[1]FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6-7): 467-88.
[2]CAO Y, ROMERO J, OLSON J P, et al. Quantum Chemistry in the Age of Quantum Computing[J]. Chemical Reviews, 2019, 119(19): 10856-915.
[3]JOZSA R. Quantum factoring, discrete logarithms, and the hidden subgroup problem[J]. Computing in Science & Engineering, 2001, 3(2): 34-43.
[4]WILLSCH M, WILLSCH D, JIN F, et al. Benchmarking the quantum approximate optimization algorithm[J]. Quantum Information Processing, 2020, 19(7).
[5]LLOYD S, MOHSENI M, REBENTROST P. Quantum principal component analysis[J]. Nature Physics, 2014, 10(9): 631-3.
[6]REBENTROST P, MOHSENI M, LLOYD S. Quantum Support Vector Machine for Big Data Classification[J]. Physical Review Letters, 2014, 113(13).
[7]SHAHI F, REZAKHANI A T. Fidelity-based supervised and unsupervised learning for binary classification of quantum states[J]. The European Physical Journal Plus, 2021, 136(3).
[8]SAWERWAIN M, WRBLEWSKI M. Application of Quantum k-NN and Grover's Algorithms for Recommendation Big-Data System[M]. Springer International Publishing. 2019: 235-44.
[9]GIOVANNETTI V, LLOYD S, MACCONE L. Quantum Random Access Memory[J]. Physical Review Letters, 2008, 100(16).
[10]ARUNACHALAM S, GHEORGHIU V, JOCHYM-O’CONNOR T, et al. On the robustness of bucket brigade quantum RAM[J]. New Journal of Physics, 2015, 17(12): 123010.
[11]HUANG H Y, BROUGHTON M, MOHSENI M, et al. Power of data in quantum machine learning[J]. Nature Communications, 2021, 12(1).
[12]LOOMIS D, HUANG W, CHEN G S. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China [J]. Chinese Journal of Cancer, 2014, 33(4): 189-96.
[13]BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries (vol 68, pg 394, 2018) [J]. Ca-a Cancer Journal for Clinicians, 2020, 70(4): 313-.
[14]WEI Y, JIA T, LIN M X, et al. Autonomous Detection of Solitary Pulmonary Nodules on CT Images for Computer-Aided Diagnosis[C]//Proceedings of the 23rd Chinese Control and Decision Conference, Mianyang, PEOPLES R CHINA, F May 23-25, 2011.
[15]DIAO L, GUO H Y, ZHOU Y, et al. BRIDGING THE GAP BETWEEN OUTPUTS: DOMAIN ADAPTATION FOR LUNG CANCER IHC SEGMENTATION[C]//Proceedings of the IEEE International Conference on Image Processing (ICIP), Electra Network, F Sep 19-22, 2021.
[16]MCWILLIAMS A, TAMMEMAGI M C, MAYO J R, et al. Probability of Cancer in Pulmonary Nodules Detected on First Screening CT [J]. New England Journal of Medicine, 2013, 369(10): 910-9.
[17]SMIRNOV E A, TIMOSHENKO D M, ANDRIANOV S N. Comparison of Regularization Methods for ImageNet Classification with Deep Convolutional Neural Networks[C]//Proceedings of the 2nd AASRI Conference on Computational Intelligence and Bioinformatics (CIB), South Korea, F Dec 27-28, 2013.
[18]SHAFIQ M, GU Z Q. Deep Residual Learning for Image Recognition: A Survey [J]. Applied Sciences-Basel, 2022, 12(18).
[19]NIBALI A, HE Z, WOLLERSHEIM D. Pulmonary nodule classification with deep residual networks [J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(10): 1799-808.
[20]ZHANG B H, QI S L, MONKAM P, et al. Ensemble Learners of Multiple Deep CNNs for Pulmonary Nodules Classification Using CT Images [J]. IEEE Access, 2019, 7: 110358-71.
[21]LIMA T J B, DE ARAIUJO F H D, DE CARVALHO A O, et al. Evaluation of data balancing techniques in 3D CNNs for the classification of pulmonary nodules in CT images[C]//Proceedings of the 25th IEEE Symposium on Computers and Communications (ISCC), Rennes, FRANCE, F Jul 07-10, 2020.
[22]ZHANG G, ZHU D, LIU X, et al. Multi-scale pulmonary nodule classification with deep feature fusion via residual network [J]. Journal of Ambient Intelligence and Humanized Computing, 2018.
[23]LV W H, WANG Y, ZHOU C S, et al. Development and validation of a clinically applicable deep learning strategy (HONORS) for pulmonary nodule classification at CT: A retrospective multicenter study [J]. Lung Cancer, 2021, 155: 78-86.
[24]SUN H T, YUAN G, YANG Y, et al. 3D Anisotropic Convolution Based Pulmonary Nodule Classification[J]. Computer Engineering and Applications, 2021, 57(10): 133-138.
[25]LEI Y M, TIAN Y K, SHAN H M, et al. Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping [J]. Medical Image Analysis, 2020, 60.
[26]APOSTOLOPOULOS I D, PINTELAS E G, LIVIERIS I E, et al. Automatic classification of solitary pulmonary nodules in PET/CT imaging employing transfer learning techniques [J]. Medical & Biological Engineering & Computing, 2021, 59(6): 1299-310.
[27]RAGAB M, ALSHEHRI S, ALHAKAMY N A, et al. Machine Learning with Quantum Seagull Optimization Model for COVID-19 Chest X-Ray Image Classification [J]. Journal of Healthcare Engineering, 2022, 2022: 1-13.
[28]AMIN J, SHARIF M, GUL N, et al. Quantum Machine Learning Architecture for COVID-19 Classification Based on Synthetic Data Generation Using Conditional Adversarial Neural Network [J]. Cognitive Computation, 2022, 14(5): 1677-88.
[29]TONG C, LIANG B, SU Q, et al. Pulmonary Nodule Classification Based on Heterogeneous Features Learning [J]. IEEE Journal on Selected Areas in Communications, 2021, 39(2): 574-81.
[30]KUANG Y, LAN T, PENG X Q, et al. Unsupervised Multi-Discriminator Generative Adversarial Network for Lung Nodule Malignancy Classification [J]. IEEE Access, 2020, 8: 77725-34.
[31]NI Z H, PENG Y J. A serialized classification method for pulmonary nodules based on lightweight cascaded convolutional neural network-long short-term memory [J]. International Journal of Imaging Systems and Technology, 2020, 30(4): 950-62.
[32]WANG C, CHEN D L, HAO L, et al. Pulmonary Image Classification Based on Inception-v3 Transfer Learning Model [J]. IEEE Access, 2019, 7: 146533-41.
[33]XIAO N, QIANG Y, ZIA M B, et al. Ensemble classification for predicting the malignancy level of pulmonary nodules on chest computed tomography images [J]. Oncology Letters, 2020, 20(1): 401-8.
[34]YANG Y F, SUN M, IEEE. Hybrid Quantum-Classical Machine Learning for Lithography Hotspot Detection[C]//Proceedings of the 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, F May 02-05, 2022.
[35]TORRONTRGUI E, GARCIA-RIPOLL J. Universal quantum perceptron as efficient unitary approximators[J]. arXiv preprint arXiv:1801.00934, 2018.
[36]MU R H, ZENG X Q. A Review of Deep Learning Research [J]. Ksii Transactions on Internet and Information Systems, 2019, 13(4): 1738-64.
[37]ZHANG Q C, YANG L T, CHEN Z K, et al. An Adaptive Dropout Deep Computation Model for Industrial IoT Big Data Learning With Crowdsourcing to Cloud Computing [J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2330-7.
[38]ALCHIERI L, BADALOTTI D, BONARDI P, et al. An introduction to quantum machine learning: from quantum logic to quantum deep learning [J]. Quantum Machine Intelligence, 2021, 3(2).
[39]CEREZO M, VERDON G, HUANG H Y, et al. Challenges and opportunities in quantum machine learning [J]. Nature Computational Science, 2022, 2(9): 567-76.
[40]CILIBERTO C, HERBSTER M, IALONGO A D, et al. Quantum machine learning: a classical perspective [J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2018, 474(2209).
[41]DUNJKO V, BRIEGEL H J.Machine learning & artificial intelligence in the quantum domain: a review of recent progress [J]. Reports on Progress in Physics, 2018, 81(7).
[42]LINNAINMAA S. Taylor expansion of the accumulated rounding error [J]. BIT, 1976, 16(2): 146-60.
[43]RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors [J]. Nature, 1986, 323(6088): 533-6.
[44]FLURIN E, MARTIN L S, HACOHEN-GOURGY S, et al. Using a Recurrent Neural Network to Reconstruct Quantum Dynamics of a Superconducting Qubit from Physical Observations [J]. Physical Review X, 2020, 10(1).
[45]FOSEL T, TIGHINEANU P, WEISS T, et al. Reinforcement Learning with Neural Networks for Quantum Feedback [J]. Physical Review X, 2018, 8(3).
[46]ZHANG T, WANG R, DING J W, et al. Face Recognition Based on Densely Connected Convolutional Networks[C]//Proceedings of the 4th IEEE International Conference on Multimedia Big Data (BigMM), Xian, PEOPLES R CHINA, F Sep 13-16, 2018.
[47]ARMATO S G, MCLENNAN G, BIDAUT L, et al. The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J]. Medical Physics, 2011, 38(2): 915-31.
[48]CHEN L C, YANG Y, WANG J, et al. Attention to Scale: Scale-aware Semantic Image Segmentation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, F Jun 27-30, 2016.
[49]SUN W Q, ZHENG B, QIAN W. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis [J]. Computers in Biology and Medicine, 2017, 89: 530-9.
[50]WIEMKER R, ROGALLA P, ZWARTKRUIS A, et al. Computer aided lung nodule detection on high resolution CT data[C]//Proceedings of the Medical Imaging 2002 Conference, San Diego, Ca, F Feb 24-28, 2002.
[51]ARMATO S, MCLENNAN G, MCNITT-GRAY M, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Public Database of CT Scans for Lung Nodule Analysis [J]. Medical Physics, 2010, 37(6): 3416-7.
[52]CHEN J, QI X B, TERVONEN O, et al. Thorax Disease Diagnosis Using Deep Convolutional Neural Network[C]//Proceedings of the 38th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Orlando, FL, F Aug 16-20, 2016.
[53]DIVINCENZO D P. The physical implementation of quantum computation [J]. Fortschritte Der Physik-Progress of Physics, 2000, 48(9-11): 771-83.
[54]PRESKILL J. Quantum Computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[55]ARTUE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[56]ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[57]QSTASZEWSKI M, GRANT E, BENEDETTI M. Structure optimization for parameterized quantum circuits[J]. Quantum, 2021, 5: 391.
[58]D Y, HU M H, LIU T, et al. Expressive power of parametrized quantum circuits[J]. Physical Review Research, 2020, 2(3): 033125.
[59]CAO Y, GUERRESCHI G, ASPURU A. Quantum neuron: an elementary building block for machine learning on quantum computers[J]. arXiv preprint arXiv:1711.11240, 2017.
[60]CEREZO M, ARRASMITH A, BABBUSH R, et al. Variational quantum algorithms[J]. arXiv preprint arXiv:2012.09265, 2020.
[61]GULRAJANI I, AHMED F, ARIJOVSKY M, et al. Improved training of wasserstein gans[J]. arXiv preprint arXiv:1704.00028, 2017.
[62]DALLAIRE P, KILLORAN N. Quantum generative adversarial networks[J]. Physical Review A, 2018, 98(1): 012324.
[63]BEER K, BONDARENKO D, FARRELLY T, et al. Training deep quantum neural networks[J]. Nature communications, 2020, 11(1): 1-6.
[64]CONG I, CHOI S, LUKIN M D. Quantum convolutional neural networks[J]. Nature Physics, 2019, 15(12): 1273-+.
[65]FRANKEN L, GEORGIEV B. Explorations in quantum neural networks with intermediate measurements[C]//Proceedings of ESANN, 2020.
[66]ZHANG K, HSIEH M H, LIU L, et al. Toward Trainability of Quantum Neural Networks[J]. arXiv preprint arXiv:2011.06258, 2020.
[67]WATABE M, SHIBA K, CHEN C C, et al. Quantum Circuit Learning with Error Backpropagation Algorithm and Experimental Implementation[J]. Quantum Reports, 2021, 3(2): 333-349.
[68]PESAH A, CEREZO M, WANG S, et al. Absence of barren plateaus in quantum convolutional neural networks[J].arXiv preprint arXiv:2011.02966, 2020.
[69]JING Y, YANG Y, WU C, et al. RGB Image Classification with Quantum Convolutional Ansaetze[J]. arXiv preprint arXiv:2107.11099, 2021.
[70]MATTERN D, MARTYNIUK D, WILLEMS H, et al. Variational Quanvolutional Neural Networks with enhanced image encoding[J]. arXiv preprint arXiv:2106.07327, 2021.
[71]ANTHIMOPOULOS M, CHRISTODOULIDIS S, EBNER L, et al. Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network[J]. IEEE Transactions on Medical Imaging, 2016, 35(5) : 1207.
[72]DENG D L. Quantum enhanced convolutional neural networks for NISQ computers[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(10): 1-1.
[73]YANG C H, QI J, CHEN S Y, et al. Decentralizing feature extraction with quantum convolutional neural network for automatic speech recognition[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021: 6523-6527.
[74]GUAN J, FANG W, YING M. Robustness verification of quantum classifiers[C]// International Conference on Computer Aided Verification, 2021: 151-174.
[75]CHEN G, ZHOU R, ZHU X, et al. Quantum Convolutional Neural Network On Scale Chaology[C]//2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2020: 243-247.
[76]OH S, CHOI J, KIM J K, et al. Quantum Convolutional Neural Network for Resource-Efficient Image Classification: A Quantum Random Access Memory (QRAM) Approach[C]//2021 International Conference on Information Networking (ICOIN), 2021: 50-52.
[77]LIU D, RAN S J, WITTEK P, et al. Machine learning by unitary tensor network of hierarchical tree structure[J]. New Journal of Physics, 2019, 21(7): 073059.
[78]CROSS A W, BISHOP L S, SHELDON S, et al. Validating quantum computers using randomized model circuits[J]. Physical Review A, 2019, 100(3): 032328.
[79]UMER M J, AMIN J, SHARIF M, et al. An integrated framework for COVID‐19 classification based on classical and quantum transfer learning from a chest radiograph[J].Concurrency and Computation: Practice and Experience, 2021: e6434.
[80]POMARICO D, FANIZZI A, AMOROSO N, et al. A Proposal of Quantum-Inspired Machine Learning for Medical Purposes: An Application Case[J]. Mathematics, 2021, 9(4): 410.
[81]SAJIAN M, SURESHBABU S H, KAIS S. Quantum Machine-Learning for Eigenstate Filtration in Two-Dimensional Materials[J]. arXiv preprint arXiv:2105.09488, 2021.
[82]Li J, Shen Y, Yang C. An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images[J]. Remote Sensing, 2020, 13(1): 65.
[83]GUO F, ZHANG P, WANG F, et al. Finite element analysis based Hopfield neural network model for solving nonlinear electromagnetic field problems[C]// International Joint Conference on Neural Networks. 1999 : 4399 – 4403 vol.6.
[84]PAJARES G, LOPEZMART INEZ C, SANCHEZLLAD O F , et al. Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimization Approach[J].Remote Sensing, 2012, 4(11) : 3571 – 3595.
[85]NIE X, QIAO H, ZHANG B. A variational model for PolSAR data speckle reduction based on the Wishart distribution[J]. IEEE Transactions on Image Processing, 2015, 24(4) : 1209.
[86]HENDERSON M, SHAKYA S, PRADHAN S, et al. Quanvolutional neural networks: powering image recognition with quantum circuits [J]. Quantum Machine Intelligence, 2020, 2(1).
[87]ZHANG T, WANG R, DING J W, et al. Face Recognition Based on Densely Connected Convolutional Networks[C]//Proceedings of the 4th IEEE International Conference on Multimedia Big Data (BigMM), Xian, PEOPLES R CHINA, F Sep 13-16, 2018.
[88]AL-SHABI M, LEE H K, TAN M. Gated-Dilated Networks for Lung Nodule Classification in CT Scans [J]. IEEE Access, 2019, 7: 178827-38.
[89]SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search.[J]. Nature, 2016, 529(7587) : 484.
[90]SHANG F, HIROSE A. Quaternion Neural-Network-Based PolSAR Land Classification in Poincare-Sphere-Parameter Space[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014,52(9) : 5693 – 5703.
[91]BARTHELEMY M, FORTUNATO S. Resolution limit in community detection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1) : 36.
[92]ANCICHINETTI A, FORTUNATO S. Limits of modularity maximization in community detection[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2011, 84(2) : 066122.
[93]GONG M, MA L, ZHANG Q, et al. Community detection in networks by using multiobjective evolutionary algorithm with decomposition[J].Physica A: Statistical Mechanics and its Applications, 2012, 391(15) : 4050 – 4060.
[94]ZOU Y, ZHUANG Z, CHEN H. HW-SW partitioning based on genetic algorithm[C]// Evolutionary Computation, 2004. CEC2004. Congress on. 2004 : 628-633 Vol.1.
[95]ANG L, WANG Q. A Community Detection Algorithm Based on NSGA-II[J]. Telecommunication Computing Electronics and Control, 2016, 14(3A) : 288 – 296.
[96]ZHAO J, BASTO FERNANDES V, JIAO L, et al. Multiobjective Optimization of Classifiers by Means of 3D Convex-Hull-Based Evolutionary Algorithms[J]. Information Sciences, 2016, 367-368 : 80 – 104.
[97]ANGELINI L, BOCCALETTI S, MARINAZZO D, et al. Identification of network modules by optimization of ratio association[J]. Chaos, 2007, 17(2) : 175.
[98]ZEILER M D, KRISHNAN D, TAYLOR G W, et al. Deconvolutional networks[J], 2010, 238(6) :2528 – 2535.
[99]HUR T, KIM L, PARK D K. Quantum convolutional neural network for classical data classification[J]. arXiv preprint arXiv:2108.00661, 2021.
[100] KINGMA D, BA J. Adam: A Method for Stochastic Optimization [J]. International Conference on Learning Representations, 2014.
[101] WANG Y Z. Quantum Computation and Quantum Information [J]. Statistical Science,2012, 27(3): 373-94.
[102] FIJANY A, WILLIAMS C P. Quantum wavelet transforms: Fast algorithms and complete circuits [M]. Quantum Computing and Quantum Communications. 1999: 10-33.
[103] YAO X W, WANG H Y, LIAO Z Y, et al. Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment [J]. Physical Review X, 2017, 7(3).
修改评论