中文版 | English
题名

硼掺杂金刚石的高温高压合成及其表征

其他题名
HIGH PRESSURE HIGH TEMPERATURE SYNTHESIS AND CHARACTERIZATION OF BORON-DOPED DIAMOND
姓名
姓名拼音
CHEN Yiduo
学号
12032035
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
王李平
导师单位
前沿与交叉科学研究院
论文答辩日期
2023-05-25
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

硼掺杂金刚石早在上个世纪 90 年代就由于其 p 型半导体的特性持续受到关 注,直到 2004 年被发现具有超导性后得到了更多的研究。由于具有一系列优异的 特性,硼掺杂金刚石在电化学方面应用被广泛发掘,于是合成品质优良的硼掺杂 金刚石便是材料科学研究的方向之一。由于硼掺杂金刚石的性质受到许多因素的 影响,电化学等领域的应用对硼掺杂金刚石的质量提出了一系列的要求,包括形 状大小,表面特性,硼掺杂的均匀度,硼的含量,sp2 /sp3 比率等。在金刚石的两 种主要合成方法中,CVD 法虽然可以合成硼含量的较高的金刚石薄膜,但是合成 的体积受到了限制,合成成本也难以降低。高温高压法中,在极高的压强和温度 下,石墨与硼混合可以直接得到硼含量较高的金刚石,但是较高的温压条件也提 高了合成的成本。催化物可以显著降低高温高压法合成金刚石所需的条件,因此 目前大多数研究使用传统金属催化物合成得到硼掺杂金刚石。然而,在碳-硼-金属 催化物系统下得到的金刚石硼含量往往较低,难以满足电化学应用的要求,有研 究将其归因为传统金属催化物的影响。近些年来,锗作为新的金刚石溶剂催化物 被报导,它具有半金属的性质和类金刚石的结构。目前,几乎没有使用非传统金属 催化物和非金属催化物合成硼掺杂金刚石的相关研究。本研究采用锗作为催化物, 在 7GPa 和 1750-1800 °C 的条件下研究 C-B-Ge 系统中硼掺杂金刚石的合成及其性 质。通过调整合成方法,包括合成条件、包覆物、晶种等,成功合成了硼含量较高 的金刚石颗粒(平均晶粒尺寸为 10-20 μm)和金刚石薄层(平均厚度约 10 μm), 证明锗是适合硼掺杂金刚石合成的催化物。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] PRING A. H AZEN , R. M. 1999. The Diamond Makers. A Compelling Drama of ScientificDiscovery . xiv + 244 pp. Cambridge, New York, Melbourne: Cambridge University Press.ISBN 0 521 65474 2[J]. Geological Magazine, 2000, 137(2): 211-216.
[2] WIGNER E, HUNTINGTON H. On the Possibility of a Metallic Modification of Hydrogen[J].J. Chem. Phys., 1935, 3(11): 764-770.
[3] BRIDGMAN P W. Bakerian Lecture - Physics above 20,000 kg./cm.2[J/OL]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950,203(1072): 1-17. https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1950.0122.
[4] ZEIDLER A, CRICHTON W A. Materials under pressure[J]. MRS bulletin, 2017, 42(10):710-713.
[5] KORZNIKOVA E A, KORCHUGANOVA M R, KNERELMAN E A, et al. Ti-Al-Nb alloys bythermal explosion: Synthesis and characterization[J]. Russian Journal of Non-Ferrous Metals,2016, 57(2): 123-129.
[6] SNIDER E, DASENBROCK-GAMMON N M, MCBRIDE R, et al. Room-Temperature Superconductivity in a Carbonaceous Sulfur Hydride[J/OL]. Phys. Rev. Lett., 2020, 125: 197001.DOI: 10.1103/PhysRevLett.125.197001.
[7] 王凯悦. 宽禁带半导体金刚石辐照缺陷的光致发光与光致变色[M]. 科学出版社, 2018.
[8] BUNDY F, HALL H, STRONG H, et al. Man-Made Diamonds[J]. Nature, 1955, 176(4470):51-55.
[9] BUTLER J E, WINDISCHMANN H. Developments in CVD-Diamond Synthesis During thePast Decade[J]. MRS Bulletin, 1998, 23(9): 22-27.
[10] PALYANOV Y, KUPRIYANOV I, KHOKHRYAKOV A, et al. Crystal Growth of Diamond:volume 2[M/OL]. 2015: 671-713. DOI: 10.1016/B978-0-444-63303-3.00017-1.
[11] BUNDY F P. Direct Conversion of Graphite to Diamond in Static Pressure Apparatus[J/OL].The Journal of Chemical Physics, 1963, 38(3): 631-643. https://doi.org/10.1063/1.1733716.
[12] IRIFUNE T, ISOBE F, SHINMEI T. A novel large-volume Kawai-type apparatus and its application to the synthesis of sintered bodies of nano-polycrystalline diamond[J/OL]. Physics ofthe Earth and Planetary Interiors, 2014, 228: 255-261. https://www.sciencedirect.com/science/article/pii/S0031920113001301. DOI: https://doi.org/10.1016/j.pepi.2013.09.007.
[13] BUNDY F P. Diamond Synthesis with Non-conventional Catalyst-solvents[J]. Nature, 1973,241(5385): 116-118.
[14] AKAISHI M, KANDA H, YAMAOKA S. Synthesis of diamond from graphite-carbonate system under very high temperature and pressure[J]. Journal of Crystal Growth, 1990, 104(2):578-581.
[15] PAL’YANOV Y N, SOKOL A, BORZDOV Y, et al. Diamond formation from mantle carbonatefluids[J]. Nature, 1999, 400(6743): 417-418.
[16] AKAISHI M, KANDA H, YAMAOKA S. High pressure synthesis of diamond in the systemsof graphite-sulfate and graphite-hydroxide[J]. Japanese Journal of Applied Physics, 1990, 29(7A): L1172-L1174.
[17] BORZDOV Y M, PAL’YANOV Y N, KUPRIYANOV I N, et al. HPHT synthesis of diamondwith high nitrogen content from a Fe3N-C system[J]. Diamond and Related Materials, 2002,11(11): 1863-1870.
[18] YAMAOKA S, AKAISHI M, KANDA H, et al. Crystal growth of diamond in the system ofcarbon and water under very high pressure and temperature[J]. Journal of Crystal Growth, 1992,125(1-2): 375-377.
[19] AKAISHI M, KANDA H, YAMAOKA S. Phosphorus: An elemental catalyst for diamondsynthesis and growth[J]. Science, 1993, 259(5099): 1592-1593.
[20] PALYANOV Y N, KUPRIYANOV I N, BORZDOV Y M, et al. Diamond Crystallization froma SulfurffCarbon System at HPHT Conditions[J]. Crystal Growth & Design, 2009, 9(6): 2922-2926.
[21] LV S J, HONG S M, YUAN C S, et al. Selenium and tellurium: Elemental catalysts for conversion of graphite to diamond under high pressure and temperature[J]. Applied Physics Letters,2009, 95(24): 242105.
[22] PALYANOV Y N, BORZDOV Y M, KUPRIYANOV I N, et al. Diamond crystallization froman antimony-carbon system under high pressure and temperature[J]. Cryst. Growth Des., 2015,15(5): 2539-2544.
[23] PALYANOV Y N, KUPRIYANOV I N, BORZDOV Y M, et al. Germanium: A new catalystfor diamond synthesis and a new optically active impurity in diamond[J]. Scientific Reports(Nature Publisher Group), 2015, 5: 14789.
[24] PALYANOV Y N, SOKOL A G. The effect of composition of mantle fluids/melts on diamondformation processes[J]. Lithos, 2009, 112(SUPPL. 1): 690-700.
[25] HAENEN K, MEYKENS K, NESLÁDEK M, et al. Phonon-assisted electronic transitions inphosphorus-doped n-type chemical vapor deposition diamond films[J]. Diamond and RelatedMaterials, 2001, 10(2): 439-443.
[26] SQUE S J, JONES R, GOSS J, et al. Shallow donors in diamond: Chalcogens, pnictogens, andtheir hydrogen complexes[J]. Physical Review Letters, 2004, 92(1): 017402.
[27] BREEDING C, SHIGLEY J. The “Type” Classification System of Diamonds and Its Importancein Gemology[J]. Gems & Gemology, 2009, 45(2): 96-111.
[28] BRUNET F, GERMI P, PERNET M, et al. The effect of boron doping on the lattice parameterof homoepitaxial diamond films[J/OL]. Diamond and Related Materials, 1998, 7(6): 869 - 873.DOI: https://doi.org/10.1016/S0925-9635(97)00316-6.
[29] LUONG J H, MALE K B, GLENNON J D. Boron-doped diamond electrode: synthesis, characterization and applications[J/OL]. Analyst, 2009, 134(10): 1965-1979. DOI: 10.1039/b910206j.
[30] SHAKHOV F M, ABYZOV A M, KIDALOV S V, et al. Boron-doped Diamond Synthesized atHigh-pressure and High-temperature with Metal Catalyst[J]. The Journal of Physical Chemistryof Solids, 2017, 103: 224-237.
[31] SIDOROV V A, EKIMOV E A, BAUER E D, et al. Superconductivity in Diamond[J/OL].Nature, 2004, 428(6982): 542 - 545. DOI: https://doi.org/10.1038/nature02449.
[32] MUZYKA K, SUN J, FEREJA T H, et al. Boron-doped Diamond: Current Progress and Challenges in View of Electroanalytical Applications[J/OL]. Analytical Methods, 2019, 11(4): 397- 414. DOI: https://doi.org/10.1039(2019).
[33] WOOD G F, ZVORISTE-WALTERS C E, MUNDAY M G, et al. High pressure high temperature synthesis of highly boron doped diamond microparticles and porous electrodes for electrochemical applications[J/OL]. Carbon, 2021, 171: 845-856. https://doi.org/10.1016%2Fj.carbon.2020.09.038. DOI: 10.1016/j.carbon.2020.09.038.
[34] NUNN N, TORELLI M, MCGUIRE G, et al. Nanodiamond: A high impact nanomaterial[J/OL]. Current Opinion in Solid State & Materials Science, 2017, 21(1): 1 - 9. DOI: https://doi.org/10.1016/j.cossms.2016.08.001.
[35] CUSTERS J. Unusual phosphorescence of a diamond[J]. Physica, 1952, 18(8-9): 489-496.
[36] CUSTERS J. Semiconductivity of a Type IIbDiamond[J]. Nature, 1955, 176(4481): 173-174.
[37] CHRENKO R. Boron, the Dominant Acceptor in Semiconducting Diamond[J]. Phys. Rev. B,1973, 7(10): 4560.
[38] PELSKOV Y, SAKHAROVA A, KROTOVA M, et al. Photoelectrochemical properties of semiconductor diamond[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1987, 228(1-2): 19-27.
[39] PATEL K, HASHIMOTO K, FUJISHIMA A. Application of Boron-Doped CVD-DiamondFilm to Photoelectrode[J]. 電気化学および工業物理化学, 1992, 60(7): 659-661.
[40] SHIOMI H, SAKURAI T, OKADA T, et al. Characterization of Boron-Doped Diamond Epitaxial Films[J/OL]. Japanese Journal of Applied Physics, 1991, 30(7R): 1363-1366. https://doi.org/10.11432Fjjap.30.1363. DOI: 10.1143/jjap.30.1363.
[41] MAVRIN B, DENISOV V, POPOVA D, et al. Boron distribution in the subsurface region ofheavily doped IIb type diamond[J/OL]. Physics Letters A, 2008, 372(21): 3914-3918. https://doi.org/10.1016%2Fj.physleta.2008.02.064. DOI: 10.1016/j.physleta.2008.02.064.
[42] ZHANG J, MA H, JIANG Y, et al. Effects of the additive boron on diamond crystals synthesizedin the system of Fe-based alloy and carbon at HPHT[J/OL]. Diamond and Related Materials,2007, 16(2): 283-287. https://doi.org/10.1016%2Fj.diamond.2006.06.005. DOI: 10.1016/j.diamond.2006.06.005.
[43] BLANK V, KUZNETSOV M, NOSUKHIN S, et al. The influence of crystallization temperatureand boron concentration in growth environment on its distribution in growth sectors of type IIbdiamond[J/OL]. Diamond and Related Materials, 2007, 16(4–7): 800-804. https://doi.org/10.1016%2Fj.diamond.2006.12.010. DOI: 10.1016/j.diamond.2006.12.010.
[44] LI H, QI Y, GONG J, et al. High-pressure synthesis and characterization of thermal-stableboron-doped diamond single crystals[J/OL]. International Journal of Refractory Metals andHard Materials, 2009, 27(3): 564-570. https://doi.org/10.1016%2Fj.ijrmhm.2008.07.015. DOI:10.1016/j.ijrmhm.2008.07.015.
[45] EKIMOV E, SIDOROV V, ZOTEEV A, et al. Structure and superconductivity of isotopeenriched boron-doped diamond[J/OL]. Science and Technology of Advanced Materials, 2008,9(4): 044210. https://doi.org/10.1088%2F1468-6996%2F9%2F4%2F044210. DOI: 10.1088/1468-6996/9/4/044210.
[46] VISHNEVSKII A, GONTAR A, TORISHNII V, et al. ELECTRICAL-CONDUCTIVITYOF HEAVILY DOPED P-TYPE DIAMOND[J]. SOVIET PHYSICS SEMICONDUCTORSUSSR, 1981, 15(6): 659-661.
[47] PALYANOV Y N, KHOKHRYAKOV A F, BORZDOV Y M, et al. Diamond growth and morphology under the influence of impurity adsorption[J]. Crystal Growth & Design, 2013, 13(12):5411-5419.
[48] KHOKHRYAKOV A F, PALYANOV Y N, KUPRIYANOV I N, et al. Crystal growth and perfection of large octahedral synthetic diamonds[J/OL]. Journal of Crystal Growth, 2011, 317(1): 32-38. https://doi.org/10.1016%2Fj.jcrysgro.2011.01.011. DOI: 10.1016/j.jcrysgro.2011.01.011.
[49] PALYANOV Y, KHOKHRYAKOV A, BORZDOV Y, et al. Growth conditions and real structureof synthetic diamond crystals[J]. Geologiya i Geofizika, 1997, 38: 882-906.
[50] ZHANG R, LEE S, LAM Y. Characterization of heavily boron-doped diamond films[J]. Diamond and Related Materials, 1996, 5(11): 1288-1294.
[51] MIYATA K, KUMAGAI K, NISHIMURA K, et al. Morphology of heavily B-doped diamondfilms[J/OL]. Journal of Materials Research, 1993, 8(11): 2845–2857. DOI: 10.1557/JMR.1993.2845.
[52] EKIMOV E, SIDOROV V, MASLAKOV K, et al. Influence of growth medium composition onthe incorporation of boron in HPHT diamond[J/OL]. Diamond and Related Materials, 2018,89: 101-107. https://doi.org/10.1016%2Fj.diamond.2018.08.010. DOI: 10.1016/j.diamond.2018.08.010.
[53] PALYANOV Y N, KUPRIYANOV I N, SOKOL A G, et al. Diamond Growth from a Phosphorus – Carbon System at High Pressure High Temperature Conditions[J/OL]. CrystalGrowth & Design, 2011, 11(6): 2599-2605. https://doi.org/10.1021%2Fcg2003468. DOI:10.1021/cg2003468.
[54] 何飞, 贺端威, 马迎功, 等. 二级 6-8 型静高压装置厘米级腔体的设计原理与实验研究[J].高压物理学报, 2015(3): 161-168.
[55] National Center for Electron Microscopy. Multi-Anvil Presses[EB/OL]. 2023. https://www.ncemp.org/MultiAnvil.htm.
[56] 杨斌, 陆凤国, 赵旭东, 等. 1000tWalker 型高温高压装置的使用与压力标定[J]. Gao ya wuli xue bao, 2011, 25(4): 303-309.
[57] ERMRICH M, OPPER D. XRD for the analyst[J]. Getting acquainted with the principles.Second. Panalytical, 2013.
[58] STEVIE F A, DONLEY C L. Introduction to x-ray photoelectron spectroscopy[J]. Journal ofVacuum Science & Technology A, 2020, 38(6): 063204.
[59] DEFOSSE C, ROUXHET P. Introduction to X-Ray Photoelectron Spectroscopy[M/OL].Springer Netherlands, 1988: 31-50. https://doi.org/10.1007/978-94-009-9094-4_3.
[60] AZEVEDO A, MENDES DE BARROS R, SERRANO S, et al. SEM and Raman analysis ofboron-doped diamond coating on spherical textured substrates[J/OL]. Surface and CoatingsTechnology, 2006, 200(20-21): 5973-5977. DOI: https://doi.org/10.1016/j.surfcoat.2005.09.012.
[61] BLYTH R, BUQA H, NETZER F, et al. XPS studies of graphite electrode materials for lithiumion batteries[J]. Journal of Power Sources, 2003, 119-121: 844-849.
[62] KE X, VAN TENDELOO G. Platinum-carbon nanotube interaction[J/OL]. Chemical PhysicsLetters, 2008, 462(4-6): 260-264. DOI: 10.1016/j.cplett.2008.07.082.
[63] 王志文等. 硼协同掺杂金刚石单晶的高温高压合成[J]. 人工晶体学报, 2022, 51(5): 830-840.
[64] PRUVOST F, BUSTARRET E, DENEUVILLE A. Characteristics of homoepitaxial heavilyboron-doped diamond films from their Raman spectra[J/OL]. Diamond and Related Materials,2000, 9(3-6): 295-299. DOI: https://doi.org/10.1016/S0925-9635(99)00241-1.
[65] WHITNEY E, GIESE R. Reaction of Platinum and Boron under Pressure[J/OL]. Nature, 1963,197(4872): 1293-1294. DOI: https://doi.org/10.1038/1971293a0.
[66] BERNARD M, DENEUVILLE A, MURET P. Non-destructive determination of the boronconcentration of heavily doped metallic diamond thin films from Raman spectroscopy[J/OL].Diamond and Related Materials, 2004, 13(2): 282-286. DOI: https://doi.org/10.1016/j.diamond.2003.10.051.
[67] GONON P, GHEERAERT E, DENEUVILLE A, et al. Characterization of heavily B‐dopedpolycrystalline diamond films using Raman spectroscopy and electron spin resonance[J/OL].Journal of Applied Physics, 1995, 78(12): 7059-7062. https://doi.org/10.1063/1.360410.
[68] MORTET V, GREGORA I, TAYLOR A, et al. New perspectives for heavily boron-doped diamond Raman spectrum analysis[J/OL]. Carbon, 2020, 168: 319-327. DOI: https://doi.org/10.1016/j.carbon.2020.06.075.
[69] ZAIKINA J V, MUTHUSWAMY E, LILOVA K I, et al. Thermochemistry, Morphology, andOptical Characterization of Germanium Allotropes[J/OL]. Chemistry of Materials, 2014, 26(10): 3263-3271. https://doi.org/10.1021/cm5010467.
[70] ZHANG X, LI X, ZHANG S, et al. Research on 1420 cm(-1) Characteristic Peak of Freestanding Diamond Films in Raman Spectrum[J]. Journal of Synthetic Crystals, 2015, 44(4):867-871.
[71] PHILIPS’GLOEILAMPENFABRIEKEN O. A method of measuring specific resistivity andHall effect of discs of arbitrary shape[J]. Philips Res. Rep, 1958, 13(1): 1-9.
[72] UPPAL S, WILLOUGHBY A F W, BONAR J M, et al. Diffusion of boron in germanium at800–900°C[J/OL]. Journal of Applied Physics, 2004, 96(3): 1376-1380. https://doi.org/10.1063/1.1766090.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544413
专题理学院_物理系
推荐引用方式
GB/T 7714
陈奕多. 硼掺杂金刚石的高温高压合成及其表征[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032035-陈奕多-物理系.pdf(21352KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈奕多]的文章
百度学术
百度学术中相似的文章
[陈奕多]的文章
必应学术
必应学术中相似的文章
[陈奕多]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。