中文版 | English
题名

基于含辅助比特的量子线路迭代方案实现量子模拟

其他题名
QUANTUM SIMULATION BASED ON ITERATIVE QUANTUM CIRCUIT WITH ANCILLARY QUBITS
姓名
姓名拼音
LIU Hongfeng
学号
12032034
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
鲁大为
导师单位
物理系
论文答辩日期
2023-05-23
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

      近年来,量子信息科学取得了飞速的发展,引起了社会各界的广泛关注。2022年的诺贝尔物理学奖就颁给了量子信息领域的三位科学家。量子计算是建立在量子力学基础上的交叉学科,涉及到许多其他领域的知识和技术。人们的研究目标是利用量子力学中的一些特性,如叠加、纠缠等,构建出一种计算能力远超经典计算机的新型计算机——量子计算机。然而,要实现真正的量子计算机还有很长的路要走,目前量子计算的发展仍处于探索阶段。在这个阶段,人们摸索出了关于量子计算的各种应用,其中量子模拟就是量子计算的重要应用领域之一。量子模拟简单来说是利用可控制的量子系统来模拟和研究其他复杂的量子系统。然而,许多需要模拟的量子系统非常复杂,在实际操作中会遇到许多困难和挑战。例如,有些量子系统演化操作是非幺正的,而有些复杂的量子系统难以用少量的量子逻辑门来模拟实现。为了解决这些在量子模拟中遇到的难题,我们发现,可以通过添加辅助比特和迭代运算的方法,来实现复杂哈密顿量的量子模拟。在研究生期间,我基于这个思路,在两个方面进行了量子模拟方面的工作,并验证了该方法的有效性。

      第一个工作是关于非厄米系统量子模拟的方法。目前对于非厄米系统的研究日益增多,因为非厄米哈密顿量驱动的量子系统可以展现出厄米系统所没有的独特特性,例如非厄米拓扑带、趋肤效应等。然而要想在量子模拟器上对非厄米系统进行量子模拟是非常困难的,因为非厄米系统对应的演化操作是非幺正的,而目前绝大部分量子处理器施加的量子逻辑门都是幺正操作。为了解决这个问题,我们可以通过添加一个辅助比特来将非幺正操作构造成幺正操作,并且通过多层量子线路迭代运算这个构造后复杂的厄米操作,从而实现非厄米哈密顿量的量子模拟。最后我们将其运用到了带有非厄米微扰的Ising模型上,该模型用于研究非零温度下的量子相变。数值模拟结果与理论预测高度一致。这证明了我们提出的方法相比传统的量子模拟方法可以有效的在实验上模拟复杂的非厄米量子系统。

      第二个工作是关于量子主成分分析的量子模拟。机器学习在过去几十年迅速发展并得到广泛应用,近年来量子信息与机器学习结合,提出了量子机器学习概念,并相应提出了众多量子算法。这些算法大多需要通过量子模拟进行实验验证,以证实它们的实用性。其中,主成分分析算法是经典机器学习中很著名的算法,常被用于数据降维和分类。对应的量子版本,量子主成分分析算法于2014年被提出,但由于其实现条件严苛,少有人可以在实验上实现量子主成分分析。为了实现量子主成分分析算法的实验,我们设计了迭代线路,通过反复制备量子态进行迭代运算,实现了密度矩阵的指数化,并添加了辅助比特来提取本征值和本征态。我们还将量子主成分分析运用于肺炎CT图的识别中,并成功识别出CT图的阴性和阳性类别。

      总之,我们的研究表明,基于含辅助比特的量子线路迭代方法,可以有效地实现复杂哈密顿量的量子模拟,并且可以在实验上实现量子主成分分析算法。这些成果有望对量子计算和量子模拟等领域的发展提供一定的帮助。

其他摘要

In recent years, quantum information science has experienced rapid development, attracting widespread attention from various sectors of society. The 2022 Nobel Prize in Physics was awarded to three scientists in the field of quantum information. Quantum computing is an interdisciplinary field built upon the principles of quantum mechanics, encompassing knowledge and techniques from various other domains. The research objective is to leverage certain quantum mechanical properties, such as superposition and entanglement, to construct a new type of computer called a quantum computer, which surpasses the computational capabilities of classical computers. However, the realization of a fully functional quantum computer still faces significant challenges, and the current progress in quantum computing is still in its early stages. During this stage, researchers have explored various applications of quantum computing, with quantum simulation being one of the significant areas of application. Quantum simulation, in simple terms, utilizes controllable quantum systems to simulate and study other complex quantum systems. However, many quantum systems that require simulation are highly complex, presenting numerous challenges and difficulties during practical implementation. For instance, some quantum systems involve non-unitary evolution operations, and certain complex quantum systems are difficult to simulate using a small number of quantum logic gates. To address these challenges encountered in quantum simulation, we have discovered that the addition of auxiliary qubits and iterative operations can enable the simulation of complex Hamiltonians. During my graduate studies, based on this approach, I conducted research in two aspects of quantum simulation and successfully validated the effectiveness of this method.

The first work is about quantum simulation methods for non-Hermitian systems. Recent years have witnessed ongoing interests in exploring non-Hermitian phenomena. Quantum systems driven by non-Hermitian Hamiltonians can lead to unconventional and exclusive features, such as non-Hermitian topological bands and skin effects. However, experimentally investigating non-Hermitian physics is very challenging, particularly for achieving long-time dynamics in many-body systems, because non-Hermiticity usually originates from particle loss and decoherence assigned by the environmental, which is hard to manipulate. To bypass this difficulty, we can add an ancilla qubit to construct the non-unitary operation as a unitary operation, and then simulate the non-Hermitian Hamiltonian by iterating the complex Hermitian operator using multiple layers of quantum circuits. Finally, we applied this method to the Ising model with non-Hermitian perturbations, which is used to study quantum phase transitions at non-zero temperatures. The numerical simulation results are highly consistent with theoretical predictions, which demonstrates that our proposed method can effectively simulate complex non-Hermitian quantum systems in experiments compared to traditional quantum simulation methods.

The second work is about quantum simulation of quantum principal component analysis (PCA). Principal component analysis is a popular paradigm in the field of machine learning (ML) that boasts a variety of applications, ranging from data compression to image recognition. Its quantum counterpart, known as quantum principal component analysis (qPCA), offers the potential to exponentially speed up the algorithm for larger datasets. However, due to the limitations imposed by current experimental conditions, qPCA implementation based on quantum gates has yet to be satisfactorily realized experimentally. In order to demonstrate the quantum principal component analysis algorithm in experiments, we designed an iterative circuit, which iteratively operates on the quantum state by repeating it, to achieve density matrix exponentiation, and added an ancilla qubit to extract eigenvalues and eigenvectors. We also applied quantum principal component analysis to the recognition of pneumonia CT images, successfully identifying negative and positive categories of CT images.

In summary, our research shows that by iterating the quantum circuits with ancilla qubits, complex Hamiltonians can be effectively simulated, and quantum principal component analysis algorithm can be experimentally realized. These achievements are expected to provide some help to the development of quantum computing and quantum simulation.

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] FEYNMAN R P. Simulating physics with computers[M]//Feynman and computation. CRC Press, 2018: 133­153.
[2] DEUTSCH D. Quantum theory, the Church–Turing principle and the universal quantum com­ puter[J]. Proc. R. Soc. London. A: Math. Phys. Sci., 1985, 400(1818): 97.
[3] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th annual symposium on foundations of computer science. Ieee, 1994: 124.
[4] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the twenty­eighth annual ACM symposium on Theory of computing. 1996: 212.
[5] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[6] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super­ conducting processor[J]. Nature, 2019, 574(7779): 505­510.
[7] XUE X, RUSS M, SAMKHARADZE N, et al. Quantum logic with spin qubits crossing the surface code threshold[J]. Nature, 2022, 601(7893): 343­347.
[8] WANG K, XU G, GAO F, et al. Ultrafast coherent control of a hole spin qubit in a germanium quantum dot[J]. Nat. Commun., 2022, 13(1): 206.
[9] BLUVSTEIN D, LEVINE H, SEMEGHINI G, et al. A quantum processor based on coherent transport of entangled atom arrays[J]. Nature, 2022, 604(7906): 451­456.
[10] GRAHAM T, SONG Y, SCOTT J, et al. Multi­qubit entanglement and algorithms on a neutral­ atom quantum computer[J]. Nature, 2022, 604(7906): 457­462.
[11] BRUZEWICZ C D, CHIAVERINI J, MCCONNELL R, et al. Trapped­ion quantum computing: Progress and challenges[J]. Appl. Phys. Rev., 2019, 6(2): 021314.
[12] CORY D G, FAHMY A F, HAVEL T F. Ensemble quantum computing by NMR spectroscopy [J]. Proc. Natl. Acad. Sci., 1997, 94(5): 1634.
[13] CHILDRESS L, HANSON R. Diamond NV centers for quantum computing and quantum networks[J]. MRS Bull., 2013, 38(2): 134­138.
[14] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschr. Phys.: Prog. Phys., 2000, 48(9­11): 771­783.
[15] LONG G L, LIU X S. Theoretically efficient high­capacity quantum­key­distribution scheme [J]. Phys. Rev. A, 2002, 65(3): 032302.
[16] BENNETT C H, BRASSARD G, MERMIN N D. Quantum cryptography without Bell’s theorem[J]. Phys. Rev. Lett., 1992, 68(5): 557.
[17] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575­579.
[18] NIELSEN M A, CHUANG I. Quantum computation and quantum information[M]. American Association of Physics Teachers, 2002.
[19] DEUTSCH D, JOZSA R. Rapid solution of problems by quantum computation[J]. Proc. R. Soc. London A: Math. Phys. Sci., 1992, 439(1907): 553­558.
[20] HARROW A W, HASSIDIM A, LLOYD S. Quantum algorithm for linear systems of equations [J]. Phys. Rev. Lett., 2009, 103(15): 150502.
[21] PAN J, CAO Y, YAO X, et al. Experimental realization of quantum algorithm for solving linear systems of equations[J]. Phys. Rev. A, 2014, 89(2): 022313.
[22] ABRAMS D S, LLOYD S. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors[J]. Phys. Rev. Lett., 1999, 83(24): 5162.
[23] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Rev. Mod. Phys., 2014, 86 (1): 153.
[24] PURCELL E M, TORREY H C, POUND R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Phys. Rev., 1946, 69(1­2): 37.
[25] BLOCH F. Nuclear induction[J]. Phys. Rev., 1946, 70(7­8): 460.
[26] VANDERSYPEN L M, CHUANG I L. NMR techniques for quantum control and computation [J]. Rev. Mod. Phys., 2005, 76(4): 1037.
[27] KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms[J]. J. Magn. Reson., 2005, 172(2): 296­305.
[28] KNILL E, CHUANG I, LAFLAMME R. Effective pure states for bulk quantum computation [J]. Phys. Rev. A, 1998, 57(5): 3348.
[29] GERSHENFELD N A, CHUANG I L. Bulk spin­resonance quantum computation[J]. Science, 1997, 275(5298): 350­356.
[30] CORY D G, PRICE M D, HAVEL T F. Nuclear magnetic resonance spectroscopy: An exper­ imentally accessible paradigm for quantum computing[J]. Physica D, 1998, 120(1­2): 82­101.
[31] EL­GANAINY R, MAKRIS K G, KHAJAVIKHAN M, et al. Non­Hermitian physics and PT symmetry[J]. Nat. Phys., 2018, 14(1): 11­19.
[32] ASHIDA Y, GONG Z, UEDA M. Non­Hermitian physics[J]. Adv. Phys., 2020, 69(3): 249­ 435.
[33] BERGHOLTZ E J, BUDICH J C, KUNST F K. Exceptional topology of non­Hermitian systems [J]. Rev. Mod. Phys., 2021, 93: 015005.
[34] YAO S, WANG Z. Edge states and topological invariants of non­Hermitian systems[J]. Phys. Rev. Lett., 2018, 121: 086803.
[35] ASHIDA Y, FURUKAWA S, UEDA M. Parity­time­symmetric quantum critical phenomena [J]. Nat. Commun., 2017, 8(1): 1­6.
[36] XU H, MASON D, JIANG L, et al. Topological energy transfer in an optomechanical system with exceptional points[J]. Nature, 2016, 537(7618): 80­83.
[37] DOPPLER J, MAILYBAEV A A, BÖHM J, et al. Dynamically encircling an exceptional point for asymmetric mode switching[J]. Nature, 2016, 537(7618): 76­79.
[38] LEE T E. Anomalous edge state in a non­Hermitian lattice[J]. Phys. Rev. Lett., 2016, 116: 133903.
[39] KUNST F K, EDVARDSSON E, BUDICH J C, et al. Biorthogonal bulk­boundary correspon­ dence in non­Hermitian systems[J]. Phys. Rev. Lett., 2018, 121: 026808.
[40] YAO S, SONG F, WANG Z. Non­Hermitian chern bands[J]. Phys. Rev. Lett., 2018, 121: 136802.
[41] LI J, HARTER A K, LIU J, et al. Observation of parity­time symmetry breaking transitions in a dissipative floquet system of ultracold atoms[J]. Nat. Commun., 2019, 10(1): 1­7.
[42] RÜTER C E, MAKRIS K G, EL­GANAINY R, et al. Observation of parity–time symmetry in optics[J]. Nat. Phys., 2010, 6(3): 192­195.
[43] MIRI M A, ALÙ A. Exceptional points in optics and photonics[J]. Science, 2019, 363(6422): eaar7709.
[44] GAO T, ESTRECHO E, BLIOKH K, et al. Observation of non­Hermitian degeneracies in a chaotic exciton­polariton billiard[J]. Nature, 2015, 526(7574): 554­558.
[45] ZHANG D, LUO X Q, WANG Y P, et al. Observation of the exceptional point in cavity magnon­polaritons[J]. Nat. Commun., 2017, 8(1): 1­6.
[46] DIÓSI L, STRUNZ W T. The non­Markovian stochastic Schrödinger equation for open systems [J]. Phys. Lett. A, 1997, 235(6): 569­573.
[47] GARDINER C, ZOLLER P. The quantum world of ultra­cold atoms and light book II: the physics of quantum­optical devices: volume 4[M]. World Scientific Publishing Company, 2015.
[48] LIN Z, ZHANG L, LONG X, et al. Experimental quantum simulation of non­Hermitian dy­ namical topological states using stochastic Schrödinger equation[J]. npj Quantum Inf., 2022, 8 (1): 1­13.
[49] GÜNTHER U, SAMSONOV B F. Naimark­dilated 𝒫𝒯­symmetric brachistochrone[J]. Phys. Rev. Lett., 2008, 101: 230404.
[50] KAWABATA K, ASHIDA Y, UEDA M. Information retrieval and criticality in parity­time­ symmetric systems[J]. Phys. Rev. Lett., 2017, 119: 190401.
[51] ZHENG C. Duality quantum simulation of a general parity­time­symmetric two­level system [J]. Europhys. Lett., 2018, 123(4): 40002.
[52] HUANG M, LEE R K, ZHANG L, et al. Simulating broken 𝒫𝒯­symmetric hamiltonian systems by weak measurement[J]. Phys. Rev. Lett., 2019, 123: 080404.
[53] VARMA A V, DAS S. Simulating many­body non­Hermitian 𝒫𝒯­symmetric spin dynamics [J]. Phys. Rev. B, 2021, 104: 035153.
[54] WU Y, LIU W, GENG J, et al. Observation of parity­time symmetry breaking in a single­spin system[J]. Science, 2019, 364(6443): 878­880.
[55] BARENCO A, BENNETT C H, CLEVE R, et al. Elementary gates for quantum computation [J]. Phys. Rev. A, 1995, 52: 3457­3467.
[56] DOGRA S, MELNIKOV A A, PARAOANU G S. Quantum simulation of parity­time symmetry breaking with a superconducting quantum processor[J]. Commun. Phys., 2021, 4(1): 1­8.
[57] TROTTER H F. On the product of semi­groups of operators[J]. Proc. Am. Math. Soc., 1959, 10(4): 545­551.
[58] SUZUKI M. Relationship between d­dimensional quantal spin systems and (d+1)­dimensional ising systems: Equivalence, critical exponents and systematic approximants of the partition function and spin correlations[J]. Prog. Theor. Phys., 1976, 56(5): 1454­1469.
[59] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Rev. Mod. Phys., 2014, 86: 153­185.
[60] MOLL N, BARKOUTSOS P, BISHOP L S, et al. Quantum optimization using variational algorithms on near­term quantum devices[J]. Quantum Sci. Technol., 2018, 3(3): 030503.
[61] CEREZO M, ARRASMITH A, BABBUSH R, et al. Variational quantum algorithms[J]. Nat. Rev. Phys., 2021, 3(9): 625­644.
[62] KANDALA A, MEZZACAPO A, TEMME K, et al. Hardware­efficient variational quantum eigensolver for small molecules and quantum magnets[J]. Nature, 2017, 549(7671): 242­246.
[63] O’MALLEY P J J, BABBUSH R, KIVLICHAN I D, et al. Scalable quantum simulation of molecular energies[J]. Phys. Rev. X, 2016, 6: 031007.
[64] MCCASKEY A J, PARKS Z P, JAKOWSKI J, et al. Quantum chemistry as a benchmark for near­term quantum computers[J]. npj Quantum Inf., 2019, 5(1): 1­8.
[65] HEMPEL C, MAIER C, ROMERO J, et al. Quantum chemistry calculations on a trapped­ion quantum simulator[J]. Phys. Rev. X, 2018, 8: 031022.
[66] ENDO S, SUN J, LI Y, et al. Variational quantum simulation of general processes[J]. Phys. Rev. Lett., 2020, 125: 010501.
[67] MCARDLE S, JONES T, ENDO S, et al. Variational ansatz­based quantum simulation of imaginary time evolution[J]. npj Quantum Inf., 2019, 5(1): 1­6.
[68] HEYA K, SUZUKI Y, NAKAMURA Y, et al. Variational quantum gate optimization[A]. 2018. arXiv: 1810.12745.
[69] BENEDETTI M, FIORENTINI M, LUBASCH M. Hardware­efficient variational quantum algorithms for time evolution[J]. Phys. Rev. Res., 2021, 3: 033083.
[70] SCHULD M, BERGHOLM V, GOGOLIN C, et al. Evaluating analytic gradients on quantum hardware[J]. Phys. Rev. A, 2019, 99: 032331.
[71] HECHT­NIELSEN R. Theory of the backpropagation neural network[M]//Neural networks for perception. Elsevier, 1992: 65­93.
[72] ZHANG K L, SONG Z. Quantum phase transition in a quantum ising chain at nonzero temper­ atures[J]. Phys. Rev. Lett., 2021, 126: 116401.
[73] SHENDE V V, BULLOCK S S, MARKOV I L. Synthesis of quantum logic circuits[C]// Proceedings of the 2005 Asia and South Pacific Design Automation Conference. 2005: 272­ 275.
[74] KOKAIL C, MAIER C, VAN BIJNEN R, et al. Self­verifying variational quantum simulation of lattice models[J]. Nature, 2019, 569(7756): 355­360.
[75] MARI A, BROMLEY T R, KILLORAN N. Estimating the gradient and higher­order derivatives on quantum hardware[J]. Phys. Rev. A, 2021, 103: 012405.
[76] MITARAI K, NEGORO M, KITAGAWA M, et al. Quantum circuit learning[J]. Phys. Rev. A, 2018, 98: 032309.
[77] ZHU D, LINKE N M, BENEDETTI M, et al. Training of quantum circuits on a hybrid quantum computer[J]. Sci. Adv., 2019, 5(10): eaaw9918.
[78] HAVLÍČEK V, CÓRCOLES A D, TEMME K, et al. Supervised learning with quantum­ enhanced feature spaces[J]. Nature, 2019, 567(7747): 209­212.
[79] ZHANG S X, WAN Z Q, LEE C K, et al. Variational quantum­neural hybrid eigensolver[J]. Phys. Rev. Lett., 2022, 128: 120502.
[80] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back­ propagating errors[J]. Nature, 1986, 323(6088): 533­536.
[81] WERBOS P J. Backpropagation through time: what it does and how to do it[J]. Proc. IEEE, 1990, 78(10): 1550­1560.
[82] PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in pytorch[J]. in NIPS 2017 Workshop Autodiff, 2017.
[83] QUAN H T, SONG Z, LIU X F, et al. Decay of loschmidt echo enhanced by quantum criticality [J]. Phys. Rev. Lett., 2006, 96: 140604.
[84] LI J, YANG X, PENG X, et al. Hybrid quantum­classical approach to quantum optimal control [J]. Phys. Rev. Lett., 2017, 118: 150503.
[85] LONG X, HE W T, ZHANG N N, et al. Entanglement­enhanced quantum metrology in colored noise by quantum zeno effect[J]. Phys. Rev. Lett., 2022, 129: 070502.
[86] NIE X, ZHU X, HUANG K, et al. Experimental realization of a quantum refrigerator driven by indefinite causal orders[J]. Phys. Rev. Lett., 2022, 129: 100603.
[87] MITCHELL T M, MITCHELL T M. Machine learning: volume 1[M]. McGraw­hill New York, 1997.
[88] JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255.
[89] BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum machine learning[J]. Nature, 2017, 549(7671): 195­202.
[90] SCHULD M, SINAYSKIY I, PETRUCCIONE F. An introduction to quantum machine learning [J]. Contemp. Phys., 2015, 56(2): 172­185.
[91] CILIBERTO C, HERBSTER M, IALONGO A D, et al. Quantum machine learning: a classical perspective[J]. Proc. R. Soc. A: Math. Phys. Eng., 2018, 474(2209): 20170551.
[92] ERICKSON B J, KORFIATIS P, AKKUS Z, et al. Machine learning for medical imaging[J]. Radiographics, 2017, 37(2): 505.
[93] GIGER M L. Machine learning in medical imaging[J]. J. Am. Coll. Radiol., 2018, 15(3): 512­520.
[94] SCHOEPF U J, SCHNEIDER A C, DAS M, et al. Pulmonary embolism: computer­aided detection at multidetector row spiral computed tomography[J]. J. Thorac. Imaging, 2007, 22 (4): 319­323.
[95] DUNDAR M M, FUNG G, KRISHNAPURAM B, et al. Multiple­instance learning algorithms for computer­aided detection[J]. IEEE Trans. Biomed. Eng., 2008, 55(3): 1015­1021.
[96] CHAN H P, LO S C B, SAHINER B, et al. Computer­aided detection of mammographic mi­ crocalcifications: Pattern recognition with an artificial neural network[J]. Med. Phys., 1995, 22 (10): 1555­1567.
[97] BAUER S, WIEST R, NOLTE L P, et al. A survey of MRI­based medical image analysis for brain tumor studies[J]. Phys. Med. Biol., 2013, 58(13): R97.
[98] MITCHELL T M, SHINKAREVA S V, CARLSON A, et al. Predicting human brain activity associated with the meanings of nouns[J]. Science, 2008, 320(5880): 1191­1195.
[99] DAVATZIKOS C, FAN Y, WU X, et al. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging[J]. Neurobiol. Aging, 2008, 29(4): 514­523.
[100] KIM D, BURGE J, LANE T, et al. Hybrid ICA–Bayesian network approach reveals distinct effective connectivity differences in schizophrenia[J]. Neuroimage, 2008, 42(4): 1560­1568.
[101] REBENTROST P, MOHSENI M, LLOYD S. Quantum support vector machine for big data classification[J]. Phys. Rev. Lett., 2014, 113(13): 130503.
[102] LI Z, LIU X, XU N, et al. Experimental realization of a quantum support vector machine[J]. Phys. Rev. Lett., 2015, 114(14): 140504.
[103] KERENIDIS I, PRAKASH A, SZILÁGYI D. Quantum algorithms for second­order cone pro­ gramming and support vector machines[J]. Quantum, 2021, 5: 427.
[104] DALLAIRE­DEMERS P L, KILLORAN N. Quantum generative adversarial networks[J]. Phys. Rev. A, 2018, 98(1): 012324.
[105] ZOUFALC,LUCCHIA,WOERNERS.Quantumgenerativeadversarialnetworksforlearning and loading random distributions[J]. npj Quantum Inf., 2019, 5(1): 1­9.
[106] HUANG H L, DU Y, GONG M, et al. Experimental quantum generative adversarial networks for image generation[J]. Phys. Rev. Appl., 2021, 16(2): 024051.
[107] BERRY D W. High­order quantum algorithm for solving linear differential equations[J]. J. Phys. A: Math. Theor., 2014, 47(10): 105301.
[108] BERRYDW,CHILDSAM,OSTRANDERA,etal.Quantumalgorithmforlineardifferential equations with exponentially improved dependence on precision[J]. Commun. Math. Phys., 2017, 356(3): 1057­1081.
[109] XINT,WEIS,CUIJ,etal.Quantumalgorithmforsolvinglineardifferentialequations:Theory and experiment[J]. Phys. Rev. A, 2020, 101(3): 032307.
[110] WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometr. Intell. Lab. Syst., 1987, 2(1­3): 37­52.
[111] LLOYD S, MOHSENI M, REBENTROST P. Quantum principal component analysis[J]. Nat. Phys., 2014, 10(9): 631­633.
[112] XIN T, CHE L, XI C, et al. Experimental quantum principal component analysis via parametrized quantum circuits[J]. Phys. Rev. Lett., 2021, 126(11): 110502.
[113] LI Z, CHAI Z, GUO Y, et al. Resonant quantum principal component analysis[J]. Sci. Adv., 2021, 7(34): eabg2589.
[114] RODRIGUEZ­MORALES A J, CARDONA­OSPINA J A, GUTIÉRREZ­OCAMPO E, et al. Clinical, laboratory and imaging features of COVID­19: A systematic review and meta­analysis [J]. Travel Med. Infect. Dis., 2020, 34: 101623.
[115] SHIH,HANX,JIANGN,etal.Radiologicalfindingsfrom81patientswithCOVID­19pneu­ monia in Wuhan, China: a descriptive study[J]. Lancet Infect. Dis., 2020, 20(4): 425-­434.
[116] LIUKC,XUP,LVWF,etal.CTmanifestationsofcoronavirusdisease­2019:aretrospective analysis of 73 cases by disease severity[J]. Eur. J. Radiol, 2020, 126: 108941.
[117] NING W, LEI S, YANG J, et al. Open resource of clinical data from patients with pneumonia for the prediction of COVID­19 outcomes via deep learning[J]. Nat. Biomed. Eng., 2020, 4 (12): 1197­-1207.
[118] LI Z, YUNG M H, CHEN H, et al. Solving quantum ground­state problems with nuclear mag­ netic resonance[J]. Sci. Rep., 2011, 1(1): 1-­8.
[119] NING W, LEI S, YANG J, etal.iCTCF:anintegrativeresourceofchestcomputedtomography images and clinical features of patients with COVID­19 pneumonia[Z]. 2020.
[120] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum random access memory[J]. Phys. Rev. Lett., 2008, 100(16): 160501.
[121] TURKMA,PENTLANDAP.Facerecognitionusingeigenfaces[C]//Proceedings.1991IEEE computer society conference on computer vision and pattern recognition. IEEE Computer So­ ciety, 1991: 586-­587.

所在学位评定分委会
物理学
国内图书分类号
O413
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544419
专题理学院_物理系
推荐引用方式
GB/T 7714
刘鸿枫. 基于含辅助比特的量子线路迭代方案实现量子模拟[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032034-刘鸿枫-物理系.pdf(5360KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘鸿枫]的文章
百度学术
百度学术中相似的文章
[刘鸿枫]的文章
必应学术
必应学术中相似的文章
[刘鸿枫]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。