[1] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
[2] MADEC L, MA L, NELSON K J, et al. The effects of a ternary electrolyte additive system on the electrode/electrolyte interfaces in high voltage Li-ion cells[J]. Journal of The Electrochemical Society, 2016, 163(6): A1001.
[3] LOCHALA J A, ZHANG H, WANG Y, et al. Practical challenges in employing graphene for Lithium-ion batteries and beyond[J]. Small Methods, 2017, 1(6): 1700099.
[4] DOH C-H, KIM D-H, KIM H-S, et al. Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test[J]. Journal of Power Sources, 2008, 175(2): 881-885.
[5] BELOV D, YANG M-H. Investigation of the kinetic mechanism in overcharge process for Li-ion battery[J]. Solid State Ionics, 2008, 179(27-32): 1816-1821.
[6] ZHANG J-N, LI Q, OUYANG C, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603.
[7] MORIMOTO H, AWANO H, TERASHIMA J, et al. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2−x(PO4)3 (x = 0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell[J]. Journal of Power Sources, 2013, 240: 636-643.
[8] WANG Y, ZHANG Q, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V High-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): 2001413.
[9] BHATT M D, O'DWYER C. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes[J]. Physical Chemistry Chemical Physics, 2015, 17(7): 4799-4844.
[10] BAK S M, HU E, ZHOU Y, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601.
[11] MIN K, SEO S W, CHOI B, et al. Computational screening for design of optimal coating materials to suppress gas evolution in Li-ion battery cathodes[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17822-17834.
[12] CHEN S-P, LV D, CHEN J, et al. Review on defects and modification methods of LiFePO4 cathode material for Lithium-ion batteries[J]. Energy & Fuels, 2022, 36(3): 1232-1251.
[13] PARK S, OH J, KIM J M, et al. Facile preparation of cellulose nanofiber derived carbon and reduced graphene oxide co-supported LiFePO4 nanocomposite as enhanced cathode material for lithium-ion battery[J]. Electrochimica Acta, 2020, 354: 136707.
[14] OKADA K, KIMURA I, MACHIDA K. High rate capability by sulfur-doping into LiFePO4 matrix[J]. RSC Advances, 2018, 8(11): 5848-5853.
[15] DAI K, GU F, WANG Q, et al. The new insight into the lithium migration mechanism of LiFePO4 by atomic simulation method[J]. Ionics, 2021, 27: 1477-1490.
[16] OH S-M, OH S-W, YOON C-S, et al. High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries[J]. Advanced Functional Materials, 2010, 20(19): 3260-3265.
[17] ZHAO J, WANG Y. Atomic layer deposition of epitaxial ZrO2 coating on LiMn2O4 nanoparticles for High-rate lithium ion batteries at elevated temperature[J]. Nano Energy, 2013, 2(5): 882-889.
[18] LEE J H, KIM K J. Superior electrochemical properties of porous Mn2O3-coated LiMn2O4 thin-film cathodes for Li-ion microbatteries[J]. Electrochimica Acta, 2013, 102: 196-201.
[19] SANTHANAM R, RAMBABU B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material[J]. Journal of Power Sources, 2010, 195(17): 5442-5451.
[20] AMIN R, BELHAROUK I. Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode[J]. Journal of Power Sources, 2017, 348: 311-317.
[21] AMIN R, BELHAROUAK I. Part-II: Exchange current density and ionic diffusivity studies on the ordered and disordered spinel LiNi0.5Mn1.5O4 cathode[J]. Journal of Power Sources, 2017, 348: 318-325.
[22] LIU D, HAMEL-PAQUET J, TROTTIER J, et al. Synthesis of pure phase disordered LiMn1.45Cr0.1Ni0.45O4 by a post-annealing method[J]. Journal of Power Sources, 2012, 217: 400-406.
[23] HU E, BAK S-M, LIU Y, et al. Utilizing environmental friendly iron as a substitution element in spinel structured cathode materials for safer high energy Lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(3): 1501662.
[24] HUANG J, LIU H, ZHOU N, et al. Enhancing the ion transport in LiMn1.5Ni0.5O4 by altering the particle Wulff shape via anisotropic surface segregation[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36745-36754.
[25] MAO J, DAI K, XUAN M, et al. Effect of chromium and niobium doping on the morphology and electrochemical performance of High-voltage spinel LiNi0.5Mn1.5O4 cathode material[J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9116-9124.
[26] SHIN D W, BRIDGES C A, HUQ A, et al. Role of cation ordering and surface segregation in High-voltage spinel LiMn1.5Ni0.5–xMxO4 (M = Cr, Fe, and Ga) cathodes for Lithium-ion batteries[J]. Chemistry of Materials, 2012, 24(19): 3720-3731.
[27] GAO Y, HE X, MA L, et al. Understanding cation doping achieved by atomic layer deposition for High-performance Li-ion batteries[J]. Electrochimica Acta, 2020, 340: 135951.
[28] LIN Y, YANG Y, YU R, et al. Enhanced electrochemical performances of LiNi0.5Mn1.5O4 by surface modification with superconducting YBa2Cu3O7[J]. Journal of Power Sources, 2014, 259: 188-194.
[29] WEI L, TAO J, YANG Y, et al. Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in Lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 384: 123268.
[30] ZHU X, SCHULLI T U, YANG X, et al. Epitaxial growth of an Atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling[J]. Nature Communications, 2022, 13(1): 1565.
[31] WANG Y, WANG E, ZHANG X, et al. High-voltage “Single-crystal” cathode materials for Lithium-ion batteries[J]. Energy & Fuels, 2021, 35(3): 1918-1932.
[32] YE Y, CHOU L-Y, LIU Y, et al. Ultralight and fire-extinguishing current collectors for High-energy and High-safety Lithium-ion batteries[J]. Nature Energy, 2020, 5(10): 786-793.
[33] CHEN Y, KANG Y, ZHAO Y, et al. A review of Lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99.
[34] TAKADA K. Progress and prospective of Solid-state lithium batteries[J]. Acta Materialia, 2013, 61(3): 759-770.
[35] QIN K, HOLGUIN K, MOHAMMADIROUDBARI M, et al. Strategies in structure and electrolyte design for High-performance lithium metal batteries[J]. Advanced Functional Materials, 2021, 31(15): 2009694.
[36] KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources, 2015, 282: 299-322.
[37] XU L, TANG S, CHENG Y, et al. Interfaces in Solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991-2015.
[38] PARK C, LEE S, KIM K, et al. Electrochemical properties of composite cathode using bimodal sized electrolyte for All-solid-state batteries[J]. Journal of The Electrochemical Society, 2019, 166(3): A5318-A5322.
[39] 李泓. 全固态锂电池: 梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 34-39.
[40] HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196.
[41] FERGUS J W. Ceramic and polymeric solid electrolytes for Lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569.
[42] LOU S, ZHANG F, FU C, et al. Interface issues and challenges in All-solid-state batteries: lithium, sodium, and beyond[J]. Advanced Materials, 2021, 33(6): 2000721.
[43] ARYA A, SHARMA A L. A glimpse on All-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review[J]. Journal of Materials Science, 2020, 55(15): 6242-6304.
[44] HEI Z, WU S, ZHENG H, et al. Increasing the electrochemical stability window for Polyethylene-oxide-based solid polymer electrolytes by understanding the affecting factors[J]. Solid State Ionics, 2022, 375: 115837.
[45] SONG S, WU Y, DONG Z, et al. Multi-substituted Garnet-type electrolytes for Solid-state lithium batteries[J]. Ceramics International, 2020, 46(4): 5489-5494.
[46] PAPAKYRIAKOU M, LU M, LIU Y, et al. Mechanical behavior of inorganic Lithium-conducting solid electrolytes[J]. Journal of Power Sources, 2021, 516: 230672.
[47] LI X, LIANG J, YANG X, et al. Progress and perspectives on halide lithium conductors for All-solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(5): 1429-1461.
[48] DENG Z, NI D, CHEN D, et al. Anti-perovskite materials for energy storage batteries[J]. InfoMat, 2022, 4(2): e12252.
[49] LIU L, ZHANG D, XU X, et al. Challenges and development of composite solid electrolytes for All-solid-state lithium batteries[J]. Chemical Research in Chinese Universities, 2021, 37(2): 210-231.
[50] XUE Z, HE D, XIE X. Poly (ethylene oxide)-based electrolytes for Lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253.
[51] HU P, CHAI J, DUAN Y, et al. Progress in Nitrile-based polymer electrolytes for high performance lithium batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10070-10083.
[52] HONG K, YUK J, KIM H J, et al. Electrospun polymer electrolyte nanocomposites for Solid-state energy storage[J]. Composites Part B: Engineering, 2018, 152: 275-281.
[53] LIU Y, HE P, ZHOU H. Rechargeable Solid-state Li-Air and Li-S batteries: materials, construction, and challenges[J]. Advanced Energy Materials, 2018, 8(4): 1701602.
[54] MAZUMDAR D B D N, MUKHERJEE M L. Transport and dielectric properties of lisicon[J]. Solid State Ionics, 1984, 14(2): 143-147.
[55] WHITACRE J. Crystalline Li3Po4/Li4SiO4 solid solutions as an electrolyte for film batteries using sputtered cathode layers[J]. Solid State Ionics, 2004, 175(1-4): 251-255.
[56] SONG S, LU J, ZHENG F, et al. A facile strategy to achieve high conduction and excellent chemical stability of lithium solid electrolytes[J]. RSC Advances, 2015, 5(9): 6588-6594.
[57] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.
[58] REN Y, CHEN K, CHEN R, et al. Oxide electrolytes for lithium batteries[J]. Journal of the American Ceramic Society, 2015, 98(12): 3603-3623.
[59] XU X, WEN Z, WU X, et al. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O (x=0.0-0.20) with good electrical and electrochemical properties[J]. Journal of the American Ceramic Society, 2007, 90(9): 2802-2806.
[60] STRAMARE S T V, WEPPNER W. Lithium lanthanum titanates: a review[J]. Chemistry of Materials, 2003, 15(21): 3974-3990.
[61] CHEN C. Stable Lithium-ion conducting perovskite Lithium-strontium-tantalum-zirconium-oxide system[J]. Solid State Ionics, 2004, 167(3-4): 263-272.
[62] INADA R, KIMURA K, KUSAKABE K, et al. Synthesis and Lithium-ion conductivity for Perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by Powder-bed sintering[J]. Solid State Ionics, 2014, 261: 95-99.
[63] HUANG B, XU B, LI Y, et al. Li-ion conduction and stability of perovskite Li3/8Sr7/16Hf1/4Ta3/4O3[J]. ACS Applied Materials & Interfaces, 2016, 8(23): 14552-14557.
[64] THANGADURAI V, KAACK H, WEPPNER W J F. Novel fast lithium ion conduction in Garnet-type Li5La3M2O12(M = Nb, Ta)[J]. Journal of the American Ceramic Society, 2003, 86(3): 437-440.
[65] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in Garnet-type Li7La3Zr2O12[J]. Angewandte Chemie, 2007, 46(41): 7778-7781.
[66] GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of Li7La3Zr2O12 garnet: a fast Lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097.
[67] OHTA S, KOBAYASHI T, ASAOKA T. High lithium ionic conductivity in the Garnet-type oxide Li7−xLa3(Zr2−x, Nbx)O12 (x=0-2)[J]. Journal of Power Sources, 2011, 196(6): 3342-3345.
[68] XIA W, XU B, DUAN H, et al. Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2[J]. Journal of the American Ceramic Society, 2017, 100(7): 2832-2839.
[69] XU L, LI J, SHUAI H, et al. Recent advances of composite electrolytes for Solid-state Li batteries[J]. Journal of Energy Chemistry, 2022, 67: 524-548.
[70] CHEN S, XIE D, LIU G, et al. Sulfide solid electrolytes for All-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74.
[71] TSUKASAKI H, MORI S, MORIMOTO H, et al. Direct observation of a Non-crystalline state of Li2S-P2S5 solid electrolytes[J]. Scientific Reports, 2017, 7(1): 4142.
[72] SUN F, DONG K, OSENBERG M, et al. Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an All-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction[J]. Journal of Materials Chemistry A, 2018, 6(45): 22489-22496.
[73] RAO R P, SHARMA N, PETERSON V K, et al. Formation and conductivity studies of lithium argyrodite solid electrolytes using In-situ neutron diffraction[J]. Solid State Ionics, 2013, 230: 72-76.
[74] YAJIMA T, HINUMA Y, HORI S, et al. Correlated Li-ion migration in the superionic conductor Li10GeP2S12[J]. Journal of Materials Chemistry A, 2021, 9(18): 11278-11284.
[75] SINGER C, TOPPER H C, KUTSCH T, et al. Hydrolysis of argyrodite Sulfide-based separator sheets for industrial All-solid-state battery production[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24245-24254.
[76] CALPA M, ROSERO-NAVARRO N C, MIURA A, et al. Chemical stability of Li4PS4I solid electrolyte against hydrolysis[J]. Applied Materials Today, 2021, 22: 100918.
[77] ZHANG N, WANG L, DIAO Q, et al. Mechanistic insight into La2O3 dopants with high chemical stability on Li3PS4 sulfide electrolyte for lithium metal batteries[J]. Journal of The Electrochemical Society, 2022, 169(2): 020544.
[78] WOO J H, TREVEY J E, CAVANAGH A S, et al. Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for Solid-state Li batteries[J]. Journal of The Electrochemical Society, 2012, 159(7): A1120-A1124.
[79] WU J, LIU S, HAN F, et al. Lithium/Sulfide All-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): 2000751.
[80] WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising Solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angewandte Chemie, 2019, 58(24): 8039-8043.
[81] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for Solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031.
[82] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high Lithium-ion conductivity for application in 4 V class Bulk-type All-solid-state batteries[J]. Advanced Materials, 2018, 30(44): 1803075.
[83] LI X, LIANG J, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for All-solid-state batteries[J]. Energy & Environmental Science, 2019, 12(9): 2665-2671.
[84] LIANG J, LI X, WANG S, et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for All-solid-state batteries[J]. Journal of the American Chemical Society, 2020, 142(15): 7012-7022.
[85] KWAK H, HAN D, LYOO J, et al. New Cost-effective halide solid electrolytes for All-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6[J]. Advanced Energy Materials, 2021, 11(12): 2003190.
[86] LI X, LIANG J, CHEN N, et al. Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angewandte Chemie, 2019, 131(46): 16579-16584.
[87] PARK K H, BAI Q, KIM D H, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for All-solid-state batteries[J]. Advanced Energy Materials, 2018, 8(18): 1800035.
[88] STRAUSS F, TEO J H, MAIBACH J, et al. Li2ZrO3-coated NCM622 for application in inorganic Solid-state batteries: role of surface carbonates in the cycling performance[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57146-57154.
[89] RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for Solid-state batteries[J]. Angewandte Chemie, 2021, 60(12): 6718-6723.
[90] YU T, LIANG J, LUO L, et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in All-solid-state Li batteries[J]. Advanced Energy Materials, 2021, 11(36): 2101915.
[91] KOEDTRUAD A, PATINO M A, ICHIKAWA N, et al. Crystal structures and ionic conductivity in Li2OHX (X= Cl, Br) antiperovskites[J]. Journal of Solid State Chemistry, 2020, 286: 121263.
[92] MIAO X, GUAN S, MA C, et al. Role of interfaces in Solid-state batteries[J]. Advanced Materials, 2022: 2206402.
[93] WANG J, HAO F. Experimental investigations on the Chemo-mechanical coupling in Solid-state batteries and electrode materials[J]. Energies, 2023, 16(3): 1180.
[94] KOERVER R, ZHANG W, DE BIASI L, et al. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized All-solid-state batteries[J]. Energy & Environmental Science, 2018, 11(8): 2142-2158.
[95] ZHAO X, TIAN Y, LUN Z, et al. Design principles for Zero-strain Li-ion cathodes[J]. Joule, 2022, 6(7): 1654-1671.
[96] STRAUSS F, DE BIASI L, KIM A Y, et al. Rational design of quasi Zero-strain NCM cathode materials for minimizing volume change effects in All-solid-state batteries[J]. ACS Materials Letters, 2019, 2(1): 84-88.
[97] FITZHUGH W, YE L, LI X. The effects of mechanical constriction on the operation of sulfide based Solid-state batteries[J]. Journal of Materials Chemistry A, 2019, 7(41): 23604-23627.
[98] WANG H, ZHU J, SU Y, et al. Interfacial compatibility issues in rechargeable Solid-state lithium metal batteries: a review[J]. Science China Chemistry, 2021, 64(6): 879-898.
[99] GUO S, LI Y, LI B, et al. Coordination-assisted precise construction of metal oxide nanofilms for High-performance Solid-state batteries[J]. Journal of the American Chemical Society, 2022, 144(5): 2179-2188.
[100] TAN D H, BANERJEE A, CHEN Z, et al. From nanoscale interface characterization to sustainable energy storage using All-solid-state batteries[J]. Nature Nanotechnology, 2020, 15(3): 170-180.
[101] CAO D, SUN X, LI Q, et al. Lithium dendrite in All-solid-state batteries: growth mechanisms, suppression strategies, and characterizations[J]. Matter, 2020, 3(1): 57-94.
[102] YU S, SIEGEL D J. Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38151-38158.
[103] TIAN H-K, XU B, QI Y. Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites[J]. Journal of Power Sources, 2018, 392: 79-86.
[104] KRAUSKOPF T, DIPPEL R, HARTMANN H, et al. Lithium-metal growth kinetics on LLZO Garnet-type solid electrolytes[J]. Joule, 2019, 3(8): 2030-2049.
[105] JUNG S-K, GWON H, LEE S-S, et al. Understanding the effects of chemical reactions at the Cathode-electrolyte interface in sulfide based All-solid-state batteries[J]. Journal of Materials Chemistry A, 2019, 7(40): 22967-22976.
[106] TSUKASAKI H, MORI Y, OTOYAMA M, et al. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer[J]. Scientific Reports, 2018, 8(1): 6214.
[107] GELLERT M, DASHJAV E, GRüNER D, et al. Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate[J]. Ionics, 2017, 24(4): 1001-1006.
[108] WAKASUGI J, MUNAKATA H. Thermal stability of various cathode materials against Li6.25Al0.25La3Zr2O12 electrolyte[J]. Electrochemistry, 2017, 85(2): 77-81.
[109] KIM K H, IRIYAMA Y, YAMAMOTO K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an All-solid-state rechargeable lithium battery[J]. Journal of Power Sources, 2011, 196(2): 764-767.
[110] FENG W-L, WANG F, ZHOU X, et al. Stability of interphase between solid state electrolyte and electrode[J]. Acta Physica Sinica, 2020, 69(22): 228206.
[111] WENZEL S, RANDAU S, LEICHTWEIß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials, 2016, 28(7): 2400-2407.
[112] ZHU L, WANG Y, WU Y, et al. Boron Nitride-based release agent coating stabilizes Li1.3Al0.3Ti1.7(PO4)3/Li interface with superior Lean-lithium electrochemical performance and thermal stability[J]. Advanced Functional Materials, 2022, 32(29).
[113] LEUNG K, PEARSE A J, TALIN A A, et al. Kinetics-controlled degradation reactions at crystalline LiPON/LixCoO2 and crystalline LiPON/Li-Metal interfaces[J]. ChemSusChem, 2018, 11(12): 1956-1969.
[114] 张赛赛, 赵海雷. 石榴石型 Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863.
[115] JADHAV H S, KALUBARME R S, JADHAV A H, et al. Highly stable bilayer of LiPON and B2O3 added Li1.5Al0.5Ge1.5(PO4) solid electrolytes for Non-aqueous rechargeable Li-O2 batteries[J]. Electrochimica Acta, 2016, 199: 126-132.
[116] SCHWöBEL A, HAUSBRAND R, JAEGERMANN W. Interface reactions between LiPON and lithium studied by In-situ X-ray photoemission[J]. Solid State Ionics, 2015, 273: 51-54.
[117] OHTA N, TAKADA K, SAKAGUCHI I, et al. LiNbO3-coated LiCoO2 as cathode material for all Solid-state lithium secondary batteries[J]. Electrochemistry Communications, 2007, 9(7): 1486-1490.
[118] ITO Y, SAKURAI Y, YUBUCHI S, et al. Application of LiCoO2 particles coated with Lithium Ortho-oxosalt thin films to Sulfide-type All-solid-state lithium batteries[J]. Journal of The Electrochemical Society, 2015, 162(8): A1610-A1616.
[119] JUNG S H, OH K, NAM Y J, et al. Li3BO3–Li2CO3: rationally designed buffering phase for sulfide All-solid-state Li-ion batteries[J]. Chemistry of Materials, 2018, 30(22): 8190-8200.
[120] ZHENG F, KOTOBUKI M, SONG S, et al. Review on solid electrolytes for All-solid-state Lithium-ion batteries[J]. Journal of Power Sources, 2018, 389: 198-213.
[121] YU P, YE Y, ZHU J, et al. Optimized interfaces in Anti-perovskite electrolyte-based Solid-state lithium metal batteries for enhanced performance[J]. Frontiers in Chemistry, 2021: 1091.
[122] GAO L, ZHAO R, HAN S, et al. Antiperovskite ionic conductor layer for stabilizing the interface of NASICON solid electrolyte against Li metal in All-solid-state batteries[J]. Batteries & Supercaps, 2021, 4(9): 1491-1498.
[123] JAFTA C J, MATHE M K, MANYALA N, et al. Microwave-assisted synthesis of High-voltage nanostructured LiMn1.5Ni0.5O4 spinel: tuning the Mn3+ content and electrochemical performance[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7592-7598.
[124] AUVERGNIOT J, CASSEL A, LEDEUIL J-B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk All-solid-state batteries[J]. Chemistry of Materials, 2017, 29(9): 3883-3890.
[125] WU Y, BEN L, YU H, et al. Understanding the effect of Atomic-scale surface migration of bridging ions in binding Li3PO4 to the surface of spinel cathode materials[J]. ACS Applied Materials & Interfaces, 2018, 11(7): 6937-6947.
[126] KIM R H P H H, JOO G T. The growth of LiNbO3 (0 0 6) on MgO (0 0 1) and LiTaO3 (0 1 2) substrates by Sol-gel procedure[J]. Applied Surface Science, 2001, 169: 564-569.
[127] MI Y M Y, ODAKA H O H, IWATA S I S. Electronic structures and optical properties of ZnO, SnO2 and In2O3[J]. Japanese Journal of Applied Physics, 1999, 38(6R): 3453.
修改评论