中文版 | English
题名

铜催化的自由基不对称碳–硫和硫–氧交叉偶联反应研究

其他题名
STUDIES ON COPPER-CATALYZED RADICAL- INVOLVED ASYMMETRIC C(sp3 )–S AND S–O CROSS-COUPLING
姓名
姓名拼音
TIAN Yu
学号
11930836
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
刘心元
导师单位
化学系
外机构导师单位
南方科技大学
论文答辩日期
2023-05-25
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

手性α-烷基硫化合物是有机合成和生化过程中不可或缺的合成砌块,也是构建生物大分子、药物和农药等重要的组成成分。因而,发展不对称催化方法来高效构建手性碳硫键是现代合成化学和生物学的一个重要研究方向。在这方面,两电子离子型反应取得了长足的进展,但存在着底物范围窄和产物结构单一等不足。另外,由于金属硫键异裂困难,过渡金属催化的反应机理多为硫亲核试剂对手性金属物种的球外进攻来构筑碳硫键,限制了反应类型的拓展。因此,亟需发展新颖的催化体系来构建多种类型的手性α-烷基硫化合物。本文通过模拟天然酶催化自由基均裂取代的机制,利用一价铜/富电子阴离子手性配体催化体系实现了自由基立体汇聚式碳硫交叉偶联反应,反应的底物适用性广,可以兼容不同类型的外消旋二级、三级卤代烷烃和易于转化的硫亲核试剂,并展现出良好的官能团耐受性。

该催化体系可以有效启动反应产生烷基自由基,同时提供良好的手性环境来调控反应的对映选择性,并且能够很好地抑制非手性背景反应以及自由基副反应。三种不同骨架的阴离子手性N,N,P(N)-配体可以分别实现苄溴/氯、炔丙基溴和三级α-氯代酰胺的自由基立体汇聚式碳硫交叉偶联反应,成功合成了91个手性硫代磺酸酯和手性季碳硫酯化合物,产率最高达99%ee值最高达97%

该策略提供了一个灵活且实用的平台来制备不同类型的手性α-烷基硫化合物,产物经过简单的转化可以得到手性硫醇、硫醚、二硫醚、多氟硫烷、亚砜、砜、亚砜亚胺、磺酰胺和磺酰氟等。降低催化剂载量到2.5 mol%能够以较好的反应产率和ee值实现克级规模的放大反应,进一步证明了该方法学的合成实用性和潜在应用价值。

机理研究实验表明配体螯合的一价铜硫物种是引发反应,还原卤代烷烃为潜手性烷基自由基的关键中间体。自由基捕获实验和自由基钟实验支持了反应体系中有自由基活性中间体的产生。动力学时间淬灭实验认为反应是经过统一的立体汇聚式转化历程来制备手性产物。DFT理论计算结果支持了手性碳硫的成键倾向于仿生自由基取代的反应机制。该催化体系为强配位杂原子亲核试剂参与的不对称碳杂键构建反应提供了新策略。

通过自由基均裂取代的反应机制还实现了一价铜/阴离子手性磺酰胺N,N,N-配体催化的芳基磺酰氯和2-氨基-1,3-二醇的对映选择性硫–氧交叉偶联反应,避免了过渡金属催化杂–杂偶联反应中双电子还原消除困难的问题。成功合成了11个2-氨基手性磺酸酯类化合物,产物还可以通过简单的转化构建2-氨基手性硫醚、膦化合物以及非天然氨基酸,表明了该方法具有潜在的实用性。机理实验研究表明,芳基磺酰氯与配体螯合的一价铜催化剂发生单电子转移产生磺酰基自由基,并且磺酰基自由基参与了对映选择性硫–氧成键的过程。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] TORU T, BOLM C. Organosulfur chemistry in asymmetric synthesis[M]. Weinheim, Wiley-VCH, 2008.
[2] DENES F, PICHOWICZ M, POVIE G, et al. Thiyl radicals in organic synthesis[J]. Chemical Reviews, 2014, 114(5): 2587-2693.
[3] DUNBAR K L, SCHARF D H, LITOMSKA A, et al. Enzymatic carbon-sulfur bond formation in natural product biosynthesis[J]. Chemical Reviews, 2017, 117(8): 5521-5577.
[4] WANG N, SAIDHAREDDY P, JIANG X. Construction of sulfur-containing moieties in the total synthesis of natural products[J]. Natural Product Reports, 2020, 37(2): 246-275.
[5] SCOTT K A, NJARDARSON J T. Analysis of US FDA-approved drugs containing sulfur atoms[J]. Topics in Current Chemistry, 2018, 376(1): 5.
[6] LAMBERTH C. Sulfur chemistry in crop protection[J]. Journal of Sulfur Chemistry, 2004, 25(1): 39-62.
[7] SUBRAMANIAN H, MOORTHY R, Sibi M P. Thiyl radicals: from simple radical additions to asymmetric catalysis[J]. Angewandte Chemie International Edition, 2014, 53(50): 13660-13662.
[8] MCGARRIGLE E M, MYERS E L, ILLA O, et al. Chalcogenides as organocatalysts[J]. Chemical Reviews, 2007, 107(12): 5841-5883.
[9] MELLAH M, VOITURIEZ A, SCHULZ E. Chiral sulfur ligands for asymmetric catalysis[J]. Chemical Reviews, 2007, 107(11): 5133-5209.
[10] MARGALEF J, BIOSCA M, DE LA CRUZ SANCHEZ P, et al. Evolution in heterodonor P–N, P–S and P–O chiral ligands for preparing efficient catalysts for asymmetric catalysis. from design to applications[J]. Coordination Chemistry Reviews, 2021, 446.
[11] ZANARDI J, LERIVEREND C, AUBERT D, et al. A catalytic cycle for the asymmetric synthesis of epoxides using sulfur ylides[J]. The Journal of Organic Chemistry, 2001, 66(16): 5620-5623.
[12] EVANS D A, CAMPOS K R, TEDROW J S, et al. Application of chiral mixed phosphorus/sulfur ligands to palladium-catalyzed allylic substitutions[J]. Journal of the American Chemical Society, 2000, 122(33): 7905-7920.
[13] EVANS D A, MICHAEL F E, TEDROW J S, et al. Application of chiral mixed phosphorus/sulfur ligands to enantioselective rhodium-catalyzed dehydroamino acid hydrogenation and ketone hydrosilylation processes[J]. Journal of the American Chemical Society, 2003, 125(12): 3534-3543.
[14] BRODERICK J B, DUFFUS B R, DUSCHENE K S, et al. Radical S-adenosylmethionine enzymes[J]. Chemical Reviews, 2014, 114(8): 4229-4317.
[15] NAKAI T, ITO H, KOBAYASHI K, et al. The radical S-adenosyl-L-methionine enzyme QhpD catalyzes sequential formation of intra-protein sulfur-to-methylene carbon thioether bonds[J]. The Journal of Biological Chemistry, 2015, 290(17): 11144-11166.
[16] NAKAI T, ONO K, KURODA S, et al. An unusual subtilisin-like serine protease is essential for biogenesis of quinohemoprotein amine dehydrogenase[J]. The Journal of Biological Chemistry, 2012, 287(9): 6530-6538.
[17] VINTONYAK V V, WARBURG K, KRUSE H, et al. Identification of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of the mycobacterium tuberculosis protein tyrosine phosphatase B[J]. Angewandte Chemie International Edition, 2010, 49(34): 5902-5905.
[18] CHAUHAN P, MAHAJAN S, ENDERS D. Organocatalytic carbon-sulfur bond-forming reactions[J]. Chemical Reviews, 2014, 114(18): 8807-8864.
[19] KIKUCHI J, TERADA M. Enantioconvergent substitution reactions of racemic electrophiles by organocatalysis[J]. Chemistry–A European Journal, 2021, 27(40): 10215-10225.
[20] ZHANG X, TAN C-H. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers[J]. Chem, 2021, 7(6): 1451-1486.
[21] YU J-S, HUANG H-M, DING P-G, et al. Catalytic enantioselective construction of sulfur-containing tetrasubstituted carbon stereocenters[J]. ACS Catalysis, 2016, 6(8): 5319-5344.
[22] ZHU C, CAI Y, JIANG H. Recent advances for the synthesis of chiral sulfones with the sulfone moiety directly connected to the chiral center[J]. Organic Chemistry Frontiers, 2021, 8(19): 5574-5589.
[23] CHENG Q, TU H-F, ZHENG C, et al. Iridium-catalyzed asymmetric allylic substitution reactions[J]. Chemical Reviews, 2019, 119(3): 1855-1969.
[24] CHOI J, MARTIN-GAGO P, FU G C. Stereoconvergent arylations and alkenylations of unactivated alkyl electrophiles: catalytic enantioselective synthesis of secondary sulfonamides and sulfones[J]. Journal of the American Chemical Society, 2014, 136(34): 12161-12165.
[25] HE S-J, WANG J-W, LI Y, et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of olefins with alpha-heteroatom phosphorus or sulfur alkyl electrophiles[J]. Journal of the American Chemical Society, 2020, 142(1): 214-221.
[26] XIA X, WANG Z. Cr-catalyzed diastereo- and enantioselective synthesis of β-hydroxy sulfides and selenides[J]. ACS Catalysis, 2022, 12(18): 11152-11158.
[27] LIAO L, ZHAO X. Indane-based chiral aryl chalcogenide catalysts: development and applications in asymmetric electrophilic reactions[J]. Accounts of Chemical Research, 2022, 55(17): 2439-2453.
[28] SUNDARAVELU N, SANGEETHA S, SEKAR G. Metal-catalyzed C–S bond formation using sulfur surrogates[J]. Organic & Biomolecular Chemistry, 2021, 19(7): 1459-1482.
[29] KIMMEL K L, ROBAK M T, ELLMAN J A. Enantioselective addition of thioacetic acid to nitroalkenes via N-sulfinyl urea organocatalysis[J]. Journal of the American Chemical Society, 2009, 131(25): 8754-8755.
[30] RANA N K, SELVAKUMAR S, SINGH V K. Highly enantioselective organocatalytic sulfa-Michael addition to α,β-unsaturated ketones[J]. The Journal of Organic Chemistry, 2010, 75(6): 2089-2091.
[31] LEOW D, LIN S, CHITTIMALLA S K, et al. Enantioselective protonation catalyzed by a chiral bicyclic Guanidine derivative[J]. Angewandte Chemie International Edition, 2008, 47(30): 5641-5645.
[32] MARIGO M, SCHULTE T, FRANZEN J, et al. Asymmetric multicomponent domino reactions and highly enantioselective conjugated addition of thiols to α,β-unsaturated aldehydes[J]. Journal of the American Chemical Society, 2005, 127(45): 15710-15711.
[33] WANG H-Y, ZHANG J-X, CAO D-D, et al. Enantioselective addition of thiols to imines catalyzed by thiourea–quaternary ammonium salts[J]. ACS Catalysis, 2013, 3(10): 2218-2221.
[34] TIAN X, LIU Y, MELCHIORRE P. Aminocatalytic enantioselective 1,6 additions of alkyl thiols to cyclic dienones: vinylogous iminium ion activation[J]. Angewandte Chemie International Edition, 2012, 51(26): 6439-6442.
[35] SUN J, FU G C. Phosphine-catalyzed formation of carbon-sulfur bonds: catalytic asymmetric synthesis of γ-thioesters[J]. Journal of the American Chemical Society, 2010, 132(13): 4568-4569.
[36] LARSON S E, BASO J C, LI G, et al. Chiral phosphoric acid-catalyzed desymmetrization of meso-aziridines with functionalized mercaptans[J]. Organic Letters, 2009, 11(22): 5186-5189.
[37] WANG Z, LAW W K, SUN J. Chiral phosphoric acid catalyzed enantioselective desymmetrization of meso-epoxides by thiols[J]. Organic Letters, 2013, 15(23): 5964-5966.
[38] KIKUCHI J, TAKANO K, OTA Y, et al. Chiral Brønsted acid catalyzed enantioconvergent propargylic substitution reaction of racemic secondary propargylic alcohols with thiols[J]. Chemistry–A European Journal, 2020, 26(49): 11124-11128.
[39] FU G C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes[J]. ACS Central Science, 2017, 3(7): 692-700.
[40] ZHANG X, REN J, TAN S M, et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction[J]. Science, 2019, 363(6425): 400-404.
[41] HEGEDUS L L, MCCABE R W. Catalyst poisoning[J]. Catalysis Reviews Science and Engineering, 2007, 23(3): 377-476.
[42] EVANS D A, MILLER S J, LECTKA T, et al. Chiral bis(oxazoline)copper(II) complexes as Lewis acid catalysts for the enantioselective Diels−Alder reaction[J]. Journal of the American Chemical Society, 1999, 121(33): 7559-7573.
[43] CAVELL K J, HILL J O, MAGEE R J. Standard enthalpy of formation of bis(diethyldithiocarbamato)Copper(II) at 298 K and the copper–sulphur bond energy[J]. Journal of the Chemical Society, Dalton Transactions, 1980(9): 1638-1640.
[44] TROST B M, KRISCHE M J, RADINOV R, et al. On asymmetric induction in allylic alkylation via enantiotopic facial discrimination[J]. Journal of the American Chemical Society, 1996, 118(26): 6297-6298.
[45] CAI A, KLEIJ A W. Regio- and enantioselective preparation of chiral allylic sulfones featuring elusive quaternary stereocenters[J]. Angewandte Chemie International Edition, 2019, 58(42): 14944-14949.
[46] KHAN A, ZHAO H, ZHNAG M, et al. Regio- and enantioselective synthesis of sulfone-bearing quaternary carbon stereocenters by Pd-catalyzed allylic substitution[J]. Angewandte Chemie International Edition, 2020, 59(3): 1340-1345.
[47] UEDA M, HARTWIG J F. Iridium-catalyzed, regio- and enantioselective allylic substitution with aromatic and aliphatic sulfinates[J]. Organic Letters, 2010, 12(1): 92-94.
[48] LIU W, ZHAO X-M, ZHANG H-B, et al. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3[J]. Chemistry–A European Journal, 2014, 20(51): 16873-16876.
[49] ZHENG S, GAO L, LIU W, et al. Regio- and enantioselective iridium-catalyzed allylation of thiophenol: synthesis of enantiopure allyl phenyl sulfides[J]. Organic Letters, 2010, 12(20): 4454-4457.
[50] GAO L, ZHENG S, YANG W. Carbon–sulfur bond formation via iridium-catalyzed asymmetric allylation of aliphatic thiols [J]. Organic Letters, 2011, 13(6): 1514-1516.
[51] ROGGEN M, CARREIRA E M. Enantioselective allylic thioetherification: the effect of phosphoric acid diester on iridium-catalyzed enantioconvergent transformations[J]. Angewandte Chemie International Edition, 2012, 51(34): 8652-8655.
[52] ROGGEN M, CARREIRA E M. Enantioselective allylic etherification: selective coupling of two unactivated alcohols[J]. Angewandte Chemie International Edition, 2011, 50(24): 5568-5571.
[53] YE K-Y, HE H, LIU W-B, et al. Iridium-catalyzed allylic vinylation and asymmetric allylic amination reactions with O-aminostyrenes[J]. Journal of the American Chemical Society, 2011, 133(46): 19006-19014.
[54] ZHEGN S, HUANG W, GAO N, et al. One pot iridium-catalyzed asymmetrical double allylations of sodium sulfide: a fast and economic way to construct chiral C2-symmetric bis(1-substituted-allyl)sulfane[J]. Chemical Communications, 2011, 47(24): 6969-6971.
[55] HUANG W, ZHENG S, TANG J, et al. Iridium-catalyzed asymmetric allylation of sodium triisopropylsilanethiolate: a new way to form chiral thiols[J]. Organic & Biomolecular Chemistry, 2011, 9(22): 7897-7903.
[56] GAO N, ZHAO X. Synthesis of chiral allylic thioesters: enantio- and regioselective iridium-catalyzed allylations of KSAc[J]. European Journal of Organic Chemistry, 2013, 2013(13): 2708-2714.
[57] GOMEZ J E, CRISTOFOL A, KLEIJ A W. Copper-catalyzed enantioselective construction of tertiary propargylic sulfones[J]. Angewandte Chemie International Edition, 2019, 58(12): 3903-3907.
[58] GAO X, XIAO Y-L, ZHANG S, et al. Copper-catalyzed enantioselective trifluoromethylthiolation of secondary propargyl sulfonates[J]. CCS Chemistry, 2021, 3(5): 1463-1471.
[59] ZHANG Q, DONG D, ZI W. Palladium-catalyzed regio- and enantioselective hydrosulfonylation of 1,3-dienes with sulfinic acids: scope, mechanism, and origin of selectivity[J]. Journal of the American Chemical Society, 2020, 142(37): 15860-15869.
[60] LI M-M, CHENG L, XIAO L-J, et al. Palladium-catalyzed asymmetric hydrosulfonylation of 1,3-dienes with sulfonyl hydrazides[J]. Angewandte Chemie International Edition, 2021, 60(6): 2948-2951.
[61] PRITZIUS A B, BREIT B. Asymmetric rhodium-catalyzed addition of thiols to allenes: synthesis of branched allylic thioethers and sulfones[J]. Angewandte Chemie International Edition, 2015, 54(10): 3121-3125.
[62] PRITZIUS A B, BREIT B. Z-Selective hydrothiolation of racemic 1,3-disubstituted allenes: an atom-economic rhodium-catalyzed dynamic kinetic resolution[J]. Angewandte Chemie International Edition, 2015, 54(52): 15818-15822.
[63] YANG X-H, DAVISON R T, DONG V M. Catalytic hydrothiolation: regio- and enantioselective coupling of thiols and dienes[J]. Journal of the American Chemical Society, 2018, 140(33): 10443-10446.
[64] NIE S, LU A, KUKER E L, et al. Enantioselective hydrothiolation: diverging cyclopropenes through ligand control[J]. Journal of the American Chemical Society, 2021, 143(16): 6176-6184.
[65] CHELUCCI G. Synthesis and metal-catalyzed reactions of gem-dihalovinyl systems[J]. Chemical Reviews, 2012, 112(3): 1344-1462.
[66] GILLIS E P, EASTMAN K J, HILL M D, et al. Applications of fluorine in medicinal chemistry[J]. Journal of the Medicinal Chemistry, 2015, 58(21): 8315-8359.
[67] HAN X, WANG M, LIANG Y, et al. Regio- and enantioselective nucleophilic addition to gem-difluoroallenes[J]. Nature Synthesis, 2022, 1(3): 227-234.
[68] SUN Y-T, RAO X, XU W, et al. Rhodium(I)-catalyzed C–S bond formation via enantioselective carbenoid S–H insertion: catalytic asymmetric synthesis of α-thioesters[J]. Organic Chemistry Frontiers, 2022, 9(13): 3467-3472.
[69] XU B, ZHU S-F, ZHANG Z-C, et al. Highly enantioselective S–H bond insertion cooperatively catalyzed by dirhodium complexes and chiral spiro phosphoric acids[J]. Chemical Science, 2014, 5(4).
[70] JARRETT J T. The biosynthesis of thiol- and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes[J]. The Journal of Biological Chemistry, 2015, 290(7): 3972-3979.
[71] TAYLOR A M, FARRAR C E, JARRETT J T. 9-Mercaptodethiobiotin is formed as a competent catalytic intermediate by Escherichia coli biotin synthase[J]. Biochemistry, 2008, 47(35): 9309-9317.
[72] CICCHILLO R M, LEE K H, BALEANU-GOGONEA C, et al. Escherichia coli lipoyl synthase binds two distinct
[4Fe-4S] Clusters per polypeptide[J]. Biochemistry, 2004, 43(37): 11770-11781.
[73] GROVE T L, HIMES P M, HWANG S, et al. Structural insights into thioether bond formation in the biosynthesis of Sactipeptides[J]. Journal of the American Chemical Society, 2017, 139(34): 11734-11744.
[74] MACMAHON T J, JACKSON T C, FREISER B S. A gas-phase study of FeSn+ (n = 1–6)[J]. Journal of the American Chemical Society, 2002, 111(2): 421-427.
[75] HE J, CHEN G, ZHANG B, et al. Catalytic decarboxylative radical sulfonylation[J]. Chem, 2020, 6(5): 1149-1159.
[76] DE MEIJERE A, BRASE S, OESTREICH M. Metal-catalyzed cross-coupling reactions and more[M]. Weinheim, Wiley-VCH, 2014.
[77] CHERNEY A H, KADUNCE N T, REISMAN S E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds[J]. Chemical Review, 2015, 115(17): 9587-9652.
[78] CHOI J, FU G C. Transition metal-catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry[J]. Science, 2017, 356, eaaf7230.
[79] CAI Q, ZHOU F, LIU J. Transition metal catalyzed asymmetric aryl carbon–heteroatom bond coupling reactions[J]. Synlett, 2016, 27(5): 664-675.
[80] RUDOLPH A, LAUTENS M. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions[J]. Angewandte Chemie International Edition, 2009, 48(15): 2656-2670.
[81] KAMBE N, IWASAKI T, TERAO J. Pd-catalyzed cross-coupling reactions of alkyl halides[J]. Chemical Society Reviews, 2011, 40(10): 4937-4947.
[82] MONDAL S, DUMMUR F, GIGMES D, et al. Enantioselective radical reactions using chiral catalysts[J]. Chemical Review, 2022, 122(6): 5842-5976.
[83] LIPP A, BADIR S O, MOLANDER G A. Stereoinduction in metallaphotoredox catalysis[J]. Angewandte Chemie International Edition, 2021, 60(4): 1714-1726.
[84] KAINZ Q M, MATIER C D, BARTOSZEWICZ A, et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light[J]. Science, 2016, 351(6274): 681-684.
[85] CHEN C, PETERS J C, FU G C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity[J]. Nature, 2021, 596(7871): 250-256.
[86] CHO H, SUEMATSU H, OYALA P H, et al. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism[J]. Journal of the American Chemical Society, 2022, 144(10): 4550-4558.
[87] WANG Z, YIN H, FU G C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins[J]. Nature, 2018, 563(7731): 379-383.
[88] WANG Z, YANG Z-P, FU G C. Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides[J]. Nature Chemistry, 2021, 13(3): 236-242.
[89] ANILKUMAR G, SARANYA S. Copper catalysis in organic synthesis[M]. Weinheim, Wiley-VCH, 2020.
[90] RIBELLI T G, MATYJASZEWSKI K, POLI R. The interaction of carbon-centered radicals with copper(I) and copper(II) complexes*[J]. Journal of Coordination Chemistry, 2018, 71(11-13): 1641-1668.
[91] WANG F, CHEN P, LIU G. Copper-catalyzed radical relay for asymmetric radical transformations[J]. Accounts of Chemical Research, 2018, 51(9): 2036-2046.
[92] GU Q-S, LI Z-L, LIU X-Y. Copper(I)-catalyzed asymmetric reactions involving radicals[J]. Accounts of Chemical Research, 2020, 53(1): 170-181.
[93] LI Z-L, FANG G-C, GU Q-S, et al. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes[J]. Chemical Society Reviews, 2020, 49(1): 32-48.
[94] For a rough comparison, the standard electrode potential E0(MII/M0) is –0.26 V, –0.28 V, –0.44 V, and +0.34 V for Ni, Co, Fe, and Cu, respectively. For data sources, see: http://www.benjamin-mills.com/chemistry/ecells.htm.
[95] DONG X-Y, LI Z-L, GU Q-S, et al. Ligand development for copper-catalyzed enantioconvergent radical cross-coupling of racemic alkyl halides[J]. Journal of the American Chemical Society, 2022, 144(38): 17319-17329.
[96] YU X-Y, CHEN J-R, XIAO W-J. Visible light-driven radical-mediated C–C bond cleavage/functionalization in organic synthesis[J]. Chemical Review, 2021, 121(1): 506-561.
[97] LEE H, AHN J M, OYALA P H, et al. Investigation of the C–N bond-forming step in a photoinduced, copper-catalyzed enantioconvergent N-alkylation: characterization and application of a stabilized organic radical as a mechanistic probe[J]. Journal of the American Chemical Society, 2022, 144(9): 4114-4123.
[98] LI C, CHEN B, MA X, et al. Light-promoted copper-catalyzed enantioselective alkylation of azoles[J]. Angewandte Chemie International Edition, 2021, 60(4): 2130-2134.
[99] LEOPHAIRATANA P, SAMANTA S, DE SILVA C C, et al. Preventing alkyne–alkyne (i.e., Glaser) coupling associated with the ATRP synthesis of alkyne-functional polymers/macromonomers and for alkynes under click (i.e., CuAAC) reaction conditions[J]. Journal of the American Chemical Society, 2017, 139(10): 3756-3766.
[100] DONG X-Y, ZHANG Y-F, MA C-L, et al. A general asymmetric copper-catalysed Sonogashira C(sp3)-C(sp) coupling[J]. Nature Chemistry, 2019, 11(12): 1158-1166.
[101] LIU L, GUO K-X, TIAN Y, et al. Copper-catalyzed intermolecular enantioselective radical oxidative C(sp3)–H/C(sp)–H cross-coupling with rationally designed oxazoline-derived N,N,P(O)-ligands[J]. Angewandte Chemie International Edition, 2021, 60(51): 26710-26717.
[102] GUO R, SANG J, XIAO H, et al. Development of novel phosphino-oxazoline ligands and their application in asymmetric alkynlylation of benzylic halides[J]. Chinese Journal of Chemistry, 2022, 40(11): 1337-1345.
[103] JIANG S-P, DONG X-Y, GU Q-S, et al. Copper-catalyzed enantioconvergent radical Suzuki-Miyaura C(sp3)–C(sp2) cross-coupling[J]. Journal of the American Chemical Society, 2020, 142(46): 19652-19659.
[104] SU X-L, YE L, CHEN J-J, et al. Copper-catalyzed enantioconvergent cross-coupling of racemic alkyl bromides with azole C(sp2)–H bonds[J]. Angewandte Chemie International Edition, 2021, 60(1): 380-384.
[105] KERRU N, GUMMIDI L, MADDILA S, et al. A review on recent advances in nitrogen-containing molecules and their biological applications[J]. Molecules, 2020, 25(8).
[106] ZHANG Y-F, DONG X-Y, CHENG J-T, et al. Enantioconvergent Cu-catalyzed radical C–N coupling of racemic secondary alkyl halides to access α-chiral primary amines[J]. Journal of the American Chemical Society, 2021, 143(37): 15413-15419.
[107] WANG L-L, ZHOU H, CAO Y-X, et al. A general copper-catalysed enantioconvergent radical Michaelis-Becker-type C(sp3)–P cross-coupling[J]. Nature Synthesis, 2023, DOI: 10.1038/s44160-023-00252-3.
[108] WANG P-F, YU J, GUO K-X, et al. Design of hemilabile N,N,N-ligands in copper-catalyzed enantioconvergent radical cross-coupling of benzyl/propargyl halides with alkenylboronate esters[J]. Journal of the American Chemical Society, 2022, 144(14): 6442-6452.
[109] WANG F-L, YANG C-J, LIU J-R, et al. Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)–C(sp) cross-coupling of tertiary electrophiles with alkynes[J]. Nature Chemistry, 2022, 14(8): 949-957.
[110] WANG F-L, LIU L, YANG C-J, et al. Synthesis of α-quaternary β-lactams via copper-catalyzed enantioconvergent radical C(sp3)–C(sp2) cross-coupling with organoboronate esters[J]. Angewandte Chemie International Edition, 2023, 62: e202214709.
[111] MO X, CHEN B, ZHANG G. Copper-catalyzed enantioselective Sonogashira type coupling of alkynes with α-bromoamides[J]. Angewandte Chemie International Edition, 2020, 59(33): 13998-14002.
[112] MO X, HUANG H, ZHANG G. Tetrasubstituted carbon stereocenters via copper-catalyzed asymmetric Sonogashira coupling reactions with cyclic gem-dihaloketones and tertiary α-carbonyl bromides[J]. ACS Catalysis, 2022, 12(16): 9944-9952.
[113] IWAMOTO H, ENDO K, OZAWA Y, et al. Copper(I)-catalyzed enantioconvergent borylation of racemic benzyl chlorides enabled by quadrant-by-quadrant structure modification of chiral bisphosphine ligands[J]. Angewandte Chemie International Edition, 2019, 58(32): 11112-11117.
[114]CHEN C, FU G C. Copper-catalyzed enantioconvergent alkylation of oxygen nucleophiles[J]. Nature, 2023: 10.1038/s41586-023-06001-y.
[115] BULMAN PAGE P C, WILKES R D, REYNOLDS D. Alkyl chalcogenides: sulfur-based functional groups. In Comprehensive Organic Functional Group Transformations (Katritzky A R, Meth-Cohn O, Rees C W. eds). Elsevier Science, 1995: 113-275.
[116] LIN Q, CHEN L, HUANG Y, et al. Efficient C(sp3alkyl)–SCF3 bond formations via copper-mediated trifluoromethylthiolation of alkyl halides[J]. Organic & Biomolecular Chemistry, 2014, 12(29): 5500-5508.
[117] SLADOJEVICH F, TRABOCCHI A, GUARNA A, et al. A new family of cinchona-derived amino phosphine precatalysts: application to the highly enantio- and diastereoselective silver-catalyzed isocyanoacetate aldol reaction[J]. Journal of the American Chemical Society, 2011, 133(6): 1710-1713.
[118] MAMPUYS P, MCELROY C R, CLARK J H, et al. Thiosulfonates as emerging reactants: synthesis and applications[J]. Advanced Synthesis & Catalysis, 2019, 362(1): 3-64.
[119] ZILBEYAZ K, OZTEKIN A, KUTLUANA E G. Design and synthesis of garlic-related unsymmetrical thiosulfonates as potential Alzheimer's disease therapeutics: In vitro and in silico study[J]. Bioorganic & Medicinal Chemistry, 2021, 40: 116194.
[120] SHULTZ Z P, SCATTOLIN T, WOJTAS L, et al. Stereospecific α-(hetero)arylation of sulfoximines and sulfonimidamides[J]. Nature Synthesis, 2022, 1(2): 170-179.
[121] DONG J, KRASNOVA L, FINN M G, et al. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry[J]. Angewandte Chemie International Edition, 2014, 53(36): 9430-9448.
[122] TROST B M, LI C-J. Modern Alkyne Chemistry[M]. Weinheim, Wiley-VCH, 2014.
[123] SU B, LEE T, HARTWIG J F. Iridium-catalyzed, β-selective C(sp3)–H silylation of aliphatic amines to form silapyrrolidines and 1,2-amino alcohols[J]. Journal of the American Chemical Society, 2018, 140(51): 18032-18038.
[124] CHEGN X, LU H, LU Z. Enantioselective benzylic C–H arylation via photoredox and nickel dual catalysis[J]. Nature Communications, 2019, 10(1): 3549.
[125] CLAYDEN J, MACLELLAN P. Asymmetric synthesis of tertiary thiols and thioethers[J]. Beilstein Journal of Organic Chemistry, 2011, 7: 582-595.
[126] DENG Q-H, MELEN R L, GADE L H. Anionic chiral tridentate N-donor pincer ligands in asymmetric catalysis[J]. Accounts of Chemical Research, 2014, 47(10): 3162-3173.
[127] XU T, CAO T, YANG M, et al. Decarboxylative thiolation of redox-active esters to thioesters by merging photoredox and copper catalysis[J]. Organic Letters, 2020, 22(9): 3692-3696.
[128] DEIVARAJ T C, LAI G X, VITTAL J J. Chemistry of thiocarboxylates: synthesis and structures of neutral Copper(I) thiocarboxylates with triphenylphosphine[J]. Inorganic Chemistry, 2000, 39(5): 1028-1034.
[129] WALDMAN A J, NG T L, WANG P, et al. Heteroatom–heteroatom bond formation in natural product biosynthesis[J]. Chemical Reviews, 2017, 117(8): 5784-5863.
[130] ERTL P, ALTMANN E, MCKENNA J M. The most common functional groups in bioactive molecules and how their popularity has evolved over time[J]. Journal of medicinal chemistry, 2020, 63(15): 8408-8418.
[131] LEITAO E M, JURCA T, MANNERS I. Catalysis in service of main group chemistry offers a versatile approach to p-block molecules and materials[J]. Nature chemistry, 2013, 5(10): 817-829.
[132] MELEN R L. Frontiers in molecular p-block chemistry: From structure to reactivity[J]. Science, 2019, 363(6426): 479-484.
[133] ELROD L T, BOXWALA H, HAQ H, et al. As–As bond formation via reductive elimination from a zirconocene bis (dimesitylarsenide) compound[J]. Organometallics, 2012, 31(14): 5204-5207.
[134]NEUMANN J J, SURI M, GLORIUS F. Efficient synthesis of pyrazoles: oxidative C–C/N–N bond-formation cascade[J]. Angewandte Chemie International Edition, 2010, 49(42): 7790-7794.
[135]KOHL S W, WEINER L, SCHWARTSBURD L, et al. Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex[J]. Science, 2009, 324(5923): 74-77.
[136]HARTWIG J F. Carbon–heteroatom bond formation catalysed by organometallic complexes[J]. Nature, 2008, 455(7211): 314-322.
[137]COOK T R, SURENDRANATH Y, NOCERA D G. Chlorine photoelimination from a diplatinum core: circumventing the back reaction[J]. Journal of the American Chemical Society, 2009, 131(1): 28-29.
[138]FANG C, FANTIN M, PAN X, et al. Mechanistically guided predictive models for ligand and initiator effects in copper-catalyzed atom transfer radical polymerization (Cu-ATRP)[J]. Journal of the American Chemical Society, 2019, 141(18): 7486-7497.
[139]CHENG Y-F, YU Z-L, TIAN Y, et al. Cu-catalysed enantioselective radical heteroatomic S–O cross-coupling[J]. Nature Chemistry, 2023, 15(3): 395-404.
[140]RUSSELL G A, TASHTOUSH H, NGOVIWATCHAI P. Alkylation of β-substituted styrenes by a free radical addition-elimination sequence[J]. Journal of the American Chemical Society, 1984, 106(16): 4622-4623.
[141]KING J F, LAM J Y L, SKONIECZNY S. Mechanisms of hydrolysis and related nucleophilic displacement reactions of alkanesulfonyl chlorides: pH dependence and the mechanism of hydration of sulfenes[J]. Journal of the American Chemical Society, 1992, 114(5): 1743-1749.

所在学位评定分委会
化学
国内图书分类号
O623.8
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544416
专题理学院_化学系
推荐引用方式
GB/T 7714
田宇. 铜催化的自由基不对称碳–硫和硫–氧交叉偶联反应研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930836-田宇-化学系.pdf(4797KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[田宇]的文章
百度学术
百度学术中相似的文章
[田宇]的文章
必应学术
必应学术中相似的文章
[田宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。