中文版 | English
题名

“半人马”机器人抗扰动平衡控制研究

其他题名
RESEARCH ON ANTI-DISTURBANCE BALANCE CONTROL OF CENTAUR ROBOT
姓名
姓名拼音
GUO Shouchao
学号
12032671
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
付成龙
导师单位
机械与能源工程系
论文答辩日期
2023-05-18
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

在日常生活中人们经常有携带负载的需求,负载会增加人体行走的能量消耗。“半人马”机器人是一种新型的与人协同负重行走的系统,在人们需要携带负载行走时,“半人马”机器人可以与穿戴者共同承担负载,减少人体新陈代谢消耗。“半人马”机器人易受到外界的不确定性干扰影响,应对外界干扰的能力决定机器人的工作性能。侧向推力受扰是一种典型的外界扰动形式,本文将“半人马”机器人抗扰动问题缩小为研究“半人马”机器人在侧向受扰后与穿戴者协同运动恢复平衡的问题。本文的主要研究内容包含以下方面:

1)搭建了“半人马”机器人抗扰动平衡控制的传感器系统。通过传感器系统,获取人体姿态角、机器人躯干姿态、加速度等运动信息,设计了状态估计器获得机器人的躯干位姿,并提出机器人感知外界扰动的方法。

2)提出了人体受扰跨步运动预测方法。在受扰恢复过程中,“半人马”机器人控制算法要综合考虑机器人自身的抗扰动恢复和穿戴者的运动状态。本文进行了人体侧向受扰实验,获取到人体受扰冲量、大腿摆动角度和跨步步长等信息,使用回归模型和自适应模糊神经网络训练模型,预测人体受扰后的跨步步长,进一步估计人体质心运动位移。

3)提出了“半人马”机器人抗扰动运动控制方法。机器人受扰后跨步运动过程中,双腿不断切换为支撑状态和摆动状态,对两种状态分别设计控制算法。对摆动腿的控制,基于倒立摆模型、捕获点理论和运动发散分量方程计算落足点,根据摆动腿运动性能优化步态周期,使用贝塞尔曲线规划足端轨迹;对支撑腿的控制,利用单刚体模型,提出了基于穿戴者运动信息的全状态模型预测控制算法规划支撑腿足端的地面作用力。

其他摘要

In daily life, people often need to carry a load, and the load will increase human energy expenditure. The Centaur robot is a new type of system that assists in human walking with a load. When people need to carry a load, the Centaur robot can share the load with the wearer, reducing the energy consumption of the human body. Uncertainty factors in the environment will affect the normal work of the Centaur robot, and the ability to deal with external disturbances determines the robot performance. Disturbance by lateral thrust is a typical form of external disturbance, and therefore this thesis narrows the problem of anti-disturbance to the problem of studying the Centaur robot and the wearer to restore balance after lateral disturbance. The main research content of the thesis includes the following aspects:

(1) The sensor system for the anti-disturbance balance control of the Centaur robot is built. Through the sensor system, the motion information such as human body posture angle, body posture and acceleration are obtained. On this basis, the state estimator is designed to obtain the robot's pose, and the method for the robot to perceive external disturbances is proposed.

(2) The prediction method for disturbed striding motion of human body is proposed. In the process of recovery from disturbance, the control algorithm of the Centaur robot should comprehensively consider the anti-disturbance recovery of the robot itself and the motion state of the wearer. In this thesis, the human body disturbance experiment was carried out, obtaining information such as the impulse of human body disturbance, the thigh swing angle, the stride length, etc., and the regression model and the adaptive network-based fuzzy inference system are used to predict the step length after the human body was disturbed, and further estimate the movement displacement of human body center of mass.

(3) The anti-disturbance motion control method for the Centaur robot is proposed. During the movement of the robot after being disturbed, the legs are constantly switched to the support state and the swing state, and the control algorithms are designed for the two states respectively. For the control of the swing leg, this thesis uses the inverted pendulum model, the capture point theory and the divergent component of motion equation to calculate the foothold point, and optimizes the gait cycle according to the swing leg motion performance, and uses the Bezier curve to plan the foot end trajectory. Regarding the control of the supporting leg, according to the wearer's motion information, this thesis uses the single rigid body model to proposes the full-state model predictive control algorithm that plans the ground force at the foot end of the supporting leg.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] LENG Y, LIN X, DENG R, et al. Design and implement an elastically suspended back frame for reducing the burden of carrier[C]//2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE, 2021: 236-240.
[2] WALSH C J, ENDO K, HERR H. A quasi-passive leg exoskeleton for load-carrying augmentation[J]. International Journal of Humanoid Robotics, 2007, 4(03): 487 -506.
[3] HAO M, ZHANG J, CHEN K, et al. Supernumerary robotic limbs to assist human walking with load carriage[J]. Journal of Mechanisms and Robotics, 2020, 12(6).
[4] VUKOBRATOVIĆ M, BOROVAC B. Zero-moment point—thirty five years of its life[J]. International Journal of Humanoid Robotics, 2004, 1(01): 157-173.
[5] HEMAMI H, CAMANA P. Nonlinear feedback in simple locomotion systems[J]. IEEE Transactions on Automatic Control, 1976, 21(6): 855-860.
[6] KAJITA S, TANI K. Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode[C]//Proceedings. 19 91 IEEE International Conference on Robotics and Automation. IEEE Computer Society, 1991: 1405-1411.
[7] KUDOH S, KOMURA T, 𝐶2 continuous gait-pattern generation for biped robots[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003:1135-1140.
[8] HOFMANN A. Robust execution of bipedal walking tasks from biomechanical principles[J]. 2006.
[9] PRATT J, CARFF J, DRAKUNOV S, et al. Capture point: A step toward humanoid push recovery[C]//2006 6th IEEE-RAS International Conference on Humanoid Robots. IEEE, 2006: 200-207.
[10] PRATT J, TEDRAKE R. Velocity-based stability margins for fast bipedal walking[J]. Fast Motions in Biomechanics and Robotics: Optimization and Feedback Control, 2006: 299-324.
[11] KOOLEN T, DE BOER T, REBULA J, et al. Capturability-based analysis and control of legged locomotion, part 1: Theory and application to three simple gait models[J]. The International Journal of Robotics Research, 2012, 31(9): 1094-1113.
[12] PRATT J, KOOLEN T, DE BOER T, et al. Capturability-based analysis and control of legged locomotion, part 2: Application to M2V2, a lower-body humanoid[J]. The International Journal of Robotics Research, 2012, 31(10): 1117-1133.
[13] KAJITA S, KANEHIRO F, KANEKO K, et al. Biped walking pattern generation by using preview control of zero-moment point[C]//2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422). IEEE, 2003, 2: 1620-1626.
[14] NISHIWAKI K, KAGAMI S. Online walking control system for humanoids with short cycle pattern generation[J]. The International Journal of Robotics Research, 2009, 28(6): 729-742.
[15] STEPHENS B J. Humanoid push recovery[C]//2007 7th IEEE-RAS International Conference on Humanoid Robots. IEEE, 2007: 589-595.
[16] STEPHENS B J, ATKESON C G. Dynamic balance force control for compliant humanoid robots[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2010: 1248-1255.
[17] WANG Y, XIONG R, ZHU Q, et al. Compliance control for standing maintenance of humanoid robots under unknown external disturbances[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 2297-2304.
[18] RAIBERT M H. Legged robots that balance[M]. MIT press, 1986.
[19] RAIBERT M, CHEPPONIS M, BROWN H. Running on four legs as though they were one[J]. IEEE Journal on Robotics and Automation, 1986, 2(2): 70-82.
[20] DINI N, MAJD V J. An MPC-based two-dimensional push recovery of a quadruped robot in trotting gait using its reduced virtual model[J]. Mechanism and Machine Theory, 2020, 146: 103737.
[21] CHUNG J W, LEE I H, CHO B K, et al. Posture stabilization strategy for a trotting point-foot quadruped robot[J]. Journal of Intelligent & Robotic Systems, 2013, 72: 325-341.
[22] SIM O, JEONG H, OH J, et al. Joint space position/torque hybrid control of the quadruped robot for locomotion and push reaction[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 2450-2456.
[23] KHORRAM M, MOOSAVIAN S AA. Balance recovery of a quadruped robot[C]//2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM). IEEE, 2015: 259-264.
[24] HYON S H, HALE J G, CHENG G. Full-body compliant human–humanoid interaction: Balancing in the presence of unknown external forces[J]. IEEE Transactions on Robotics, 2007, 23(5): 884-898.
[25] KIM D, JORGENSEN S J, LEE J, et al. Dynamic locomotion for passive-ankle biped robots and humanoids using whole-body locomotion control[J]. The International Journal of Robotics Research, 2020, 39(8): 936-956.
[26] STEPHENS B J, ATKESON C G. Push recovery by stepping for humanoid robots with force controlled joints[C]//2010 10th IEEE-RAS International Conference on Humanoid Robots. IEEE, 2010: 52-59.
[27] KIM Y J, LEE J Y, LEE J J. A force-resisting balance control strategy for a walking biped robot under an unknown, continuous force[J]. Robotica, 2016, 34(7): 1495 -1516.
[28] XIONG X, AMES A. 3-d underactuated bipedal walking via h-lip based gait synthesis and stepping stabilization[J]. IEEE Transactions on Robotics, 2022, 38(4): 2405-2425.
[29] SEMWAL V B, MONDAL K, NANDI G C. Robust and accurate feature selection for humanoid push recovery and classification: Deep learning approach[J]. Neural Computing and Applications, 2017, 28: 565-574.
[30] KIM H, SEO D, KIM D. Push recovery control for humanoid robot using reinforcement learning[C]//2019 Third IEEE International Conference on Robotic Computing (IRC). IEEE, 2019: 488-492.
[31] FERIGO D, CAMORIANO R, VICECONTE P M, et al. On the emergence of whole body strategies from humanoid robot push-recovery learning[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8561-8568.
[32] SHAFIEE-ASHTIANI M, YOUSEFI-KOMA A, SHARIAT-PANAHI M, et al. Push recovery of a humanoid robot based on model predictive control and capture point[C]//2016 4th International Conference on Robotics and Mechatronics (ICROM). IEEE, 2016: 433-438.
[33] SHAFIEE-ASHTIANI M, YOUSEFI-KOMA A, MIRJALILI R, et al. Push recovery of a position-controlled humanoid robot based on capture point feedback control[C]//2017 5th RSI International Conferenc e on Robotics and Mechatronics (ICROM). IEEE, 2017: 126-131.
[34] MARCUCCI T, DEITS R, GABICCINI M, et al. Approximate hybrid model predictive control for multi-contact push recovery in complex environments[C]//2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids). IEEE, 2017: 31-38.
[35] TAKENAKA T, MATSUMOTO T, YOSHIIKE T. Real time motion generation and control for biped robot-1st report: Walking gait pattern generation[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2009: 1084-1091.
[36] RAIBERT M, BLANKESPOOR K, NELSON G, et al. BigDog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2): 10822-10825.
[37] SEOK S, WANG A, CHUAH M Y, et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot[C]//2013 IEEE International Conference on Robotics and Automation. IEEE, 2013: 3307 -3312.
[38] BLEDT G, POWELL M J, KATZ B, et al. MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 2245-2252.
[39] DI CARLO J, WENSING P M, KATZ B, et al. Dynamic locomotion in the MIT Cheetah 3 through convex model-predictive control[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1-9.
[40] LEE J, HWANGBO J, WELLHAUSEN L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Science Robotics, 2020, 5(47): 5986.
[41] TSOUNIS V, ALGE M, LEE J, et al. Deep gait: Planning and control of quadrupedal gaits using deep reinforcement learning[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3699-3706.
[42] HUANG Q, LI K, NAKAMURA Y, et al. Analysis of physical capability of a biped humanoid: Walking speed and actuator specifications[C]//Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium. IEEE, 2001, 1: 253-258.
[43] 纪军红.HIT-Ⅲ双足步行机器人步态规划研究[D].黑龙江:哈尔滨工业大学,2000.
[44] CHEN H, HUANG G, LI Q, et al. Virtual-model-based compliance control for pushing recovery of position controlled humanoid robots[C]//2019 IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO). IEEE, 2019: 265 -269.
[45] LI Q, MENG F, YU Z, et al. Dynamic torso compliance control for standing and walking balance of position-controlled humanoid robots[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(2): 679-688.
[46] MAO Y, ZHU Q, ZHOU C, et al. Standing posture control of bipedal robots with adaptive compliance under unknown payload variations and external disturbances[J]. International Journal of Humanoid Robotics, 2017, 14(03): 1750014.
[47] CASTILLO G A, WENG B, HEREID A, et al. Reinforcement learning meets hybrid zero dynamics: A case study for rabbit[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 284-290.
[48] YANG S, CHEN H, ZHANG L, et al. Reachability-based push recovery for humanoid robots with variable-height inverted pendulum[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 3054-3060.
[49] ZHANG L, FU C. Predicting foot placement for balance through a simple model with swing leg dynamics[J]. Journal of Biomechanics, 2018, 77: 155-162.
[50] LUO J, SU Y, RUAN L, et al. Robust bipedal locomotion based on a hierarchical control structure[J]. Robotica, 2019, 37(10): 1750-1767.
[51] 蔡润斌.四足机器人运动规划及协调控制[D].国防科学技术大学,2013.
[52] CHEN Y, HOU W Q, WANG J, et al. A strategy for push recovery in quadruped robot based on reinforcement learning[C]//2015 34th Chinese Control Conference (CCC). IEEE, 2015: 3145-3151.
[53] ZHU X, WAN J, ZHOU C, et al. A composite robust reactive control strategy for quadruped robot under external push disturbance[J]. Computers & Electrical Engineering, 2021, 91: 107027.
[54] SHANG W, WU Z, LIU Q, et al. Foot placement estimator for quadruped push recovery[C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2019: 1530 -1534.
[55] DAVENPORT C, PARIETTI F, ASADA H H. Design and biomechanical analysis of supernumerary robotic limbs[C]//Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2012, 45295: 787-793.
[56] LLORENS-BONILLA B, PARIETTI F, ASADA H H. Demonstration-based control of supernumerary robotic limbs[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012: 3936-3942.
[57] KAZEROONI H. Berkeley human exoskeleton technology [J]. Faseb Journal, 2006, 20: A845-A.
[58] KAZEROONI H. The Berkeley lower extremity exoskeleton [C]. Proceedings of the Field and Service Robotics, 2006.
[59] KAZEROONI H, RACINE J L, HUANG L H, et al. On the control of the Berkeleylower extremity exoskeleton (BLEEX) [C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005.
[60] KAZEROONI H, STEGER R, HUANG L. Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX) [J]. International Journal of Robotics Research, 2006, 25: 561-73.
[61] ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX) [J]. IEEE-ASME Transactions on Mechatronics, 2006, 11: 128-38.
[62] MAEKAWA A, KAWAMURA K, INAMI M. Dynamic assistance for human balancing with inertia of a wearable robotic appendage[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 4077-4082.
[63] PARIETTI F, ASADA H H. Supernumerary robotic limbs for aircraft fuselage assembly: Body stabilization and guidance by bracing[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 1176-1183.
[64] KUREK D A, ASADA H H. The MantisBot: Design and impedance control of supernumerary robotic limbs for near-ground work[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 5942-5947.
[65] PARIETTI F, CHAN K, ASADA H H. Bracing the human body with supernumerary robotic limbs for physical assistance and load reduction[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 141-148.
[66] LUO J, GONG Z, SU Y, et al. Modeling and balance control of supernumerary robotic limb for overhead tasks[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 4125 -4132.
[67] PARIETTI F, ASADA H. Supernumerary robotic limbs for human body support[J]. IEEE Transactions on Robotics, 2016, 32(2): 301-311.
[68] PARIETTI F, CHAN K C, HUNTER B, et al. Design and control of supernumerary robotic limbs for balance augmentation[C]//2015 IEEE International Confer ence on Robotics and Automation (ICRA). IEEE, 2015: 5010-5017.
[69] DANIEL P H, ASADA H H. Stable crawling policy for wearable Superlimbs attached to a human with tuned impedance[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 3496-3503.
[70] TREERS L, LO R, CHEUNG M, et al. Design and control of lightweight supernumerary robotic limbs for sitting/standing assistance[C]//2016 International Symposium on Experimental Robotics. Springer International Publishing, 2017: 299 -308.
[71] GONZALEZ D J, ASADA H H. Design of extra robotic legs for augmenting human payload capabilities by exploiting singularity and torque redistribution[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 4348-4354.
[72] GONZALEZ D J, ASADA H H. Hybrid open-loop closed-loop control of coupled human–robot balance during assisted stance transition with extra robotic legs[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1676-1683.
[73] CHEN T, CHEN J C. A new viewpoint on control algorithms for anthropomorphic robotic arms[J]. Journal of Intelligent & Robotic Systems, 2020, 99: 647 -658.
[74] FU C, LIU S, WANG J, et al. Sensory reflex control for a pneumatic biped robot[C]//The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent. IEEE, 2014: 401-406.
[75] FU C. Perturbation recovery of biped walking by updating the footstep[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014: 2509-2514.
[76] HUANG Q, YOKOI K, KAJITA S, et al. Planning walking patterns for a biped robot[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 280-289.
[77] LIM H, KANESHIMA Y, TAKANISHI A. Online walking pattern generation for biped humanoid robot with trunk[C]//Proceedings 2002 IEEE International Conference on Robotics and Automation. IEEE, 2002, 3: 3111-3116.
[78] YAMADA K, SAYAMA K, YOSHIDA T, et al. Mechanisms of biped humanoid robot and online walking pattern generation[C]//2011 11th International Confere nce on Control, Automation and Systems. IEEE, 2011: 1117-1122.
[79] ERBATUR K, KURT O. Natural ZMP trajectories for biped robot reference generation[J]. IEEE Transactions on Industrial Electronics, 2008, 56(3): 835 -845.
[80] AMES A D, COUSINEAU E A, POWELL M J. Dynamically stable bipedal robotic walking with NAO via human-inspired hybrid zero dynamics[C]//Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control. 2012: 135-144.
[81] DA X, HARIB O, HARTLEY R, et al. From 2D design of underactuated bipedal gaits to 3D implementation: Walking with speed tracking[J]. IEEE Access, 2016, 4: 3469 -3478.
[82] 田彦涛,孙中波,李宏扬,等.动态双足机器人的控制与优化研究进展[J].自动化学报,2016,42(8):1142-1157.
[83] 姚道金,王杨,姚渊,等.基于质心运动状态的双足机器人欠驱动步行稳定控制[J].机器人,2017 (3): 324-332.
[84] FREIDOVICH L B, METTIN U, SHIRIAEV A S, et al. A passive 2-DOF walker: Hunting for gaits using virtual holonomic constraints[J]. IEEE Transactions on Robotics, 2009, 25(5): 1202-1208.
[85] WESTERVELT E R, GRIZZLE J W, CHEVALLEREAU C, et al. Feedback control of dynamic bipedal robot locomotion[M]. CRC press, 2018.
[86] SHIRIAEV A S, FREIDOVICH L B, SPONG M W. Controlled invariants and trajectory planning for underactuated mechanical systems[J]. IEEE Transactions on Automatic Control, 2014, 59(9): 2555-2561.
[87] LA HERA P X M, SHIRIAEV A S, FREIDOVICH L B, et al. Stable walking gaits for a three-link planar biped robot with one actuator[J]. IEEE Transactions on Robotics, 2013, 29(3): 589-601.
[88] PRATT J, DILWORTH P, PRATT G. Virtual model control of a bipedal walking robot[C]//Proceedings of International Conference on Robotics and Automation. IEEE, 1997, 1: 193-198.
[89] HOPKINS M A, HONG D W, LEONESSA A. Humanoid locomotion on uneven terrain using the time-varying divergent component of motion[C]//2014 IEEE-RASInternational Conference on Humanoid Robots. IEEE, 2014: 266-272.
[90] DANESHMAND E, KHADIV M, GRIMMINGER F, et al. Variable horizon MPC with swing foot dynamics for bipedal walking control[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2349-2356.
[91] 李超.欠驱动双足机器人动态步行规划与抗扰动控制[D].浙江大学,2015.

所在学位评定分委会
力学
国内图书分类号
TP242.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544406
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
郭守超. “半人马”机器人抗扰动平衡控制研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032671-郭守超-机械与能源工程(6674KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郭守超]的文章
百度学术
百度学术中相似的文章
[郭守超]的文章
必应学术
必应学术中相似的文章
[郭守超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。