [J]. Genes (Basel), 2019, 10(4).
[13] DELAVAL K, FEIL R. Epigenetic regulation of mammalian genomic imprinting [J]. Curr Opin Genet Dev, 2004, 14(2): 188-95.
[14] WANG J W, QI Y. Plant non-coding RNAs and epigenetics [J]. Sci China Life Sci, 2018, 61(2): 135-7.
[15] BAURLE I, DEAN C. The timing of developmental transitions in plants [J]. Cell, 2006, 125(4): 655-64.
[16] TSUCHIYA T, EULGEM T. The Arabidopsis defense component EDM2 affects the floral transition in an FLC-dependent manner [J]. Plant J, 2010, 62(3): 518-28.
[17] KUNDARIYA H, YANG X, MORTON K, et al. MSH1-induced heritable enhanced growth vigor through grafting is associated with the RdDM pathway in plants [J]. Nat Commun, 2020, 11(1): 5343.
[18] CHEN K, ZHAO B S, HE C. Nucleic acid modifications in regulation of gene expression [J]. Cell Chem Biol, 2016, 23(1): 74-85.
[19] ZHANG G, HUANG H, LIU D, et al. N6-methyladenine DNA modification in Drosophila [J]. Cell, 2015, 161(4): 893-906.
[20] FROMMER M, MCDONALD L E, MILLAR D S, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands [J]. Proc Natl Acad Sci U S A, 1992, 89(5): 1827-31.
[21] MELNIKOV A A, GARTENHAUS R B, LEVENSON A S, et al. MSRE-PCR for analysis of gene-specific DNA methylation [J]. Nucleic Acids Res, 2005, 33(10): e93.
[22] SCHADT E E, TURNER S, KASARSKIS A. A window into third-generation sequencing [J]. Hum Mol Genet, 2010, 19(R2): R227-40.
[23] YU M, HON G C, SZULWACH K E, et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome [J]. Cell, 2012, 149(6): 1368-80.
[24] LI B, CAREY M, WORKMAN J L. The role of chromatin during transcription [J]. Cell, 2007, 128(4): 707-19.
[25] CHEN X, MIRAGAIA R J, NATARAJAN K N, et al. A rapid and robust method for single cell chromatin accessibility profiling [J]. Nat Commun, 2018, 9(1): 5345.
[26] KLEMM S L, SHIPONY Z, GREENLEAF W J. Chromatin accessibility and the regulatory epigenome [J]. Nat Rev Genet, 2019, 20(4): 207-20.
[27] ZARET K. Micrococcal nuclease analysis of chromatin structure [J]. Curr Protoc Mol Biol, 2005, Chapter 21: Unit 21 1.
[28] PAJORO A, MUINO J M, ANGENENT G C, et al. Profiling nucleosome occupancy by MNase-seq: experimental protocol and computational analysis [J]. Methods Mol Biol, 2018, 1675: 167-81.
[29] SONG L, CRAWFORD G E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells [J]. Cold Spring Harb Protoc, 2010, 2010(2): pdb prot5384.
[30] BUENROSTRO J D, GIRESI P G, ZABA L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position [J]. Nat Methods, 2013, 10(12): 1213-8.
[31] LI N, JIN K, BAI Y, et al. Tn5 Transposase Applied in Genomics Research [J]. Int J Mol Sci, 2020, 21(21).
[32] ADEY A, MORRISON H G, ASAN, et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition [J]. Genome Biol, 2010, 11(12): R119.
[33] BAJIC M, MAHER K A, DEAL R B. Identification of open chromatin regions in plant genomes using ATAC-Seq [J]. Methods Mol Biol, 2018, 1675: 183-201.
[34] BANNISTER A J, KOUZARIDES T. Regulation of chromatin by histone modifications [J]. Cell Res, 2011, 21(3): 381-95.
[35] GADE P, KALVAKOLANU D V. Chromatin immunoprecipitation assay as a tool for analyzing transcription factor activity [J]. Methods Mol Biol, 2012, 809: 85-104.
[36] BARSKI A, CUDDAPAH S, CUI K, et al. High-resolution profiling of histone methylations in the human genome [J]. Cell, 2007, 129(4): 823-37.
[37] SCHMID M, DURUSSEL T, LAEMMLI U K. ChIC and ChEC; genomic mapping of chromatin proteins [J]. Mol Cell, 2004, 16(1): 147-57.
[38] SKENE P J, HENIKOFF S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites [J]. Elife, 2017, 6.
[39] SKENE P J, HENIKOFF J G, HENIKOFF S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers [J]. Nat Protoc, 2018, 13(5): 1006-19.
[40] HAINER S J, BOSKOVIC A, MCCANNELL K N, et al. Profiling of pluripotency factors in single cells and early embryos [J]. Cell, 2019, 177(5): 1319-29 e11.
[41] KAYA-OKUR H S, WU S J, CODOMO C A, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells [J]. Nat Commun, 2019, 10(1): 1930.
[42] DEKKER J, RIPPE K, DEKKER M, et al. Capturing chromosome conformation [J]. Science, 2002, 295(5558): 1306-11.
[43] ZHAO Z, TAVOOSIDANA G, SJOLINDER M, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions [J]. Nat Genet, 2006, 38(11): 1341-7.
[44] DOSTIE J, RICHMOND T A, ARNAOUT R A, et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements [J]. Genome Res, 2006, 16(10): 1299-309.
[45] HORIKE S, CAI S, MIYANO M, et al. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome [J]. Nat Genet, 2005, 37(1): 31-40.
[46] FULLWOOD M J, LIU M H, PAN Y F, et al. An oestrogen-receptor-alpha-bound human chromatin interactome [J]. Nature, 2009, 462(7269): 58-64.
[47] LIEBERMAN-AIDEN E, VAN BERKUM N L, WILLIAMS L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome [J]. Science, 2009, 326(5950): 289-93.
[48] DI PIERRO M, CHENG R R, LIEBERMAN AIDEN E, et al. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture [J]. Proc Natl Acad Sci U S A, 2017, 114(46): 12126-31.
[49] QI Y, ZHANG B. Predicting three-dimensional genome organization with chromatin states [J]. PLoS Comput Biol, 2019, 15(6): e1007024.
[50] WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics [J]. Nat Rev Genet, 2009, 10(1): 57-63.
[51] RAMSKOLD D, LUO S, WANG Y C, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells [J]. Nat Biotechnol, 2012, 30(8): 777-82.
[52] PICELLI S, BJORKLUND A K, FARIDANI O R, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells [J]. Nat Methods, 2013, 10(11): 1096-8.
[53] HAGEMANN-JENSEN M, ZIEGENHAIN C, CHEN P, et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3 [J]. Nat Biotechnol, 2020, 38(6): 708-14.
[54] SAWAN C, HERCEG Z. Histone modifications and cancer [J]. Adv Genet, 2010, 70: 57-85.
[55] MARGUERON R, TROJER P, REINBERG D. The key to development: interpreting the histone code? [J]. Curr Opin Genet Dev, 2005, 15(2): 163-76.
[56] BANERJEE T, CHAKRAVARTI D. A peek into the complex realm of histone phosphorylation [J]. Mol Cell Biol, 2011, 31(24): 4858-73.
[57] KAIMORI J Y, MAEHARA K, HAYASHI-TAKANAKA Y, et al. Histone H4 lysine 20 acetylation is associated with gene repression in human cells [J]. Sci Rep, 2016, 6: 24318.
[58] KHAN S A, REDDY D, GUPTA S. Global histone post-translational modifications and cancer: Biomarkers for diagnosis, prognosis and treatment? [J]. World J Biol Chem, 2015, 6(4): 333-45.
[59] ZHAO S, ALLIS C D, WANG G G. The language of chromatin modification in human cancers [J]. Nat Rev Cancer, 2021, 21(7): 413-30.
[60] RAMAZI S, ALLAHVERDI A, ZAHIRI J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders [J]. J Biosci, 2020, 45.
[61] CARTER B, BISHOP B, HO K K, et al. The chromatin remodelers PKL and PIE1 act in an epigenetic pathway that determines H3K27me3 homeostasis in Arabidopsis [J]. Plant Cell, 2018, 30(6): 1337-52.
[62] ARANDA S, MAS G, DI CROCE L. Regulation of gene transcription by Polycomb proteins [J]. Sci Adv, 2015, 1(11): e1500737.
[63] LAUBERTH S M, NAKAYAMA T, WU X, et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation [J]. Cell, 2013, 152(5): 1021-36.
[64] LAWRENCE M, DAUJAT S, SCHNEIDER R. Lateral thinking: How histone modifications regulate gene expression [J]. Trends Genet, 2016, 32(1): 42-56.
[65] ZHOU V W, GOREN A, BERNSTEIN B E. Charting histone modifications and the functional organization of mammalian genomes [J]. Nat Rev Genet, 2011, 12(1): 7-18.
[66] CALO E, WYSOCKA J. Modification of enhancer chromatin: what, how, and why? [J]. Mol Cell, 2013, 49(5): 825-37.
[67] BERNSTEIN B E, MIKKELSEN T S, XIE X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J]. Cell, 2006, 125(2): 315-26.
[68] AZUARA V, PERRY P, SAUER S, et al. Chromatin signatures of pluripotent cell lines [J]. Nat Cell Biol, 2006, 8(5): 532-8.
[69] PAN G, TIAN S, NIE J, et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells [J]. Cell Stem Cell, 2007, 1(3): 299-312.
[70] ZHAO X D, HAN X, CHEW J L, et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells [J]. Cell Stem Cell, 2007, 1(3): 286-98.
[71] SAXONOV S, BERG P, BRUTLAG D L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters [J]. Proc Natl Acad Sci U S A, 2006, 103(5): 1412-7.
[72] DEATON A M, BIRD A. CpG islands and the regulation of transcription [J]. Genes Dev, 2011, 25(10): 1010-22.
[73] WEBER M, HELLMANN I, STADLER M B, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome [J]. Nat Genet, 2007, 39(4): 457-66.
[74] MEISSNER A, MIKKELSEN T S, GU H, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells [J]. Nature, 2008, 454(7205): 766-70.
[75] FOUSE S D, SHEN Y, PELLEGRINI M, et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation [J]. Cell Stem Cell, 2008, 2(2): 160-9.
[76] GUENTHER M G, LEVINE S S, BOYER L A, et al. A chromatin landmark and transcription initiation at most promoters in human cells [J]. Cell, 2007, 130(1): 77-88.
[77] MIKKELSEN T S, KU M, JAFFE D B, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells [J]. Nature, 2007, 448(7153): 553-60.
[78] VOIGT P, TEE W W, REINBERG D. A double take on bivalent promoters [J]. Genes Dev, 2013, 27(12): 1318-38.
[79] BAPAT S A, JIN V, BERRY N, et al. Multivalent epigenetic marks confer microenvironment-responsive epigenetic plasticity to ovarian cancer cells [J]. Epigenetics, 2010, 5(8): 716-29.
[80] RODRIGUEZ J, MUNOZ M, VIVES L, et al. Bivalent domains enforce transcriptional memory of DNA methylated genes in cancer cells [J]. Proc Natl Acad Sci U S A, 2008, 105(50): 19809-14.
[81] MCGARVEY K M, VAN NESTE L, COPE L, et al. Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells [J]. Cancer Res, 2008, 68(14): 5753-9.
[82] ALDER O, LAVIAL F, HELNESS A, et al. Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment [J]. Development, 2010, 137(15): 2483-92.
[83] DAHL J A, REINER A H, KLUNGLAND A, et al. Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos [J]. PLoS One, 2010, 5(2): e9150.
[84] RUGG-GUNN P J, COX B J, RALSTON A, et al. Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo [J]. Proc Natl Acad Sci U S A, 2010, 107(24): 10783-90.
[85] MOHN F, WEBER M, REBHAN M, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors [J]. Mol Cell, 2008, 30(6): 755-66.
[86] AKKERS R C, VAN HEERINGEN S J, JACOBI U G, et al. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos [J]. Dev Cell, 2009, 17(3): 425-34.
[87] CUI K, ZANG C, ROH T Y, et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation [J]. Cell Stem Cell, 2009, 4(1): 80-93.
[88] MATSUMURA Y, NAKAKI R, INAGAKI T, et al. H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation [J]. Mol Cell, 2015, 60(4): 584-96.
[89] XU J, KIDDER B L. H4K20me3 co-localizes with activating histone modifications at transcriptionally dynamic regions in embryonic stem cells [J]. BMC Genomics, 2018, 19(1): 514.
[90] ZENG Z, ZHANG W, MARAND A P, et al. Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato [J]. Genome Biol, 2019, 20(1): 123.
[91] ZHANG Q, GUAN P, ZHAO L, et al. Asymmetric epigenome maps of subgenomes reveal imbalanced transcription and distinct evolutionary trends in Brassica napus [J]. Mol Plant, 2021, 14(4): 604-19.
[92] ZHAO K, KONG D, JIN B, et al. A novel bivalent chromatin associates with rapid induction of camalexin biosynthesis genes in response to a pathogen signal in Arabidopsis [J]. Elife, 2021, 10.
[93] REIK W, SURANI M A. Germline and pluripotent stem Cells [J]. Cold Spring Harb Perspect Biol, 2015, 7(11).
[94] TANG W W, KOBAYASHI T, IRIE N, et al. Specification and epigenetic programming of the human germ line [J]. Nat Rev Genet, 2016, 17(10): 585-600.
[95] KOTA S K, FEIL R. Epigenetic transitions in germ cell development and meiosis [J]. Dev Cell, 2010, 19(5): 675-86.
[96] GAUCHER J, REYNOIRD N, MONTELLIER E, et al. From meiosis to postmeiotic events: the secrets of histone disappearance [J]. FEBS J, 2010, 277(3): 599-604.
[97] KIMMINS S, SASSONE-CORSI P. Chromatin remodelling and epigenetic features of germ cells [J]. Nature, 2005, 434(7033): 583-9.
[98] BARRAL S, MOROZUMI Y, TANAKA H, et al. Histone variant H2A.L.2 guides transition protein-dependent protamine assembly in male germ cells [J]. Mol Cell, 2017, 66(1): 89-101 e8.
[99] MORITZ L, HAMMOUD S S. The art of packaging the sperm genome: molecular and structural basis of the histone-to-protamine exchange [J]. Front Endocrinol (Lausanne), 2022, 13: 895502.
[100]ITOH K, KONDOH G, MIYACHI H, et al. Dephosphorylation of protamine 2 at serine 56 is crucial for murine sperm maturation in vivo [J]. Sci Signal, 2019, 12(574).
[101]GOU L T, LIM D H, MA W, et al. Initiation of parental genome reprogramming in fertilized oocyte by splicing kinase SRPK1-catalyzed protamine phosphorylation [J]. Cell, 2020, 180(6): 1212-27 e14.
[102]RATHKE C, BAARENDS W M, AWE S, et al. Chromatin dynamics during spermiogenesis [J]. Biochim Biophys Acta, 2014, 1839(3): 155-68.
[103]ANDRES F, COUPLAND G. The genetic basis of flowering responses to seasonal cues [J]. Nat Rev Genet, 2012, 13(9): 627-39.
[104]KINOSHITA A, VAYSSIERES A, RICHTER R, et al. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis [J]. Elife, 2020, 9.
[105]SCOTT R J, SPIELMAN M, DICKINSON H G. Stamen structure and function [J]. Plant Cell, 2004, 16 Suppl(Suppl): S46-60.
[106]HACKENBERG D, TWELL D. The evolution and patterning of male gametophyte development [J]. Curr Top Dev Biol, 2019, 131: 257-98.
[107]HAFIDH S, FILA J, HONYS D. Male gametophyte development and function in angiosperms: a general concept [J]. Plant Reprod, 2016, 29(1-2): 31-51.
[108]LONG M, SUN X, SHI W, et al. A novel histone H4 variant H4G regulates rDNA transcription in breast cancer [J]. Nucleic Acids Res, 2019, 47(16): 8399-409.
[109]PROBST A V, DESVOYES B, GUTIERREZ C. Similar yet critically different: the distribution, dynamics and function of histone variants [J]. J Exp Bot, 2020, 71(17): 5191-204.
[110]TALBERT P B, AHMAD K, ALMOUZNI G, et al. A unified phylogeny-based nomenclature for histone variants [J]. Epigenetics Chromatin, 2012, 5: 7.
[111]TALBERT P B, HENIKOFF S. Histone variants on the move: substrates for chromatin dynamics [J]. Nat Rev Mol Cell Biol, 2017, 18(2): 115-26.
[112]HENIKOFF S, SMITH M M. Histone variants and epigenetics [J]. Cold Spring Harb Perspect Biol, 2015, 7(1): a019364.
[113]PROBST A V. Deposition and eviction of histone variants define functional chromatin states in plants [J]. Curr Opin Plant Biol, 2022, 69: 102266.
[114]NUNEZ-VAZQUEZ R, DESVOYES B, GUTIERREZ C. Histone variants and modifications during abiotic stress response [J]. Front Plant Sci, 2022, 13: 984702.
[115]ROSA S, SHAW P. Insights into chromatin structure and dynamics in plants [J]. Biology (Basel), 2013, 2(4): 1378-410.
[116]STROUD H, OTERO S, DESVOYES B, et al. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana [J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5370-5.
[117]WOLLMANN H, HOLEC S, ALDEN K, et al. Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome [J]. PLoS Genet, 2012, 8(5): e1002658.
[118]SEQUEIRA-MENDES J, ARAGUEZ I, PEIRO R, et al. The functional topography of the Arabidopsis genome Is organized in a reduced number of linear motifs of chromatin states [J]. Plant Cell, 2014, 26(6): 2351-66.
[119]BORG M, JIANG D, BERGER F. Histone variants take center stage in shaping the epigenome [J]. Curr Opin Plant Biol, 2021, 61: 101991.
[120]GREWAL S I, JIA S. Heterochromatin revisited [J]. Nat Rev Genet, 2007, 8(1): 35-46.
[121]VAILLANT I, PASZKOWSKI J. Role of histone and DNA methylation in gene regulation [J]. Curr Opin Plant Biol, 2007, 10(5): 528-33.
[122]ROUDIER F, TEIXEIRA F K, COLOT V. Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more [J]. Trends Genet, 2009, 25(11): 511-7.
[123]ZEMACH A, KIM M Y, HSIEH P H, et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin [J]. Cell, 2013, 153(1): 193-205.
[124]RUTOWICZ K, LIRSKI M, MERMAZ B, et al. Linker histones are fine-scale chromatin architects modulating developmental decisions in Arabidopsis [J]. Genome Biol, 2019, 20(1): 157.
[125]CHOI J, LYONS D B, KIM M Y, et al. DNA methylation and histone H1 Jointly repress transposable elements and aberrant intragenic transcripts [J]. Mol Cell, 2020, 77(2): 310-23 e7.
[126]INGOUFF M, RADEMACHER S, HOLEC S, et al. Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis [J]. Curr Biol, 2010, 20(23): 2137-43.
[127]BORG M, JACOB Y, SUSAKI D, et al. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin [J]. Nat Cell Biol, 2020, 22(6): 621-9.
[128]BUTTRESS T, HE S, WANG L, et al. Histone H2B.8 compacts flowering plant sperm through chromatin phase separation [J]. Nature, 2022, 611(7936): 614-22.
[129]BOURGUET P, PICARD C L, YELAGANDULA R, et al. The histone variant H2A.W and linker histone H1 co-regulate heterochromatin accessibility and DNA methylation [J]. Nat Commun, 2021, 12(1): 2683.
[130]SHE W, BAROUX C. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis [J]. Front Plant Sci, 2015, 6: 294.
[131]XIAO S, JIANG L, WANG C, et al. Arabidopsis OXS3 family proteins repress ABA signaling through interactions with AFP1 in the regulation of ABI4 expression [J]. J Exp Bot, 2021, 72(15): 5721-34.
[132]JARILLO J A, PINEIRO M. H2A.Z mediates different aspects of chromatin function and modulates flowering responses in Arabidopsis [J]. Plant J, 2015, 83(1): 96-109.
[133]GOMEZ-ZAMBRANO A, MERINI W, CALONJE M. The repressive role of Arabidopsis H2A.Z in transcriptional regulation depends on AtBMI1 activity [J]. Nat Commun, 2019, 10(1): 2828.
[134]CHOI K, PARK C, LEE J, et al. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development [J]. Development, 2007, 134(10): 1931-41.
[135]DEAL R B, TOPP C N, MCKINNEY E C, et al. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z [J]. Plant Cell, 2007, 19(1): 74-83.
[136]MARTIN-TRILLO M, LAZARO A, POETHIG R S, et al. EARLY IN SHORT DAYS 1 (ESD1) encodes ACTIN-RELATED PROTEIN 6 (AtARP6), a putative component of chromatin remodelling complexes that positively regulates FLC accumulation in Arabidopsis [J]. Development, 2006, 133(7): 1241-52.
[137]NOH Y S, AMASINO R M. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis [J]. Plant Cell, 2003, 15(7): 1671-82.
[138]SIJACIC P, HOLDER D H, BAJIC M, et al. Methyl-CpG-binding domain 9 (MBD9) is required for H2A.Z incorporation into chromatin at a subset of H2A.Z-enriched regions in the Arabidopsis genome [J]. PLoS Genet, 2019, 15(8): e1008326.
[139]GOMEZ-ZAMBRANO A, CREVILLEN P, FRANCO-ZORRILLA J M, et al. Arabidopsis SWC4 Binds DNA and Recruits the SWR1 Complex to Modulate Histone H2A.Z Deposition at Key Regulatory Genes [J]. Mol Plant, 2018, 11(6): 815-32.
[140]XU M, LEICHTY A R, HU T, et al. H2A.Z promotes the transcription of MIR156A and MIR156C in Arabidopsis by facilitating the deposition of H3K4me3 [J]. Development, 2018, 145(2).
[141]CAI H, ZHANG M, CHAI M, et al. Epigenetic regulation of anthocyanin biosynthesis by an antagonistic interaction between H2A.Z and H3K4me3 [J]. New Phytol, 2019, 221(1): 295-308.
[142]ZHAO L, CAI H, SU Z, et al. KLU suppresses megasporocyte cell fate through SWR1-mediated activation of WRKY28 expression in Arabidopsis [J]. Proc Natl Acad Sci U S A, 2018, 115(3): E526-E35.
[143]TONG M, LEE K, EZER D, et al. The evening complex establishes repressive chromatin domains via H2A.Z deposition [J]. Plant Physiol, 2020, 182(1): 612-25.
[144]JIANG D, BORG M, LORKOVIC Z J, et al. The evolution and functional divergence of the histone H2B family in plants [J]. PLoS Genet, 2020, 16(7): e1008964.
[145]WOLLMANN H, STROUD H, YELAGANDULA R, et al. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana [J]. Genome Biol, 2017, 18(1): 94.
[146]YAN A, BORG M, BERGER F, et al. The atypical histone variant H3.15 promotes callus formation in Arabidopsis thaliana [J]. Development, 2020, 147(11).
[147]XIAO J, LEE U S, WAGNER D. Tug of war: adding and removing histone lysine methylation in Arabidopsis [J]. Curr Opin Plant Biol, 2016, 34: 41-53.
[148]CHENG K, XU Y, YANG C, et al. Histone tales: lysine methylation, a protagonist in Arabidopsis development [J]. J Exp Bot, 2020, 71(3): 793-807.
[149]ZHANG K, SRIDHAR V V, ZHU J, et al. Distinctive core histone post-translational modification patterns in Arabidopsis thaliana [J]. PLoS One, 2007, 2(11): e1210.
[150]PATEL D J. A structural perspective on readout of epigenetic histone and DNA methylation Marks [J]. Cold Spring Harb Perspect Biol, 2016, 8(3): a018754.
[151]HU H, DU J. Structure and mechanism of histone methylation dynamics in Arabidopsis [J]. Curr Opin Plant Biol, 2022, 67: 102211.
[152]NG D W, WANG T, CHANDRASEKHARAN M B, et al. Plant SET domain-containing proteins: structure, function and regulation [J]. Biochim Biophys Acta, 2007, 1769(5-6): 316-29.
[153]ZHOU H, LIU Y, LIANG Y, et al. The function of histone lysine methylation related SET domain group proteins in plants [J]. Protein Sci, 2020, 29(5): 1120-37.
[154]LAFOS M, KROLL P, HOHENSTATT M L, et al. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation [J]. PLoS Genet, 2011, 7(4): e1002040.
[155]TANG X, LIM M H, PELLETIER J, et al. Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings [J]. J Exp Bot, 2012, 63(3): 1391-404.
[156]JACOB Y, STROUD H, LEBLANC C, et al. Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases [J]. Nature, 2010, 466(7309): 987-91.
[157]CARTAGENA J A, MATSUNAGA S, SEKI M, et al. The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen [J]. Dev Biol, 2008, 315(2): 355-68.
[158]GRINI P E, THORSTENSEN T, ALM V, et al. The ASH1 HOMOLOG 2 (ASHH2) histone H3 methyltransferase is required for ovule and anther development in Arabidopsis [J]. PLoS One, 2009, 4(11): e7817.
[159]GUO L, YU Y, LAW J A, et al. SET DOMAIN GROUP2 is the major histone H3 lysine [corrected] 4 trimethyltransferase in Arabidopsis [J]. Proc Natl Acad Sci U S A, 2010, 107(43): 18557-62.
[160]ALVAREZ-VENEGAS R, PIEN S, SADDER M, et al. ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes [J]. Curr Biol, 2003, 13(8): 627-37.
[161]KRICHEVSKY A, GUTGARTS H, KOZLOVSKY S V, et al. C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier [J]. Dev Biol, 2007, 303(1): 259-69.
[162]LU F, LI G, CUI X, et al. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice [J]. J Integr Plant Biol, 2008, 50(7): 886-96.
[163]SHI Y, LAN F, MATSON C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 [J]. Cell, 2004, 119(7): 941-53.
[164]TSUKADA Y, FANG J, ERDJUMENT-BROMAGE H, et al. Histone demethylation by a family of JmjC domain-containing proteins [J]. Nature, 2006, 439(7078): 811-6.
[165]YAMAGUCHI N. Removal of H3K27me3 by JMJ proteins controls plant development and environmental responses in Arabidopsis [J]. Front Plant Sci, 2021, 12: 687416.
[166]KEYZOR C, MERMAZ B, TRIGAZIS E, et al. Histone demethylases ELF6 and JMJ13 antagonistically regulate self-fertility in Arabidopsis [J]. Front Plant Sci, 2021, 12: 640135.
[167]PAN J, ZHANG H, ZHAN Z, et al. A REF6-dependent H3K27me3-depleted state facilitates gene activation during germination in Arabidopsis [J]. J Genet Genomics, 2022.
[168]YANG H, HAN Z, CAO Y, et al. A companion cell-dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression [J]. PLoS Genet, 2012, 8(4): e1002664.
[169]SHEN Y, CONDE E S N, AUDONNET L, et al. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis [J]. Front Plant Sci, 2014, 5: 290.
[170]CATTANEO P, GRAEFF M, MARHAVA P, et al. Conditional effects of the epigenetic regulator JUMONJI 14 in Arabidopsis root growth [J]. Development, 2019, 146(23).
[171]LIU P, ZHANG S, ZHOU B, et al. The Histone H3K4 demethylase JMJ16 represses leaf senescence in Arabidopsis [J]. Plant Cell, 2019, 31(2): 430-43.
[172]HUANG S, ZHANG A, JIN J B, et al. Arabidopsis histone H3K4 demethylase JMJ17 functions in dehydration stress response [J]. New Phytol, 2019, 223(3): 1372-87.
[173]ISLAM M T, WANG L C, CHEN I J, et al. Arabidopsis JMJ17 promotes cotyledon greening during de-etiolation by repressing genes involved in tetrapyrrole biosynthesis in etiolated seedlings [J]. New Phytol, 2021, 231(3): 1023-39.
[174]AUDONNET L, SHEN Y, ZHOU D X. JMJ24 antagonizes histone H3K9 demethylase IBM1/JMJ25 function and interacts with RNAi pathways for gene silencing [J]. Gene Expr Patterns, 2017, 25-26: 1-7.
[175]FAN D, WANG X, TANG X, et al. Histone H3K9 demethylase JMJ25 epigenetically modulates anthocyanin biosynthesis in poplar [J]. Plant J, 2018, 96(6): 1121-36.
[176]WANG Q, LIU P, JING H, et al. JMJ27-mediated histone H3K9 demethylation positively regulates drought-stress responses in Arabidopsis [J]. New Phytol, 2021, 232(1): 221-36.
[177]CHENG J, XU L, BERGER V, et al. H3K9 demethylases IBM1 and JMJ27 are required for male meiosis in Arabidopsis thaliana [J]. New Phytol, 2022, 235(6): 2252-69.
[178]HUNG F Y, LAI Y C, WANG J, et al. The Arabidopsis histone demethylase JMJ28 regulates CONSTANS by interacting with FBH transcription factors [J]. Plant Cell, 2021, 33(4): 1196-211.
[179]HUNG F Y, CHEN J H, FENG Y R, et al. Arabidopsis JMJ29 is involved in trichome development by regulating the core trichome initiation gene GLABRA3 [J]. Plant J, 2020, 103(5): 1735-43.
[180]LEE H G, SEO P J. The Arabidopsis JMJ29 protein controls circadian oscillation through diurnal histone demethylation at the CCA1 and PRR9 Loci [J]. Genes (Basel), 2021, 12(4).
[181]CHO J N, RYU J Y, JEONG Y M, et al. Control of seed germination by light-induced histone arginine demethylation activity [J]. Dev Cell, 2012, 22(4): 736-48.
[182]BORGES F, CALARCO J P, MARTIENSSEN R A. Reprogramming the epigenome in Arabidopsis pollen [J]. Cold Spring Harb Symp Quant Biol, 2012, 77: 1-5.
[183]SOPPE W J, JACOBSEN S E, ALONSO-BLANCO C, et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene [J]. Mol Cell, 2000, 6(4): 791-802.
[184]WALKER J, GAO H, ZHANG J, et al. Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis [J]. Nat Genet, 2018, 50(1): 130-7.
[185]CALARCO J P, BORGES F, DONOGHUE M T, et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA [J]. Cell, 2012, 151(1): 194-205.
[186]ZEMACH A, MCDANIEL I E, SILVA P, et al. Genome-wide evolutionary analysis of eukaryotic DNA methylation [J]. Science, 2010, 328(5980): 916-9.
[187]SLOTKIN R K, VAUGHN M, BORGES F, et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen [J]. Cell, 2009, 136(3): 461-72.
[188]DU J, JOHNSON L M, JACOBSEN S E, et al. DNA methylation pathways and their crosstalk with histone methylation [J]. Nat Rev Mol Cell Biol, 2015, 16(9): 519-32.
[189]BERRY S, DEAN C. Environmental perception and epigenetic memory: mechanistic insight through FLC [J]. Plant J, 2015, 83(1): 133-48.
[190]COSTA S, DEAN C. Storing memories: the distinct phases of Polycomb-mediated silencing of Arabidopsis FLC [J]. Biochem Soc Trans, 2019, 47(4): 1187-96.
[191]CREVILLEN P, YANG H, CUI X, et al. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state [J]. Nature, 2014, 515(7528): 587-90.
[192]TAO Z, SHEN L, GU X, et al. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants [J]. Nature, 2017, 551(7678): 124-8.
[193]SHELDON C C, HILLS M J, LISTER C, et al. Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization [J]. Proc Natl Acad Sci U S A, 2008, 105(6): 2214-9.
[194]XU G, TAO Z, HE Y. Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation [J]. Plant Cell, 2022, 34(6): 2205-21.
[195]LUO X, OU Y, LI R, et al. Maternal transmission of the epigenetic 'memory of winter cold' in Arabidopsis [J]. Nat Plants, 2020, 6(10): 1211-8.
[196]ZHAO F, ZHANG H, ZHAO T, et al. The histone variant H3.3 promotes the active chromatin state to repress flowering in Arabidopsis [J]. Plant Physiol, 2021, 186(4): 2051-63.
[197]HUANG X, SUN M X. H3K27 methylation regulates the fate of two cell lineages in male gametophytes [J]. Plant Cell, 2022, 34(8): 2989-3005.
[198]BORGES F, GOMES G, GARDNER R, et al. Comparative transcriptomics of Arabidopsis sperm cells [J]. Plant Physiol, 2008, 148(2): 1168-81.
[199]BORG M, PAPAREDDY R K, DOMBEY R, et al. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis [J]. Elife, 2021, 10.
[200]ROTMAN N, DURBARRY A, WARDLE A, et al. A novel class of MYB factors controls sperm-cell formation in plants [J]. Curr Biol, 2005, 15(3): 244-8.
[201]YAMAOKA S, NISHIHAMA R, YOSHITAKE Y, et al. Generative cell specification requires transcription factors evolutionarily conserved in land plants [J]. Curr Biol, 2018, 28(3): 479-86 e5.
[202]OH S A, HOAI T N T, PARK H J, et al. MYB81, a microspore-specific GAMYB transcription factor, promotes pollen mitosis I and cell lineage formation in Arabidopsis [J]. Plant J, 2020, 101(3): 590-603.
[203]VERELST W, SAEDLER H, MUNSTER T. MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters [J]. Plant Physiol, 2007, 143(1): 447-60.
[204]VERELST W, TWELL D, DE FOLTER S, et al. MADS-complexes regulate transcriptome dynamics during pollen maturation [J]. Genome Biol, 2007, 8(11): R249.
[205]FENG X, ZILBERMAN D, DICKINSON H. A conversation across generations: soma-germ cell crosstalk in plants [J]. Dev Cell, 2013, 24(3): 215-25.
[206]SEGUI-SIMARRO J M, NUEZ F. How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis [J]. Physiol Plant, 2008, 134(1): 1-12.
[207]LI H, SORIANO M, CORDEWENER J, et al. The histone deacetylase inhibitor trichostatin a promotes totipotency in the male gametophyte [J]. Plant Cell, 2014, 26(1): 195-209.
[208]HEARD E, MARTIENSSEN R A. Transgenerational epigenetic inheritance: myths and mechanisms [J]. Cell, 2014, 157(1): 95-109.
[209]FENG S, JACOBSEN S E, REIK W. Epigenetic reprogramming in plant and animal development [J]. Science, 2010, 330(6004): 622-7.
[210]BAULCOMBE D C, DEAN C. Epigenetic regulation in plant responses to the environment [J]. Cold Spring Harb Perspect Biol, 2014, 6(9): a019471.
[211]GEHRING M. Epigenetic dynamics during flowering plant reproduction: evidence for reprogramming? [J]. New Phytol, 2019, 224(1): 91-6.
[212]SANTOS M R, BISPO C, BECKER J D. Isolation of Arabidopsis pollen, sperm cells, and vegetative nuclei by fluorescence-activated cell sorting (FACS) [J]. Methods Mol Biol, 2017, 1669: 193-210.
[213]BORGES F, GARDNER R, LOPES T, et al. FACS-based purification of Arabidopsis microspores, sperm cells and vegetative nuclei [J]. Plant Methods, 2012, 8(1): 44.
[214]ZHENG J, YE Y, XU Q, et al. A Modified SMART-Seq Method for Single-Cell Transcriptomic Analysis of Embryoid Body Differentiation [J]. Methods Mol Biol, 2022, 2520: 233-59.
[215]CHEN S, ZHOU Y, CHEN Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 2018, 34(17): i884-i90.
[216]CHEN C, KHALEEL S S, HUANG H, et al. Software for pre-processing Illumina next-generation sequencing short read sequences [J]. Source Code Biol Med, 2014, 9: 8.
[217]BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-20.
[218]PAN Y, WANG X, LIU L, et al. Whole genome mapping with feature sets from high-throughput sequencing data [J]. PLoS One, 2016, 11(9): e0161583.
[219]LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie2 [J]. Nat Methods, 2012, 9(4): 357-9.
[220]LANGMEAD B, TRAPNELL C, POP M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome [J]. Genome Biol, 2009, 10(3): R25.
[221]KIM D, PERTEA G, TRAPNELL C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions [J]. Genome Biol, 2013, 14(4): R36.
[222]KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype [J]. Nat Biotechnol, 2019, 37(8): 907-15.
[223]DOBIN A, DAVIS C A, SCHLESINGER F, et al. STAR: ultrafast universal RNA-seq aligner [J]. Bioinformatics, 2013, 29(1): 15-21.
[224]TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation [J]. Nat Biotechnol, 2010, 28(5): 511-5.
[225]TRAPNELL C, ROBERTS A, GOFF L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks [J]. Nat Protoc, 2012, 7(3): 562-78.
[226]YU G, WANG L G, HAN Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters [J]. OMICS, 2012, 16(5): 284-7.
[227]ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium [J]. Nat Genet, 2000, 25(1): 25-9.
[228]KANEHISA M, GOTO S, SATO Y, et al. Data, information, knowledge and principle: back to metabolism in KEGG [J]. Nucleic Acids Res, 2014, 42(Database issue): D199-205.
[229]ZHANG Y, LIU T, MEYER C A, et al. Model-based analysis of ChIP-Seq (MACS) [J]. Genome Biol, 2008, 9(9): R137.
[230]HEINZ S, BENNER C, SPANN N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities [J]. Mol Cell, 2010, 38(4): 576-89.
[231]NAVARRO GONZALEZ J, ZWEIG A S, SPEIR M L, et al. The UCSC genome browser database: 2021 update [J]. Nucleic Acids Res, 2021, 49(D1): D1046-D57.
[232]ROBINSON J T, THORVALDSDOTTIR H, WINCKLER W, et al. Integrative genomics viewer [J]. Nat Biotechnol, 2011, 29(1): 24-6.
[233]LOPEZ-DELISLE L, RABBANI L, WOLFF J, et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets [J]. Bioinformatics, 2021, 37(3): 422-3.
[234]QUINLAN A R, HALL I M. BEDTools: a flexible suite of utilities for comparing genomic features [J]. Bioinformatics, 2010, 26(6): 841-2.
[235]KAMINOW B, YUNUSOV D, DOBIN A. STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data [J]. bioRxiv, 2021.
[236]HAO Y, HAO S, ANDERSEN-NISSEN E, et al. Integrated analysis of multimodal single-cell data [J]. Cell, 2021, 184(13): 3573-87 e29.
[237]TREMOUSAYGUE D, GARNIER L, BARDET C, et al. Internal telomeric repeats and 'TCP domain' protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells [J]. Plant J, 2003, 33(6): 957-66.
[238]BORG M, BROWNFIELD L, KHATAB H, et al. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis [J]. Plant Cell, 2011, 23(2): 534-49.
[239]RADA-IGLESIAS A, BAJPAI R, SWIGUT T, et al. A unique chromatin signature uncovers early developmental enhancers in humans [J]. Nature, 2011, 470(7333): 279-83.
[240]WHYTE W A, ORLANDO D A, HNISZ D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes [J]. Cell, 2013, 153(2): 307-19.
[241]XIANG Y, ZHANG Y, XU Q, et al. Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency [J]. Nat Genet, 2020, 52(1): 95-105.
[242]GU Y, RASMUSSEN C G. Cell biology of primary cell wall synthesis in plants [J]. Plant Cell, 2022, 34(1): 103-28.
[243]LAFON-PLACETTE C, KOHLER C. Embryo and endosperm, partners in seed development [J]. Curr Opin Plant Biol, 2014, 17: 64-9.
[244]JUNG Y H, SAURIA M E G, LYU X, et al. Chromatin states in mouse sperm correlate with embryonic and adult regulatory landscapes [J]. Cell Rep, 2017, 18(6): 1366-82.
[245]LESCH B J, SILBER S J, MCCARREY J R, et al. Parallel evolution of male germline epigenetic poising and somatic development in animals [J]. Nat Genet, 2016, 48(8): 888-94.
[246]WEINHOFER I, HEHENBERGER E, ROSZAK P, et al. H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation [J]. PLoS Genet, 2010, 6(10).
[247]YANOFSKY M F, MA H, BOWMAN J L, et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors [J]. Nature, 1990, 346(6279): 35-9.
[248]GOTO K, MEYEROWITZ E M. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA [J]. Genes Dev, 1994, 8(13): 1548-60.
[249]PELAZ S, DITTA G S, BAUMANN E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes [J]. Nature, 2000, 405(6783): 200-3.
[250]BOWMAN J L, SMYTH D R, MEYEROWITZ E M. The ABC model of flower development: then and now [J]. Development, 2012, 139(22): 4095-8.
[251]SHI X, SUN X, ZHANG Z, et al. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice [J]. Plant Cell Physiol, 2015, 56(3): 497-509.
[252]ENNS L C, KANAOKA M M, TORII K U, et al. Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility [J]. Plant Mol Biol, 2005, 58(3): 333-49.
[253]GAZZARRINI S, TSUCHIYA Y, LUMBA S, et al. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid [J]. Dev Cell, 2004, 7(3): 373-85.
[254]ZHAO C, AVCI U, GRANT E H, et al. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem [J]. Plant J, 2008, 53(3): 425-36.
[255]LIU J, SHENG L, XU Y, et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis [J]. Plant Cell, 2014, 26(3): 1081-93.
[256]REIK W, DEAN W, WALTER J. Epigenetic reprogramming in mammalian development [J]. Science, 2001, 293(5532): 1089-93.
[257]BRAUN R E. Packaging paternal chromosomes with protamine [J]. Nat Genet, 2001, 28(1): 10-2.
[258]HAMMOUD S S, NIX D A, ZHANG H, et al. Distinctive chromatin in human sperm packages genes for embryo development [J]. Nature, 2009, 460(7254): 473-8.
[259]CARONE B R, HUNG J H, HAINER S J, et al. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm [J]. Dev Cell, 2014, 30(1): 11-22.
[260]SAMANS B, YANG Y, KREBS S, et al. Uniformity of nucleosome preservation pattern in Mammalian sperm and its connection to repetitive DNA elements [J]. Dev Cell, 2014, 30(1): 23-35.
[261]GE Z, BERGONCI T, ZHAO Y, et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling [J]. Science, 2017, 358(6370): 1596-600.
[262]BOISSON-DERNIER A, ROY S, KRITSAS K, et al. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge [J]. Development, 2009, 136(19): 3279-88.
[263]MIYAZAKI S, MURATA T, SAKURAI-OZATO N, et al. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization [J]. Curr Biol, 2009, 19(15): 1327-31.
[264]CHEN K, CHEN Z, WU D, et al. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes [J]. Nat Genet, 2015, 47(10): 1149-57.
[265]DAHL J A, JUNG I, AANES H, et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition [J]. Nature, 2016, 537(7621): 548-52.
[266]ZHANG B, ZHENG H, HUANG B, et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development [J]. Nature, 2016, 537(7621): 553-7.
[267]LIU X, WANG C, LIU W, et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos [J]. Nature, 2016, 537(7621): 558-62.
[268]BELHOCINE M, SIMONIN M, ABAD FLORES J D, et al. Dynamics of broad H3K4me3 domains uncover an epigenetic switch between cell identity and cancer-related genes [J]. Genome Res, 2022, 32(7): 1328-42.
[269]MONTGOMERY S A, TANIZAWA Y, GALIK B, et al. Chromatin Organization in Early Land Plants Reveals an Ancestral Association between H3K27me3, Transposons, and Constitutive Heterochromatin [J]. Curr Biol, 2020, 30(4): 573-88 e7.
[270]VOIGT P, LEROY G, DRURY W J, 3RD, et al. Asymmetrically modified nucleosomes [J]. Cell, 2012, 151(1): 181-93.
[271]YUAN L, SONG X, ZHANG L, et al. The transcriptional repressors VAL1 and VAL2 recruit PRC2 for genome-wide Polycomb silencing in Arabidopsis [J]. Nucleic Acids Res, 2021, 49(1): 98-113.
[272]YAN W, CHEN D, SMACZNIAK C, et al. Dynamic and spatial restriction of Polycomb activity by plant histone demethylases [J]. Nat Plants, 2018, 4(9): 681-9.
[273]HOFMANN F, SCHON M A, NODINE M D. The embryonic transcriptome of Arabidopsis thaliana [J]. Plant Reprod, 2019, 32(1): 77-91.
修改评论