[1] FEYNMAN R P. Simulating physics with computers[M]//Feynman and computation. CRC Press, 2018: 133153.
[2] DEUTSCH D. Quantum theory, the Church–Turing principle and the universal quantum com puter[J]. Proc. R. Soc. London. A: Math. Phys. Sci., 1985, 400(1818): 97.
[3] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th annual symposium on foundations of computer science. Ieee, 1994: 124.
[4] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the twentyeighth annual ACM symposium on Theory of computing. 1996: 212.
[5] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[6] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super conducting processor[J]. Nature, 2019, 574(7779): 505510.
[7] XUE X, RUSS M, SAMKHARADZE N, et al. Quantum logic with spin qubits crossing the surface code threshold[J]. Nature, 2022, 601(7893): 343347.
[8] WANG K, XU G, GAO F, et al. Ultrafast coherent control of a hole spin qubit in a germanium quantum dot[J]. Nat. Commun., 2022, 13(1): 206.
[9] BLUVSTEIN D, LEVINE H, SEMEGHINI G, et al. A quantum processor based on coherent transport of entangled atom arrays[J]. Nature, 2022, 604(7906): 451456.
[10] GRAHAM T, SONG Y, SCOTT J, et al. Multiqubit entanglement and algorithms on a neutral atom quantum computer[J]. Nature, 2022, 604(7906): 457462.
[11] BRUZEWICZ C D, CHIAVERINI J, MCCONNELL R, et al. Trappedion quantum computing: Progress and challenges[J]. Appl. Phys. Rev., 2019, 6(2): 021314.
[12] CORY D G, FAHMY A F, HAVEL T F. Ensemble quantum computing by NMR spectroscopy [J]. Proc. Natl. Acad. Sci., 1997, 94(5): 1634.
[13] CHILDRESS L, HANSON R. Diamond NV centers for quantum computing and quantum networks[J]. MRS Bull., 2013, 38(2): 134138.
[14] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschr. Phys.: Prog. Phys., 2000, 48(911): 771783.
[15] LONG G L, LIU X S. Theoretically efficient highcapacity quantumkeydistribution scheme [J]. Phys. Rev. A, 2002, 65(3): 032302.
[16] BENNETT C H, BRASSARD G, MERMIN N D. Quantum cryptography without Bell’s theorem[J]. Phys. Rev. Lett., 1992, 68(5): 557.
[17] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575579.
[18] NIELSEN M A, CHUANG I. Quantum computation and quantum information[M]. American Association of Physics Teachers, 2002.
[19] DEUTSCH D, JOZSA R. Rapid solution of problems by quantum computation[J]. Proc. R. Soc. London A: Math. Phys. Sci., 1992, 439(1907): 553558.
[20] HARROW A W, HASSIDIM A, LLOYD S. Quantum algorithm for linear systems of equations [J]. Phys. Rev. Lett., 2009, 103(15): 150502.
[21] PAN J, CAO Y, YAO X, et al. Experimental realization of quantum algorithm for solving linear systems of equations[J]. Phys. Rev. A, 2014, 89(2): 022313.
[22] ABRAMS D S, LLOYD S. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors[J]. Phys. Rev. Lett., 1999, 83(24): 5162.
[23] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Rev. Mod. Phys., 2014, 86 (1): 153.
[24] PURCELL E M, TORREY H C, POUND R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Phys. Rev., 1946, 69(12): 37.
[25] BLOCH F. Nuclear induction[J]. Phys. Rev., 1946, 70(78): 460.
[26] VANDERSYPEN L M, CHUANG I L. NMR techniques for quantum control and computation [J]. Rev. Mod. Phys., 2005, 76(4): 1037.
[27] KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms[J]. J. Magn. Reson., 2005, 172(2): 296305.
[28] KNILL E, CHUANG I, LAFLAMME R. Effective pure states for bulk quantum computation [J]. Phys. Rev. A, 1998, 57(5): 3348.
[29] GERSHENFELD N A, CHUANG I L. Bulk spinresonance quantum computation[J]. Science, 1997, 275(5298): 350356.
[30] CORY D G, PRICE M D, HAVEL T F. Nuclear magnetic resonance spectroscopy: An exper imentally accessible paradigm for quantum computing[J]. Physica D, 1998, 120(12): 82101.
[31] ELGANAINY R, MAKRIS K G, KHAJAVIKHAN M, et al. NonHermitian physics and PT symmetry[J]. Nat. Phys., 2018, 14(1): 1119.
[32] ASHIDA Y, GONG Z, UEDA M. NonHermitian physics[J]. Adv. Phys., 2020, 69(3): 249 435.
[33] BERGHOLTZ E J, BUDICH J C, KUNST F K. Exceptional topology of nonHermitian systems [J]. Rev. Mod. Phys., 2021, 93: 015005.
[34] YAO S, WANG Z. Edge states and topological invariants of nonHermitian systems[J]. Phys. Rev. Lett., 2018, 121: 086803.
[35] ASHIDA Y, FURUKAWA S, UEDA M. Paritytimesymmetric quantum critical phenomena [J]. Nat. Commun., 2017, 8(1): 16.
[36] XU H, MASON D, JIANG L, et al. Topological energy transfer in an optomechanical system with exceptional points[J]. Nature, 2016, 537(7618): 8083.
[37] DOPPLER J, MAILYBAEV A A, BÖHM J, et al. Dynamically encircling an exceptional point for asymmetric mode switching[J]. Nature, 2016, 537(7618): 7679.
[38] LEE T E. Anomalous edge state in a nonHermitian lattice[J]. Phys. Rev. Lett., 2016, 116: 133903.
[39] KUNST F K, EDVARDSSON E, BUDICH J C, et al. Biorthogonal bulkboundary correspon dence in nonHermitian systems[J]. Phys. Rev. Lett., 2018, 121: 026808.
[40] YAO S, SONG F, WANG Z. NonHermitian chern bands[J]. Phys. Rev. Lett., 2018, 121: 136802.
[41] LI J, HARTER A K, LIU J, et al. Observation of paritytime symmetry breaking transitions in a dissipative floquet system of ultracold atoms[J]. Nat. Commun., 2019, 10(1): 17.
[42] RÜTER C E, MAKRIS K G, ELGANAINY R, et al. Observation of parity–time symmetry in optics[J]. Nat. Phys., 2010, 6(3): 192195.
[43] MIRI M A, ALÙ A. Exceptional points in optics and photonics[J]. Science, 2019, 363(6422): eaar7709.
[44] GAO T, ESTRECHO E, BLIOKH K, et al. Observation of nonHermitian degeneracies in a chaotic excitonpolariton billiard[J]. Nature, 2015, 526(7574): 554558.
[45] ZHANG D, LUO X Q, WANG Y P, et al. Observation of the exceptional point in cavity magnonpolaritons[J]. Nat. Commun., 2017, 8(1): 16.
[46] DIÓSI L, STRUNZ W T. The nonMarkovian stochastic Schrödinger equation for open systems [J]. Phys. Lett. A, 1997, 235(6): 569573.
[47] GARDINER C, ZOLLER P. The quantum world of ultracold atoms and light book II: the physics of quantumoptical devices: volume 4[M]. World Scientific Publishing Company, 2015.
[48] LIN Z, ZHANG L, LONG X, et al. Experimental quantum simulation of nonHermitian dy namical topological states using stochastic Schrödinger equation[J]. npj Quantum Inf., 2022, 8 (1): 113.
[49] GÜNTHER U, SAMSONOV B F. Naimarkdilated 𝒫𝒯symmetric brachistochrone[J]. Phys. Rev. Lett., 2008, 101: 230404.
[50] KAWABATA K, ASHIDA Y, UEDA M. Information retrieval and criticality in paritytime symmetric systems[J]. Phys. Rev. Lett., 2017, 119: 190401.
[51] ZHENG C. Duality quantum simulation of a general paritytimesymmetric twolevel system [J]. Europhys. Lett., 2018, 123(4): 40002.
[52] HUANG M, LEE R K, ZHANG L, et al. Simulating broken 𝒫𝒯symmetric hamiltonian systems by weak measurement[J]. Phys. Rev. Lett., 2019, 123: 080404.
[53] VARMA A V, DAS S. Simulating manybody nonHermitian 𝒫𝒯symmetric spin dynamics [J]. Phys. Rev. B, 2021, 104: 035153.
[54] WU Y, LIU W, GENG J, et al. Observation of paritytime symmetry breaking in a singlespin system[J]. Science, 2019, 364(6443): 878880.
[55] BARENCO A, BENNETT C H, CLEVE R, et al. Elementary gates for quantum computation [J]. Phys. Rev. A, 1995, 52: 34573467.
[56] DOGRA S, MELNIKOV A A, PARAOANU G S. Quantum simulation of paritytime symmetry breaking with a superconducting quantum processor[J]. Commun. Phys., 2021, 4(1): 18.
[57] TROTTER H F. On the product of semigroups of operators[J]. Proc. Am. Math. Soc., 1959, 10(4): 545551.
[58] SUZUKI M. Relationship between ddimensional quantal spin systems and (d+1)dimensional ising systems: Equivalence, critical exponents and systematic approximants of the partition function and spin correlations[J]. Prog. Theor. Phys., 1976, 56(5): 14541469.
[59] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Rev. Mod. Phys., 2014, 86: 153185.
[60] MOLL N, BARKOUTSOS P, BISHOP L S, et al. Quantum optimization using variational algorithms on nearterm quantum devices[J]. Quantum Sci. Technol., 2018, 3(3): 030503.
[61] CEREZO M, ARRASMITH A, BABBUSH R, et al. Variational quantum algorithms[J]. Nat. Rev. Phys., 2021, 3(9): 625644.
[62] KANDALA A, MEZZACAPO A, TEMME K, et al. Hardwareefficient variational quantum eigensolver for small molecules and quantum magnets[J]. Nature, 2017, 549(7671): 242246.
[63] O’MALLEY P J J, BABBUSH R, KIVLICHAN I D, et al. Scalable quantum simulation of molecular energies[J]. Phys. Rev. X, 2016, 6: 031007.
[64] MCCASKEY A J, PARKS Z P, JAKOWSKI J, et al. Quantum chemistry as a benchmark for nearterm quantum computers[J]. npj Quantum Inf., 2019, 5(1): 18.
[65] HEMPEL C, MAIER C, ROMERO J, et al. Quantum chemistry calculations on a trappedion quantum simulator[J]. Phys. Rev. X, 2018, 8: 031022.
[66] ENDO S, SUN J, LI Y, et al. Variational quantum simulation of general processes[J]. Phys. Rev. Lett., 2020, 125: 010501.
[67] MCARDLE S, JONES T, ENDO S, et al. Variational ansatzbased quantum simulation of imaginary time evolution[J]. npj Quantum Inf., 2019, 5(1): 16.
[68] HEYA K, SUZUKI Y, NAKAMURA Y, et al. Variational quantum gate optimization[A]. 2018. arXiv: 1810.12745.
[69] BENEDETTI M, FIORENTINI M, LUBASCH M. Hardwareefficient variational quantum algorithms for time evolution[J]. Phys. Rev. Res., 2021, 3: 033083.
[70] SCHULD M, BERGHOLM V, GOGOLIN C, et al. Evaluating analytic gradients on quantum hardware[J]. Phys. Rev. A, 2019, 99: 032331.
[71] HECHTNIELSEN R. Theory of the backpropagation neural network[M]//Neural networks for perception. Elsevier, 1992: 6593.
[72] ZHANG K L, SONG Z. Quantum phase transition in a quantum ising chain at nonzero temper atures[J]. Phys. Rev. Lett., 2021, 126: 116401.
[73] SHENDE V V, BULLOCK S S, MARKOV I L. Synthesis of quantum logic circuits[C]// Proceedings of the 2005 Asia and South Pacific Design Automation Conference. 2005: 272 275.
[74] KOKAIL C, MAIER C, VAN BIJNEN R, et al. Selfverifying variational quantum simulation of lattice models[J]. Nature, 2019, 569(7756): 355360.
[75] MARI A, BROMLEY T R, KILLORAN N. Estimating the gradient and higherorder derivatives on quantum hardware[J]. Phys. Rev. A, 2021, 103: 012405.
[76] MITARAI K, NEGORO M, KITAGAWA M, et al. Quantum circuit learning[J]. Phys. Rev. A, 2018, 98: 032309.
[77] ZHU D, LINKE N M, BENEDETTI M, et al. Training of quantum circuits on a hybrid quantum computer[J]. Sci. Adv., 2019, 5(10): eaaw9918.
[78] HAVLÍČEK V, CÓRCOLES A D, TEMME K, et al. Supervised learning with quantum enhanced feature spaces[J]. Nature, 2019, 567(7747): 209212.
[79] ZHANG S X, WAN Z Q, LEE C K, et al. Variational quantumneural hybrid eigensolver[J]. Phys. Rev. Lett., 2022, 128: 120502.
[80] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back propagating errors[J]. Nature, 1986, 323(6088): 533536.
[81] WERBOS P J. Backpropagation through time: what it does and how to do it[J]. Proc. IEEE, 1990, 78(10): 15501560.
[82] PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in pytorch[J]. in NIPS 2017 Workshop Autodiff, 2017.
[83] QUAN H T, SONG Z, LIU X F, et al. Decay of loschmidt echo enhanced by quantum criticality [J]. Phys. Rev. Lett., 2006, 96: 140604.
[84] LI J, YANG X, PENG X, et al. Hybrid quantumclassical approach to quantum optimal control [J]. Phys. Rev. Lett., 2017, 118: 150503.
[85] LONG X, HE W T, ZHANG N N, et al. Entanglementenhanced quantum metrology in colored noise by quantum zeno effect[J]. Phys. Rev. Lett., 2022, 129: 070502.
[86] NIE X, ZHU X, HUANG K, et al. Experimental realization of a quantum refrigerator driven by indefinite causal orders[J]. Phys. Rev. Lett., 2022, 129: 100603.
[87] MITCHELL T M, MITCHELL T M. Machine learning: volume 1[M]. McGrawhill New York, 1997.
[88] JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255.
[89] BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum machine learning[J]. Nature, 2017, 549(7671): 195202.
[90] SCHULD M, SINAYSKIY I, PETRUCCIONE F. An introduction to quantum machine learning [J]. Contemp. Phys., 2015, 56(2): 172185.
[91] CILIBERTO C, HERBSTER M, IALONGO A D, et al. Quantum machine learning: a classical perspective[J]. Proc. R. Soc. A: Math. Phys. Eng., 2018, 474(2209): 20170551.
[92] ERICKSON B J, KORFIATIS P, AKKUS Z, et al. Machine learning for medical imaging[J]. Radiographics, 2017, 37(2): 505.
[93] GIGER M L. Machine learning in medical imaging[J]. J. Am. Coll. Radiol., 2018, 15(3): 512520.
[94] SCHOEPF U J, SCHNEIDER A C, DAS M, et al. Pulmonary embolism: computeraided detection at multidetector row spiral computed tomography[J]. J. Thorac. Imaging, 2007, 22 (4): 319323.
[95] DUNDAR M M, FUNG G, KRISHNAPURAM B, et al. Multipleinstance learning algorithms for computeraided detection[J]. IEEE Trans. Biomed. Eng., 2008, 55(3): 10151021.
[96] CHAN H P, LO S C B, SAHINER B, et al. Computeraided detection of mammographic mi crocalcifications: Pattern recognition with an artificial neural network[J]. Med. Phys., 1995, 22 (10): 15551567.
[97] BAUER S, WIEST R, NOLTE L P, et al. A survey of MRIbased medical image analysis for brain tumor studies[J]. Phys. Med. Biol., 2013, 58(13): R97.
[98] MITCHELL T M, SHINKAREVA S V, CARLSON A, et al. Predicting human brain activity associated with the meanings of nouns[J]. Science, 2008, 320(5880): 11911195.
[99] DAVATZIKOS C, FAN Y, WU X, et al. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging[J]. Neurobiol. Aging, 2008, 29(4): 514523.
[100] KIM D, BURGE J, LANE T, et al. Hybrid ICA–Bayesian network approach reveals distinct effective connectivity differences in schizophrenia[J]. Neuroimage, 2008, 42(4): 15601568.
[101] REBENTROST P, MOHSENI M, LLOYD S. Quantum support vector machine for big data classification[J]. Phys. Rev. Lett., 2014, 113(13): 130503.
[102] LI Z, LIU X, XU N, et al. Experimental realization of a quantum support vector machine[J]. Phys. Rev. Lett., 2015, 114(14): 140504.
[103] KERENIDIS I, PRAKASH A, SZILÁGYI D. Quantum algorithms for secondorder cone pro gramming and support vector machines[J]. Quantum, 2021, 5: 427.
[104] DALLAIREDEMERS P L, KILLORAN N. Quantum generative adversarial networks[J]. Phys. Rev. A, 2018, 98(1): 012324.
[105] ZOUFALC,LUCCHIA,WOERNERS.Quantumgenerativeadversarialnetworksforlearning and loading random distributions[J]. npj Quantum Inf., 2019, 5(1): 19.
[106] HUANG H L, DU Y, GONG M, et al. Experimental quantum generative adversarial networks for image generation[J]. Phys. Rev. Appl., 2021, 16(2): 024051.
[107] BERRY D W. Highorder quantum algorithm for solving linear differential equations[J]. J. Phys. A: Math. Theor., 2014, 47(10): 105301.
[108] BERRYDW,CHILDSAM,OSTRANDERA,etal.Quantumalgorithmforlineardifferential equations with exponentially improved dependence on precision[J]. Commun. Math. Phys., 2017, 356(3): 10571081.
[109] XINT,WEIS,CUIJ,etal.Quantumalgorithmforsolvinglineardifferentialequations:Theory and experiment[J]. Phys. Rev. A, 2020, 101(3): 032307.
[110] WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometr. Intell. Lab. Syst., 1987, 2(13): 3752.
[111] LLOYD S, MOHSENI M, REBENTROST P. Quantum principal component analysis[J]. Nat. Phys., 2014, 10(9): 631633.
[112] XIN T, CHE L, XI C, et al. Experimental quantum principal component analysis via parametrized quantum circuits[J]. Phys. Rev. Lett., 2021, 126(11): 110502.
[113] LI Z, CHAI Z, GUO Y, et al. Resonant quantum principal component analysis[J]. Sci. Adv., 2021, 7(34): eabg2589.
[114] RODRIGUEZMORALES A J, CARDONAOSPINA J A, GUTIÉRREZOCAMPO E, et al. Clinical, laboratory and imaging features of COVID19: A systematic review and metaanalysis [J]. Travel Med. Infect. Dis., 2020, 34: 101623.
[115] SHIH,HANX,JIANGN,etal.Radiologicalfindingsfrom81patientswithCOVID19pneu monia in Wuhan, China: a descriptive study[J]. Lancet Infect. Dis., 2020, 20(4): 425-434.
[116] LIUKC,XUP,LVWF,etal.CTmanifestationsofcoronavirusdisease2019:aretrospective analysis of 73 cases by disease severity[J]. Eur. J. Radiol, 2020, 126: 108941.
[117] NING W, LEI S, YANG J, et al. Open resource of clinical data from patients with pneumonia for the prediction of COVID19 outcomes via deep learning[J]. Nat. Biomed. Eng., 2020, 4 (12): 1197-1207.
[118] LI Z, YUNG M H, CHEN H, et al. Solving quantum groundstate problems with nuclear mag netic resonance[J]. Sci. Rep., 2011, 1(1): 1-8.
[119] NING W, LEI S, YANG J, etal.iCTCF:anintegrativeresourceofchestcomputedtomography images and clinical features of patients with COVID19 pneumonia[Z]. 2020.
[120] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum random access memory[J]. Phys. Rev. Lett., 2008, 100(16): 160501.
[121] TURKMA,PENTLANDAP.Facerecognitionusingeigenfaces[C]//Proceedings.1991IEEE computer society conference on computer vision and pattern recognition. IEEE Computer So ciety, 1991: 586-587.
修改评论