中文版 | English
题名

卤化物电解质和镍锰酸锂正极在全固态电池中的界面问题研究

其他题名
RESEARCH ON THE INTERFACE BETWEEN HALIDE ELECTROLYTE AND LITHIUM NICKEL-MANGANATE CATHODE IN ALLSOLID-STATE BATTERIES
姓名
姓名拼音
JIA Gaoshuai
学号
12132922
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
李帅
导师单位
精密光学工程中心
论文答辩日期
2023-05-26
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

锂离子电池具有高能量密度与长循环寿命等优势,被广泛应用于消费电子与 电动汽车等领域。提高锂离子电池能量密度以满足人们对长续航的需求,已成为当 前电池研发的重要目标。电极材料是决定电池容量和能量密度的关键,低成本且高 能量密度的高电压镍锰酸锂被认为是构建高比能锂离子电池的关键材料之一。然 而,镍锰酸锂正极在与有机电解液匹配时,过高的充放电电压可能引发副反应,降 低电池循环性能,这限制了该材料在锂离子电池中的应用。采用稳定性更高的固态 电解质替换有机电解液,不仅可以解决高性能电极材料与电解质的兼容性问题,还 能进一步提高电池的能量密度和安全性。卤化物固态电解质具有高离子电导率、良 好的界面相容性并且易于制备等优点,引起了人们的广泛关注,有望应用于全固态 电池中。本论文针对全固态电池中关键的界面问题,研究了卤化物电解质与常见电 极材料间的化学稳定性,并研究了其与高电压镍锰酸锂匹配应用于全固态电池中 的可行性。 结合X射线衍射与热重分析,研究了卤化物电解质Li2OHCl(LOHC)和Li3InCl6 (LIC)与常见电极材料的化学稳定性。结果显示,LIC 和 LOHC 与 LiCoO2、LiMn2O4 和 Li4Ti5O12 等材料表现出较好的化学稳定性;此外,LIC 还与 LiNi0.5Mn1.5O4 (LNMO)、Li1.3Al0.3Ti1.7(PO4)3 表现出较好的化学稳定性。然而,熔融的 LOHC 与 其他电池材料,如 LNMO、LiFePO4、LiNi0.8Co0.1Mn0.1O2、Si-C 和 Li1.3Al0.3Ti1.7(PO4)3 发生化学反应。以上结果为设计和优化高界面相容性的卤化物固态电解质基全固 态电池提供了实验基础与可行性选择。 基于镍锰酸锂与卤化物固态电解质的化学稳定性,本文将镍锰酸锂作为正极, 使用 LIC、Li6PS5Cl 作为双层电解质层,Li-In 合金作为负极,装配了全固态电池, 并进行电化学性能测试。镍锰酸锂表现出低的库伦效率和容量,首次库伦效率仅有 50.46%,首次放电比容量仅有 25 mAh g−1。X 射线光电子能谱和电化学测试结果 表明,LIC 在高电压下分解生成不稳定界面相,阻碍了 Li+的迁移,导致电池库伦 效率和容量降低等问题的发生。为应对这一问题,本文采用表面包覆的方法优化了 正极/电解质界面,在 LNMO 表面分别包覆 LiNbO3(LNO)、Li3PO4(LPO),得 到 LNMO@LNO、LNMO@LPO 材料。构筑包覆层的镍锰酸锂首次放电比容量达 到了 60 mAh g−1。近一步分析表明,包覆层 LNO 和 LPO 的构建抑制了 LIC 的分 解反应,稳定了镍锰酸锂的结构,提高了镍锰酸锂全固态电池的循环稳定性、比容 量和库伦效率。以上结论为开发高电压镍锰酸锂固态电池及优化镍锰酸锂与固态电解质界面稳定性提供了策略。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.

[2] MADEC L, MA L, NELSON K J, et al. The effects of a ternary electrolyte additive system on the electrode/electrolyte interfaces in high voltage Li-ion cells[J]. Journal of The Electrochemical Society, 2016, 163(6): A1001.

[3] LOCHALA J A, ZHANG H, WANG Y, et al. Practical challenges in employing graphene for Lithium-ion batteries and beyond[J]. Small Methods, 2017, 1(6): 1700099.

[4] DOH C-H, KIM D-H, KIM H-S, et al. Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test[J]. Journal of Power Sources, 2008, 175(2): 881-885.

[5] BELOV D, YANG M-H. Investigation of the kinetic mechanism in overcharge process for Li-ion battery[J]. Solid State Ionics, 2008, 179(27-32): 1816-1821.

[6] ZHANG J-N, LI Q, OUYANG C, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603.

[7] MORIMOTO H, AWANO H, TERASHIMA J, et al. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2−x(PO4)3 (x = 0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell[J]. Journal of Power Sources, 2013, 240: 636-643.

[8] WANG Y, ZHANG Q, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V High-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): 2001413.

[9] BHATT M D, O'DWYER C. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes[J]. Physical Chemistry Chemical Physics, 2015, 17(7): 4799-4844.

[10] BAK S M, HU E, ZHOU Y, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601.

[11] MIN K, SEO S W, CHOI B, et al. Computational screening for design of optimal coating materials to suppress gas evolution in Li-ion battery cathodes[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17822-17834.

[12] CHEN S-P, LV D, CHEN J, et al. Review on defects and modification methods of LiFePO4 cathode material for Lithium-ion batteries[J]. Energy & Fuels, 2022, 36(3): 1232-1251.

[13] PARK S, OH J, KIM J M, et al. Facile preparation of cellulose nanofiber derived carbon and reduced graphene oxide co-supported LiFePO4 nanocomposite as enhanced cathode material for lithium-ion battery[J]. Electrochimica Acta, 2020, 354: 136707.

[14] OKADA K, KIMURA I, MACHIDA K. High rate capability by sulfur-doping into LiFePO4 matrix[J]. RSC Advances, 2018, 8(11): 5848-5853.

[15] DAI K, GU F, WANG Q, et al. The new insight into the lithium migration mechanism of LiFePO4 by atomic simulation method[J]. Ionics, 2021, 27: 1477-1490.

[16] OH S-M, OH S-W, YOON C-S, et al. High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries[J]. Advanced Functional Materials, 2010, 20(19): 3260-3265.

[17] ZHAO J, WANG Y. Atomic layer deposition of epitaxial ZrO2 coating on LiMn2O4 nanoparticles for High-rate lithium ion batteries at elevated temperature[J]. Nano Energy, 2013, 2(5): 882-889.

[18] LEE J H, KIM K J. Superior electrochemical properties of porous Mn2O3-coated LiMn2O4 thin-film cathodes for Li-ion microbatteries[J]. Electrochimica Acta, 2013, 102: 196-201.

[19] SANTHANAM R, RAMBABU B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material[J]. Journal of Power Sources, 2010, 195(17): 5442-5451.

[20] AMIN R, BELHAROUK I. Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode[J]. Journal of Power Sources, 2017, 348: 311-317.

[21] AMIN R, BELHAROUAK I. Part-II: Exchange current density and ionic diffusivity studies on the ordered and disordered spinel LiNi0.5Mn1.5O4 cathode[J]. Journal of Power Sources, 2017, 348: 318-325.

[22] LIU D, HAMEL-PAQUET J, TROTTIER J, et al. Synthesis of pure phase disordered LiMn1.45Cr0.1Ni0.45O4 by a post-annealing method[J]. Journal of Power Sources, 2012, 217: 400-406.

[23] HU E, BAK S-M, LIU Y, et al. Utilizing environmental friendly iron as a substitution element in spinel structured cathode materials for safer high energy Lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(3): 1501662.

[24] HUANG J, LIU H, ZHOU N, et al. Enhancing the ion transport in LiMn1.5Ni0.5O4 by altering the particle Wulff shape via anisotropic surface segregation[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36745-36754.

[25] MAO J, DAI K, XUAN M, et al. Effect of chromium and niobium doping on the morphology and electrochemical performance of High-voltage spinel LiNi0.5Mn1.5O4 cathode material[J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9116-9124.

[26] SHIN D W, BRIDGES C A, HUQ A, et al. Role of cation ordering and surface segregation in High-voltage spinel LiMn1.5Ni0.5–xMxO4 (M = Cr, Fe, and Ga) cathodes for Lithium-ion batteries[J]. Chemistry of Materials, 2012, 24(19): 3720-3731.

[27] GAO Y, HE X, MA L, et al. Understanding cation doping achieved by atomic layer deposition for High-performance Li-ion batteries[J]. Electrochimica Acta, 2020, 340: 135951.

[28] LIN Y, YANG Y, YU R, et al. Enhanced electrochemical performances of LiNi0.5Mn1.5O4 by surface modification with superconducting YBa2Cu3O7[J]. Journal of Power Sources, 2014, 259: 188-194.

[29] WEI L, TAO J, YANG Y, et al. Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in Lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 384: 123268.

[30] ZHU X, SCHULLI T U, YANG X, et al. Epitaxial growth of an Atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling[J]. Nature Communications, 2022, 13(1): 1565.

[31] WANG Y, WANG E, ZHANG X, et al. High-voltage “Single-crystal” cathode materials for Lithium-ion batteries[J]. Energy & Fuels, 2021, 35(3): 1918-1932.

[32] YE Y, CHOU L-Y, LIU Y, et al. Ultralight and fire-extinguishing current collectors for High-energy and High-safety Lithium-ion batteries[J]. Nature Energy, 2020, 5(10): 786-793.

[33] CHEN Y, KANG Y, ZHAO Y, et al. A review of Lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99.

[34] TAKADA K. Progress and prospective of Solid-state lithium batteries[J]. Acta Materialia, 2013, 61(3): 759-770.

[35] QIN K, HOLGUIN K, MOHAMMADIROUDBARI M, et al. Strategies in structure and electrolyte design for High-performance lithium metal batteries[J]. Advanced Functional Materials, 2021, 31(15): 2009694.

[36] KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources, 2015, 282: 299-322.

[37] XU L, TANG S, CHENG Y, et al. Interfaces in Solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991-2015.

[38] PARK C, LEE S, KIM K, et al. Electrochemical properties of composite cathode using bimodal sized electrolyte for All-solid-state batteries[J]. Journal of The Electrochemical Society, 2019, 166(3): A5318-A5322.

[39] 李泓. 全固态锂电池: 梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 34-39.

[40] HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196.

[41] FERGUS J W. Ceramic and polymeric solid electrolytes for Lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569.

[42] LOU S, ZHANG F, FU C, et al. Interface issues and challenges in All-solid-state batteries: lithium, sodium, and beyond[J]. Advanced Materials, 2021, 33(6): 2000721.

[43] ARYA A, SHARMA A L. A glimpse on All-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review[J]. Journal of Materials Science, 2020, 55(15): 6242-6304.

[44] HEI Z, WU S, ZHENG H, et al. Increasing the electrochemical stability window for Polyethylene-oxide-based solid polymer electrolytes by understanding the affecting factors[J]. Solid State Ionics, 2022, 375: 115837.

[45] SONG S, WU Y, DONG Z, et al. Multi-substituted Garnet-type electrolytes for Solid-state lithium batteries[J]. Ceramics International, 2020, 46(4): 5489-5494.

[46] PAPAKYRIAKOU M, LU M, LIU Y, et al. Mechanical behavior of inorganic Lithium-conducting solid electrolytes[J]. Journal of Power Sources, 2021, 516: 230672.

[47] LI X, LIANG J, YANG X, et al. Progress and perspectives on halide lithium conductors for All-solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(5): 1429-1461.

[48] DENG Z, NI D, CHEN D, et al. Anti-perovskite materials for energy storage batteries[J]. InfoMat, 2022, 4(2): e12252.

[49] LIU L, ZHANG D, XU X, et al. Challenges and development of composite solid electrolytes for All-solid-state lithium batteries[J]. Chemical Research in Chinese Universities, 2021, 37(2): 210-231.

[50] XUE Z, HE D, XIE X. Poly (ethylene oxide)-based electrolytes for Lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253.

[51] HU P, CHAI J, DUAN Y, et al. Progress in Nitrile-based polymer electrolytes for high performance lithium batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10070-10083.

[52] HONG K, YUK J, KIM H J, et al. Electrospun polymer electrolyte nanocomposites for Solid-state energy storage[J]. Composites Part B: Engineering, 2018, 152: 275-281.

[53] LIU Y, HE P, ZHOU H. Rechargeable Solid-state Li-Air and Li-S batteries: materials, construction, and challenges[J]. Advanced Energy Materials, 2018, 8(4): 1701602.

[54] MAZUMDAR D B D N, MUKHERJEE M L. Transport and dielectric properties of lisicon[J]. Solid State Ionics, 1984, 14(2): 143-147.

[55] WHITACRE J. Crystalline Li3Po4/Li4SiO4 solid solutions as an electrolyte for film batteries using sputtered cathode layers[J]. Solid State Ionics, 2004, 175(1-4): 251-255.

[56] SONG S, LU J, ZHENG F, et al. A facile strategy to achieve high conduction and excellent chemical stability of lithium solid electrolytes[J]. RSC Advances, 2015, 5(9): 6588-6594.

[57] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.

[58] REN Y, CHEN K, CHEN R, et al. Oxide electrolytes for lithium batteries[J]. Journal of the American Ceramic Society, 2015, 98(12): 3603-3623.

[59] XU X, WEN Z, WU X, et al. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O (x=0.0-0.20) with good electrical and electrochemical properties[J]. Journal of the American Ceramic Society, 2007, 90(9): 2802-2806.

[60] STRAMARE S T V, WEPPNER W. Lithium lanthanum titanates: a review[J]. Chemistry of Materials, 2003, 15(21): 3974-3990.

[61] CHEN C. Stable Lithium-ion conducting perovskite Lithium-strontium-tantalum-zirconium-oxide system[J]. Solid State Ionics, 2004, 167(3-4): 263-272.

[62] INADA R, KIMURA K, KUSAKABE K, et al. Synthesis and Lithium-ion conductivity for Perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by Powder-bed sintering[J]. Solid State Ionics, 2014, 261: 95-99.

[63] HUANG B, XU B, LI Y, et al. Li-ion conduction and stability of perovskite Li3/8Sr7/16Hf1/4Ta3/4O3[J]. ACS Applied Materials & Interfaces, 2016, 8(23): 14552-14557.

[64] THANGADURAI V, KAACK H, WEPPNER W J F. Novel fast lithium ion conduction in Garnet-type Li5La3M2O12(M = Nb, Ta)[J]. Journal of the American Ceramic Society, 2003, 86(3): 437-440.

[65] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in Garnet-type Li7La3Zr2O12[J]. Angewandte Chemie, 2007, 46(41): 7778-7781.

[66] GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of Li7La3Zr2O12 garnet: a fast Lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097.

[67] OHTA S, KOBAYASHI T, ASAOKA T. High lithium ionic conductivity in the Garnet-type oxide Li7−xLa3(Zr2−x, Nbx)O12 (x=0-2)[J]. Journal of Power Sources, 2011, 196(6): 3342-3345.

[68] XIA W, XU B, DUAN H, et al. Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2[J]. Journal of the American Ceramic Society, 2017, 100(7): 2832-2839.

[69] XU L, LI J, SHUAI H, et al. Recent advances of composite electrolytes for Solid-state Li batteries[J]. Journal of Energy Chemistry, 2022, 67: 524-548.

[70] CHEN S, XIE D, LIU G, et al. Sulfide solid electrolytes for All-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74.

[71] TSUKASAKI H, MORI S, MORIMOTO H, et al. Direct observation of a Non-crystalline state of Li2S-P2S5 solid electrolytes[J]. Scientific Reports, 2017, 7(1): 4142.

[72] SUN F, DONG K, OSENBERG M, et al. Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an All-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction[J]. Journal of Materials Chemistry A, 2018, 6(45): 22489-22496.

[73] RAO R P, SHARMA N, PETERSON V K, et al. Formation and conductivity studies of lithium argyrodite solid electrolytes using In-situ neutron diffraction[J]. Solid State Ionics, 2013, 230: 72-76.

[74] YAJIMA T, HINUMA Y, HORI S, et al. Correlated Li-ion migration in the superionic conductor Li10GeP2S12[J]. Journal of Materials Chemistry A, 2021, 9(18): 11278-11284.

[75] SINGER C, TOPPER H C, KUTSCH T, et al. Hydrolysis of argyrodite Sulfide-based separator sheets for industrial All-solid-state battery production[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24245-24254.

[76] CALPA M, ROSERO-NAVARRO N C, MIURA A, et al. Chemical stability of Li4PS4I solid electrolyte against hydrolysis[J]. Applied Materials Today, 2021, 22: 100918.

[77] ZHANG N, WANG L, DIAO Q, et al. Mechanistic insight into La2O3 dopants with high chemical stability on Li3PS4 sulfide electrolyte for lithium metal batteries[J]. Journal of The Electrochemical Society, 2022, 169(2): 020544.

[78] WOO J H, TREVEY J E, CAVANAGH A S, et al. Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for Solid-state Li batteries[J]. Journal of The Electrochemical Society, 2012, 159(7): A1120-A1124.

[79] WU J, LIU S, HAN F, et al. Lithium/Sulfide All-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): 2000751.

[80] WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising Solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angewandte Chemie, 2019, 58(24): 8039-8043.

[81] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for Solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031.

[82] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high Lithium-ion conductivity for application in 4 V class Bulk-type All-solid-state batteries[J]. Advanced Materials, 2018, 30(44): 1803075.

[83] LI X, LIANG J, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for All-solid-state batteries[J]. Energy & Environmental Science, 2019, 12(9): 2665-2671.

[84] LIANG J, LI X, WANG S, et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for All-solid-state batteries[J]. Journal of the American Chemical Society, 2020, 142(15): 7012-7022.

[85] KWAK H, HAN D, LYOO J, et al. New Cost-effective halide solid electrolytes for All-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6[J]. Advanced Energy Materials, 2021, 11(12): 2003190.

[86] LI X, LIANG J, CHEN N, et al. Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angewandte Chemie, 2019, 131(46): 16579-16584.

[87] PARK K H, BAI Q, KIM D H, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for All-solid-state batteries[J]. Advanced Energy Materials, 2018, 8(18): 1800035.

[88] STRAUSS F, TEO J H, MAIBACH J, et al. Li2ZrO3-coated NCM622 for application in inorganic Solid-state batteries: role of surface carbonates in the cycling performance[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57146-57154.

[89] RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for Solid-state batteries[J]. Angewandte Chemie, 2021, 60(12): 6718-6723.

[90] YU T, LIANG J, LUO L, et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in All-solid-state Li batteries[J]. Advanced Energy Materials, 2021, 11(36): 2101915.

[91] KOEDTRUAD A, PATINO M A, ICHIKAWA N, et al. Crystal structures and ionic conductivity in Li2OHX (X= Cl, Br) antiperovskites[J]. Journal of Solid State Chemistry, 2020, 286: 121263.

[92] MIAO X, GUAN S, MA C, et al. Role of interfaces in Solid-state batteries[J]. Advanced Materials, 2022: 2206402.

[93] WANG J, HAO F. Experimental investigations on the Chemo-mechanical coupling in Solid-state batteries and electrode materials[J]. Energies, 2023, 16(3): 1180.

[94] KOERVER R, ZHANG W, DE BIASI L, et al. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized All-solid-state batteries[J]. Energy & Environmental Science, 2018, 11(8): 2142-2158.

[95] ZHAO X, TIAN Y, LUN Z, et al. Design principles for Zero-strain Li-ion cathodes[J]. Joule, 2022, 6(7): 1654-1671.

[96] STRAUSS F, DE BIASI L, KIM A Y, et al. Rational design of quasi Zero-strain NCM cathode materials for minimizing volume change effects in All-solid-state batteries[J]. ACS Materials Letters, 2019, 2(1): 84-88.

[97] FITZHUGH W, YE L, LI X. The effects of mechanical constriction on the operation of sulfide based Solid-state batteries[J]. Journal of Materials Chemistry A, 2019, 7(41): 23604-23627.

[98] WANG H, ZHU J, SU Y, et al. Interfacial compatibility issues in rechargeable Solid-state lithium metal batteries: a review[J]. Science China Chemistry, 2021, 64(6): 879-898.

[99] GUO S, LI Y, LI B, et al. Coordination-assisted precise construction of metal oxide nanofilms for High-performance Solid-state batteries[J]. Journal of the American Chemical Society, 2022, 144(5): 2179-2188.

[100] TAN D H, BANERJEE A, CHEN Z, et al. From nanoscale interface characterization to sustainable energy storage using All-solid-state batteries[J]. Nature Nanotechnology, 2020, 15(3): 170-180.

[101] CAO D, SUN X, LI Q, et al. Lithium dendrite in All-solid-state batteries: growth mechanisms, suppression strategies, and characterizations[J]. Matter, 2020, 3(1): 57-94.

[102] YU S, SIEGEL D J. Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38151-38158.

[103] TIAN H-K, XU B, QI Y. Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites[J]. Journal of Power Sources, 2018, 392: 79-86.

[104] KRAUSKOPF T, DIPPEL R, HARTMANN H, et al. Lithium-metal growth kinetics on LLZO Garnet-type solid electrolytes[J]. Joule, 2019, 3(8): 2030-2049.

[105] JUNG S-K, GWON H, LEE S-S, et al. Understanding the effects of chemical reactions at the Cathode-electrolyte interface in sulfide based All-solid-state batteries[J]. Journal of Materials Chemistry A, 2019, 7(40): 22967-22976.

[106] TSUKASAKI H, MORI Y, OTOYAMA M, et al. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer[J]. Scientific Reports, 2018, 8(1): 6214.

[107] GELLERT M, DASHJAV E, GRüNER D, et al. Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate[J]. Ionics, 2017, 24(4): 1001-1006.

[108] WAKASUGI J, MUNAKATA H. Thermal stability of various cathode materials against Li6.25Al0.25La3Zr2O12 electrolyte[J]. Electrochemistry, 2017, 85(2): 77-81.

[109] KIM K H, IRIYAMA Y, YAMAMOTO K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an All-solid-state rechargeable lithium battery[J]. Journal of Power Sources, 2011, 196(2): 764-767.

[110] FENG W-L, WANG F, ZHOU X, et al. Stability of interphase between solid state electrolyte and electrode[J]. Acta Physica Sinica, 2020, 69(22): 228206.

[111] WENZEL S, RANDAU S, LEICHTWEIß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials, 2016, 28(7): 2400-2407.

[112] ZHU L, WANG Y, WU Y, et al. Boron Nitride-based release agent coating stabilizes Li1.3Al0.3Ti1.7(PO4)3/Li interface with superior Lean-lithium electrochemical performance and thermal stability[J]. Advanced Functional Materials, 2022, 32(29).

[113] LEUNG K, PEARSE A J, TALIN A A, et al. Kinetics-controlled degradation reactions at crystalline LiPON/LixCoO2 and crystalline LiPON/Li-Metal interfaces[J]. ChemSusChem, 2018, 11(12): 1956-1969.

[114] 张赛赛, 赵海雷. 石榴石型 Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863.

[115] JADHAV H S, KALUBARME R S, JADHAV A H, et al. Highly stable bilayer of LiPON and B2O3 added Li1.5Al0.5Ge1.5(PO4) solid electrolytes for Non-aqueous rechargeable Li-O2 batteries[J]. Electrochimica Acta, 2016, 199: 126-132.

[116] SCHWöBEL A, HAUSBRAND R, JAEGERMANN W. Interface reactions between LiPON and lithium studied by In-situ X-ray photoemission[J]. Solid State Ionics, 2015, 273: 51-54.

[117] OHTA N, TAKADA K, SAKAGUCHI I, et al. LiNbO3-coated LiCoO2 as cathode material for all Solid-state lithium secondary batteries[J]. Electrochemistry Communications, 2007, 9(7): 1486-1490.

[118] ITO Y, SAKURAI Y, YUBUCHI S, et al. Application of LiCoO2 particles coated with Lithium Ortho-oxosalt thin films to Sulfide-type All-solid-state lithium batteries[J]. Journal of The Electrochemical Society, 2015, 162(8): A1610-A1616.

[119] JUNG S H, OH K, NAM Y J, et al. Li3BO3–Li2CO3: rationally designed buffering phase for sulfide All-solid-state Li-ion batteries[J]. Chemistry of Materials, 2018, 30(22): 8190-8200.

[120] ZHENG F, KOTOBUKI M, SONG S, et al. Review on solid electrolytes for All-solid-state Lithium-ion batteries[J]. Journal of Power Sources, 2018, 389: 198-213.

[121] YU P, YE Y, ZHU J, et al. Optimized interfaces in Anti-perovskite electrolyte-based Solid-state lithium metal batteries for enhanced performance[J]. Frontiers in Chemistry, 2021: 1091.

[122] GAO L, ZHAO R, HAN S, et al. Antiperovskite ionic conductor layer for stabilizing the interface of NASICON solid electrolyte against Li metal in All-solid-state batteries[J]. Batteries & Supercaps, 2021, 4(9): 1491-1498.

[123] JAFTA C J, MATHE M K, MANYALA N, et al. Microwave-assisted synthesis of High-voltage nanostructured LiMn1.5Ni0.5O4 spinel: tuning the Mn3+ content and electrochemical performance[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7592-7598.

[124] AUVERGNIOT J, CASSEL A, LEDEUIL J-B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk All-solid-state batteries[J]. Chemistry of Materials, 2017, 29(9): 3883-3890.

[125] WU Y, BEN L, YU H, et al. Understanding the effect of Atomic-scale surface migration of bridging ions in binding Li3PO4 to the surface of spinel cathode materials[J]. ACS Applied Materials & Interfaces, 2018, 11(7): 6937-6947.

[126] KIM R H P H H, JOO G T. The growth of LiNbO3 (0 0 6) on MgO (0 0 1) and LiTaO3 (0 1 2) substrates by Sol-gel procedure[J]. Applied Surface Science, 2001, 169: 564-569.

[127] MI Y M Y, ODAKA H O H, IWATA S I S. Electronic structures and optical properties of ZnO, SnO2 and In2O3[J]. Japanese Journal of Applied Physics, 1999, 38(6R): 3453.

所在学位评定分委会
物理学 ; 材料与化工
国内图书分类号
TM911
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544411
专题理学院_物理系
推荐引用方式
GB/T 7714
贾高帅. 卤化物电解质和镍锰酸锂正极在全固态电池中的界面问题研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132922-贾高帅-物理系.pdf(6416KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[贾高帅]的文章
百度学术
百度学术中相似的文章
[贾高帅]的文章
必应学术
必应学术中相似的文章
[贾高帅]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。