[1] LENG Y, LIN X, DENG R, et al. Design and implement an elastically suspended back frame for reducing the burden of carrier[C]//2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE, 2021: 236-240.
[2] WALSH C J, ENDO K, HERR H. A quasi-passive leg exoskeleton for load-carrying augmentation[J]. International Journal of Humanoid Robotics, 2007, 4(03): 487 -506.
[3] HAO M, ZHANG J, CHEN K, et al. Supernumerary robotic limbs to assist human walking with load carriage[J]. Journal of Mechanisms and Robotics, 2020, 12(6).
[4] VUKOBRATOVIĆ M, BOROVAC B. Zero-moment point—thirty five years of its life[J]. International Journal of Humanoid Robotics, 2004, 1(01): 157-173.
[5] HEMAMI H, CAMANA P. Nonlinear feedback in simple locomotion systems[J]. IEEE Transactions on Automatic Control, 1976, 21(6): 855-860.
[6] KAJITA S, TANI K. Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode[C]//Proceedings. 19 91 IEEE International Conference on Robotics and Automation. IEEE Computer Society, 1991: 1405-1411.
[7] KUDOH S, KOMURA T, 𝐶2 continuous gait-pattern generation for biped robots[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003:1135-1140.
[8] HOFMANN A. Robust execution of bipedal walking tasks from biomechanical principles[J]. 2006.
[9] PRATT J, CARFF J, DRAKUNOV S, et al. Capture point: A step toward humanoid push recovery[C]//2006 6th IEEE-RAS International Conference on Humanoid Robots. IEEE, 2006: 200-207.
[10] PRATT J, TEDRAKE R. Velocity-based stability margins for fast bipedal walking[J]. Fast Motions in Biomechanics and Robotics: Optimization and Feedback Control, 2006: 299-324.
[11] KOOLEN T, DE BOER T, REBULA J, et al. Capturability-based analysis and control of legged locomotion, part 1: Theory and application to three simple gait models[J]. The International Journal of Robotics Research, 2012, 31(9): 1094-1113.
[12] PRATT J, KOOLEN T, DE BOER T, et al. Capturability-based analysis and control of legged locomotion, part 2: Application to M2V2, a lower-body humanoid[J]. The International Journal of Robotics Research, 2012, 31(10): 1117-1133.
[13] KAJITA S, KANEHIRO F, KANEKO K, et al. Biped walking pattern generation by using preview control of zero-moment point[C]//2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422). IEEE, 2003, 2: 1620-1626.
[14] NISHIWAKI K, KAGAMI S. Online walking control system for humanoids with short cycle pattern generation[J]. The International Journal of Robotics Research, 2009, 28(6): 729-742.
[15] STEPHENS B J. Humanoid push recovery[C]//2007 7th IEEE-RAS International Conference on Humanoid Robots. IEEE, 2007: 589-595.
[16] STEPHENS B J, ATKESON C G. Dynamic balance force control for compliant humanoid robots[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2010: 1248-1255.
[17] WANG Y, XIONG R, ZHU Q, et al. Compliance control for standing maintenance of humanoid robots under unknown external disturbances[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 2297-2304.
[18] RAIBERT M H. Legged robots that balance[M]. MIT press, 1986.
[19] RAIBERT M, CHEPPONIS M, BROWN H. Running on four legs as though they were one[J]. IEEE Journal on Robotics and Automation, 1986, 2(2): 70-82.
[20] DINI N, MAJD V J. An MPC-based two-dimensional push recovery of a quadruped robot in trotting gait using its reduced virtual model[J]. Mechanism and Machine Theory, 2020, 146: 103737.
[21] CHUNG J W, LEE I H, CHO B K, et al. Posture stabilization strategy for a trotting point-foot quadruped robot[J]. Journal of Intelligent & Robotic Systems, 2013, 72: 325-341.
[22] SIM O, JEONG H, OH J, et al. Joint space position/torque hybrid control of the quadruped robot for locomotion and push reaction[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 2450-2456.
[23] KHORRAM M, MOOSAVIAN S AA. Balance recovery of a quadruped robot[C]//2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM). IEEE, 2015: 259-264.
[24] HYON S H, HALE J G, CHENG G. Full-body compliant human–humanoid interaction: Balancing in the presence of unknown external forces[J]. IEEE Transactions on Robotics, 2007, 23(5): 884-898.
[25] KIM D, JORGENSEN S J, LEE J, et al. Dynamic locomotion for passive-ankle biped robots and humanoids using whole-body locomotion control[J]. The International Journal of Robotics Research, 2020, 39(8): 936-956.
[26] STEPHENS B J, ATKESON C G. Push recovery by stepping for humanoid robots with force controlled joints[C]//2010 10th IEEE-RAS International Conference on Humanoid Robots. IEEE, 2010: 52-59.
[27] KIM Y J, LEE J Y, LEE J J. A force-resisting balance control strategy for a walking biped robot under an unknown, continuous force[J]. Robotica, 2016, 34(7): 1495 -1516.
[28] XIONG X, AMES A. 3-d underactuated bipedal walking via h-lip based gait synthesis and stepping stabilization[J]. IEEE Transactions on Robotics, 2022, 38(4): 2405-2425.
[29] SEMWAL V B, MONDAL K, NANDI G C. Robust and accurate feature selection for humanoid push recovery and classification: Deep learning approach[J]. Neural Computing and Applications, 2017, 28: 565-574.
[30] KIM H, SEO D, KIM D. Push recovery control for humanoid robot using reinforcement learning[C]//2019 Third IEEE International Conference on Robotic Computing (IRC). IEEE, 2019: 488-492.
[31] FERIGO D, CAMORIANO R, VICECONTE P M, et al. On the emergence of whole body strategies from humanoid robot push-recovery learning[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8561-8568.
[32] SHAFIEE-ASHTIANI M, YOUSEFI-KOMA A, SHARIAT-PANAHI M, et al. Push recovery of a humanoid robot based on model predictive control and capture point[C]//2016 4th International Conference on Robotics and Mechatronics (ICROM). IEEE, 2016: 433-438.
[33] SHAFIEE-ASHTIANI M, YOUSEFI-KOMA A, MIRJALILI R, et al. Push recovery of a position-controlled humanoid robot based on capture point feedback control[C]//2017 5th RSI International Conferenc e on Robotics and Mechatronics (ICROM). IEEE, 2017: 126-131.
[34] MARCUCCI T, DEITS R, GABICCINI M, et al. Approximate hybrid model predictive control for multi-contact push recovery in complex environments[C]//2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids). IEEE, 2017: 31-38.
[35] TAKENAKA T, MATSUMOTO T, YOSHIIKE T. Real time motion generation and control for biped robot-1st report: Walking gait pattern generation[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2009: 1084-1091.
[36] RAIBERT M, BLANKESPOOR K, NELSON G, et al. BigDog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2): 10822-10825.
[37] SEOK S, WANG A, CHUAH M Y, et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot[C]//2013 IEEE International Conference on Robotics and Automation. IEEE, 2013: 3307 -3312.
[38] BLEDT G, POWELL M J, KATZ B, et al. MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 2245-2252.
[39] DI CARLO J, WENSING P M, KATZ B, et al. Dynamic locomotion in the MIT Cheetah 3 through convex model-predictive control[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1-9.
[40] LEE J, HWANGBO J, WELLHAUSEN L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Science Robotics, 2020, 5(47): 5986.
[41] TSOUNIS V, ALGE M, LEE J, et al. Deep gait: Planning and control of quadrupedal gaits using deep reinforcement learning[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3699-3706.
[42] HUANG Q, LI K, NAKAMURA Y, et al. Analysis of physical capability of a biped humanoid: Walking speed and actuator specifications[C]//Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium. IEEE, 2001, 1: 253-258.
[43] 纪军红.HIT-Ⅲ双足步行机器人步态规划研究[D].黑龙江:哈尔滨工业大学,2000.
[44] CHEN H, HUANG G, LI Q, et al. Virtual-model-based compliance control for pushing recovery of position controlled humanoid robots[C]//2019 IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO). IEEE, 2019: 265 -269.
[45] LI Q, MENG F, YU Z, et al. Dynamic torso compliance control for standing and walking balance of position-controlled humanoid robots[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(2): 679-688.
[46] MAO Y, ZHU Q, ZHOU C, et al. Standing posture control of bipedal robots with adaptive compliance under unknown payload variations and external disturbances[J]. International Journal of Humanoid Robotics, 2017, 14(03): 1750014.
[47] CASTILLO G A, WENG B, HEREID A, et al. Reinforcement learning meets hybrid zero dynamics: A case study for rabbit[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 284-290.
[48] YANG S, CHEN H, ZHANG L, et al. Reachability-based push recovery for humanoid robots with variable-height inverted pendulum[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 3054-3060.
[49] ZHANG L, FU C. Predicting foot placement for balance through a simple model with swing leg dynamics[J]. Journal of Biomechanics, 2018, 77: 155-162.
[50] LUO J, SU Y, RUAN L, et al. Robust bipedal locomotion based on a hierarchical control structure[J]. Robotica, 2019, 37(10): 1750-1767.
[51] 蔡润斌.四足机器人运动规划及协调控制[D].国防科学技术大学,2013.
[52] CHEN Y, HOU W Q, WANG J, et al. A strategy for push recovery in quadruped robot based on reinforcement learning[C]//2015 34th Chinese Control Conference (CCC). IEEE, 2015: 3145-3151.
[53] ZHU X, WAN J, ZHOU C, et al. A composite robust reactive control strategy for quadruped robot under external push disturbance[J]. Computers & Electrical Engineering, 2021, 91: 107027.
[54] SHANG W, WU Z, LIU Q, et al. Foot placement estimator for quadruped push recovery[C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2019: 1530 -1534.
[55] DAVENPORT C, PARIETTI F, ASADA H H. Design and biomechanical analysis of supernumerary robotic limbs[C]//Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2012, 45295: 787-793.
[56] LLORENS-BONILLA B, PARIETTI F, ASADA H H. Demonstration-based control of supernumerary robotic limbs[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012: 3936-3942.
[57] KAZEROONI H. Berkeley human exoskeleton technology [J]. Faseb Journal, 2006, 20: A845-A.
[58] KAZEROONI H. The Berkeley lower extremity exoskeleton [C]. Proceedings of the Field and Service Robotics, 2006.
[59] KAZEROONI H, RACINE J L, HUANG L H, et al. On the control of the Berkeleylower extremity exoskeleton (BLEEX) [C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005.
[60] KAZEROONI H, STEGER R, HUANG L. Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX) [J]. International Journal of Robotics Research, 2006, 25: 561-73.
[61] ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX) [J]. IEEE-ASME Transactions on Mechatronics, 2006, 11: 128-38.
[62] MAEKAWA A, KAWAMURA K, INAMI M. Dynamic assistance for human balancing with inertia of a wearable robotic appendage[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 4077-4082.
[63] PARIETTI F, ASADA H H. Supernumerary robotic limbs for aircraft fuselage assembly: Body stabilization and guidance by bracing[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 1176-1183.
[64] KUREK D A, ASADA H H. The MantisBot: Design and impedance control of supernumerary robotic limbs for near-ground work[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 5942-5947.
[65] PARIETTI F, CHAN K, ASADA H H. Bracing the human body with supernumerary robotic limbs for physical assistance and load reduction[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 141-148.
[66] LUO J, GONG Z, SU Y, et al. Modeling and balance control of supernumerary robotic limb for overhead tasks[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 4125 -4132.
[67] PARIETTI F, ASADA H. Supernumerary robotic limbs for human body support[J]. IEEE Transactions on Robotics, 2016, 32(2): 301-311.
[68] PARIETTI F, CHAN K C, HUNTER B, et al. Design and control of supernumerary robotic limbs for balance augmentation[C]//2015 IEEE International Confer ence on Robotics and Automation (ICRA). IEEE, 2015: 5010-5017.
[69] DANIEL P H, ASADA H H. Stable crawling policy for wearable Superlimbs attached to a human with tuned impedance[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 3496-3503.
[70] TREERS L, LO R, CHEUNG M, et al. Design and control of lightweight supernumerary robotic limbs for sitting/standing assistance[C]//2016 International Symposium on Experimental Robotics. Springer International Publishing, 2017: 299 -308.
[71] GONZALEZ D J, ASADA H H. Design of extra robotic legs for augmenting human payload capabilities by exploiting singularity and torque redistribution[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 4348-4354.
[72] GONZALEZ D J, ASADA H H. Hybrid open-loop closed-loop control of coupled human–robot balance during assisted stance transition with extra robotic legs[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1676-1683.
[73] CHEN T, CHEN J C. A new viewpoint on control algorithms for anthropomorphic robotic arms[J]. Journal of Intelligent & Robotic Systems, 2020, 99: 647 -658.
[74] FU C, LIU S, WANG J, et al. Sensory reflex control for a pneumatic biped robot[C]//The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent. IEEE, 2014: 401-406.
[75] FU C. Perturbation recovery of biped walking by updating the footstep[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014: 2509-2514.
[76] HUANG Q, YOKOI K, KAJITA S, et al. Planning walking patterns for a biped robot[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 280-289.
[77] LIM H, KANESHIMA Y, TAKANISHI A. Online walking pattern generation for biped humanoid robot with trunk[C]//Proceedings 2002 IEEE International Conference on Robotics and Automation. IEEE, 2002, 3: 3111-3116.
[78] YAMADA K, SAYAMA K, YOSHIDA T, et al. Mechanisms of biped humanoid robot and online walking pattern generation[C]//2011 11th International Confere nce on Control, Automation and Systems. IEEE, 2011: 1117-1122.
[79] ERBATUR K, KURT O. Natural ZMP trajectories for biped robot reference generation[J]. IEEE Transactions on Industrial Electronics, 2008, 56(3): 835 -845.
[80] AMES A D, COUSINEAU E A, POWELL M J. Dynamically stable bipedal robotic walking with NAO via human-inspired hybrid zero dynamics[C]//Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control. 2012: 135-144.
[81] DA X, HARIB O, HARTLEY R, et al. From 2D design of underactuated bipedal gaits to 3D implementation: Walking with speed tracking[J]. IEEE Access, 2016, 4: 3469 -3478.
[82] 田彦涛,孙中波,李宏扬,等.动态双足机器人的控制与优化研究进展[J].自动化学报,2016,42(8):1142-1157.
[83] 姚道金,王杨,姚渊,等.基于质心运动状态的双足机器人欠驱动步行稳定控制[J].机器人,2017 (3): 324-332.
[84] FREIDOVICH L B, METTIN U, SHIRIAEV A S, et al. A passive 2-DOF walker: Hunting for gaits using virtual holonomic constraints[J]. IEEE Transactions on Robotics, 2009, 25(5): 1202-1208.
[85] WESTERVELT E R, GRIZZLE J W, CHEVALLEREAU C, et al. Feedback control of dynamic bipedal robot locomotion[M]. CRC press, 2018.
[86] SHIRIAEV A S, FREIDOVICH L B, SPONG M W. Controlled invariants and trajectory planning for underactuated mechanical systems[J]. IEEE Transactions on Automatic Control, 2014, 59(9): 2555-2561.
[87] LA HERA P X M, SHIRIAEV A S, FREIDOVICH L B, et al. Stable walking gaits for a three-link planar biped robot with one actuator[J]. IEEE Transactions on Robotics, 2013, 29(3): 589-601.
[88] PRATT J, DILWORTH P, PRATT G. Virtual model control of a bipedal walking robot[C]//Proceedings of International Conference on Robotics and Automation. IEEE, 1997, 1: 193-198.
[89] HOPKINS M A, HONG D W, LEONESSA A. Humanoid locomotion on uneven terrain using the time-varying divergent component of motion[C]//2014 IEEE-RASInternational Conference on Humanoid Robots. IEEE, 2014: 266-272.
[90] DANESHMAND E, KHADIV M, GRIMMINGER F, et al. Variable horizon MPC with swing foot dynamics for bipedal walking control[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2349-2356.
[91] 李超.欠驱动双足机器人动态步行规划与抗扰动控制[D].浙江大学,2015.
修改评论