中文版 | English
题名

高污染区域海洋排放对大气化学影响的数值模拟研究

其他题名
A NUMERICAL STUDY ON THE IMPACTS OF MARINE EMISSOINS ON ATMOSPHERIC CHEMISTRY IN HIGH POLUTED AREAS
姓名
姓名拼音
FAN Shidong
学号
11930718
学位类型
博士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
李莹
导师单位
海洋科学与工程系
论文答辩日期
2023-05-17
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

海洋占据了地球表面超过三分之二的面积,是大气中物质的重要来源,可以向大气排放众多气体和颗粒物,可能对大气化学有重要的影响,进而影响全球气候和陆地大气环境。在全球变化以及空气污染快速转变的背景下,理解海洋排放物质的影响对沿海高污染地区空气质量精细管控和区域气候研究等有重要意义。然而,前人在海气物质交换领域的研究主要针对其短期和长期气候平均效应。本研究在此基础上进一步研究海洋排放对区域大气化学产生影响的具体过程,旨在揭示海洋排放对大气环境影响水平、时空演变特征和机理,识别其中的关键物种和要素。

本研究通过对数值模型海洋排放源模块和化学模块的改进,结合过程分析和综合反应速率分析系统性地对不同海洋排放物种、化学反应途径、物理过程的响应进行定量分析,并通过敏感性实验,评估了海洋排放源速率的不确定性影响。基于这些模拟和分析,本研究对海洋排放的大气环境影响进行综合评估:首先研究了海洋排放卤素物质对东亚区域夏季氢氧自由基(OH)浓度影响的机制和特征。其次,在此基础上探索了东亚沿海高污染区域臭氧(O3)浓度在污染和非污染条件下所受的不同影响及相应途径。最后进行了东亚颗粒物(PM)在不同粒径上对海洋排放的不同响应的研究。

研究结果显示,海洋排放卤素对东亚区域陆地和海洋OH自由基均有重要影响。海洋上OH浓度变化有复杂的正负分布,由海盐气溶胶(SSA)的消光作用和无机碘排放引起的O3沉降作用等物理过程的负贡献,以及SSA氯化学和无机碘化学的整体正贡献共同确定其具体分布。其中无机碘化学主导了西北太平洋区域的分布特征,在菲律宾海区域出现特殊的负响应极值。这是由于碘化学本身既可以通过消耗O3来减少OH,又可以加快过氧自由基到OH的转化而增加OH,两者的强弱主要受O3消耗积累的影响;而在菲律宾海,O3消耗的积累最明显,因此OH浓度下降最大。

海洋大气碘化学影响OH的过程伴随着大量的O3消耗,这主导了月平均尺度上O3浓度的降低;O3浓度降低幅度有明显的海陆梯度以及污染天和清洁天的区别。与此相反,SSA氯化学虽然对O3平均值影响有限,但是在高污染区域(以粤港澳大湾区为例)可能对O3污染产生加重作用。这主要是由于大湾区人为源污染(即高浓度的二氧化氮和O3及其在夜间反应生成五氧化二氮)使海洋源SSA氯快速活化,生成的硝酰氯气体在光解作用下增加大气氧化性,导致大湾区O3在污染天的早上增加,幅度可达12 ppbv。虽然污染天碘化学对O3的消耗贡献也加强,但是由此引起的O3减少受静稳等气象条件的影响主要集中在海上,无法抵消陆地上氯化学引起的O3增加。

不同于O3,陆地PM受到的海洋影响与氧化性关系较小,而是主要通过酸取代反应和粒径再分配来显著减少细颗粒硝酸盐浓度,增加粗颗粒浓度。此外,海洋排放异戊二烯和二甲基硫对PM有一定影响,前者可以降低华北平原南部的硝酸盐浓度,后者则增加大部分区域的硫酸盐浓度。

研究结果揭示了海洋自然排放源能够显著影响东亚夏季大气氧化性以及加重高污染区域的臭氧污染水平,这些影响与海洋排放源的排放速率关系较小,而主要受海‒陆‒气物理化学耦合的相互作用的影响。

其他摘要

The ocean occupies more than two thirds of the earth's surface and is one of the most important sources of atmospheric components. It can emit many gases and particulate matters into the atmosphere, which may have an important impact on atmospheric chemistry, thereby affecting the global climate and terrestrial atmospheric environment. Under the circumstances of global changes and rapid changes in air pollution, understanding the impact of marine emissions is of great significance. Previous studies mainly focused on the average effects of marine emissions, relevant to climate impacts. This study steps further, focusing on the specific processes of the impact of marine emissions on regional atmospheric environment, in order to understand the spatiotemporal evolution of the impact, and to identify the dominant species and key processes.

In this study, we modified some modules of marine emission and chemistry in numerical models, and conducted process analysis as well as sensitivity simulations with different emission rates, in order to systematically quantify the atmospheric responses to different marine-emitted species, chemical pathways, and physical processes. Based on these simulations and analyses, this study conducts a comprehensive evaluation of the impact of marine emissions on the atmospheric environment: First, the mechanisms and characteristics of the impacts of marine-emitted halogens on summertime OH concentrations in East Asia were studied. On this basis, different responses of O3 concentration, on polluted and clean days, to marine emissions in high polluted coastal areas were explored. Moreover, different impacts of marine emissions on particulate matters with different sizes were also investigated.

The results show that marine halogens have an important impact on OH concentration in East Asia. The change of OH concentration has a complicated positive and negative distribution, which is determined mainly by physical (negative) and chemical (positive in general) processes related to SSA and inorganic iodine emissions. Among these processes, iodine chemistry dominates the distribution characteristics of the distribution in the western Pacific Ocean, showing a special negative extremum in the Philippine Sea. This is because iodine chemistry itself may reduce OH by consuming O3, and increase OH by accelerating the conversion of peroxyl radicals to OH. The relative strength of both is mainly affected by the accumulation of O3 depletion. In the Philippine Sea, the accumulation of O3 depletion is most pronounced and hence the drop in OH concentration is the largest.

Iodine chemistry consumes a large amount of O3, dominating the decrease of O3 on a monthly average scale; the decrease of average O3 has an obvious onshore gradient and a difference between polluted days and clean days. In contrast, although SSA chlorine chemistry has a limited impact on the average O3, it may deteriorate O3 pollution in high polluted areas (take the Guangdong-Hong Kong-Macao Greater Bay Area, the GBA for short, as an example). This is mainly due to the high concentration of pollutants from anthropogenic sources (i.e., nitrogen dioxide and O3 and their product at night), which rapidly activate SSA chloride, and generate nitroxyl chloride gas that can increase atmospheric oxidation capacity (AOC) through photolysis. The increased AOC leads to an increase of O3 in the GBA in the morning of polluted days, with a magnitude of up to 12 ppbv. Although the consumption of O3 by iodine chemistry is also enhanced on polluted days, the resultant O3 depletion is mainly concentrated over ocean and cannot be transported inland efficiently due to meteorological conditions.

Different from O3, the influence on PM is less related to AOC, but mainly through acid displacement and size redistribution effect that significantly reduce the concentration of fine nitrate and increase the concentration of coarse particle. In addition, marine-emitted isoprene and dimethyl sulfide have some effects on PM. The former can decrease nitrate in the southern part of the North China Plain, while the latter can increase sulfate in most areas.

The results of the study reveal that natural marine emissions can significantly affect the summertime AOC in East Asia and deteriorate the ozone pollution in high polluted areas. These effects are less related to the emission rates, but mainly related to the sea-land-atmosphere coupled physical and chemical interactions.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] LISS P S, MARANDINO C A, DAHL E E, et al., Short-lived trace gases in the surface ocean and the atmosphere[M]. In Ocean-Atmosphere Interactions of Gases and Particles, Springer, Berlin, Heidelberg: 2014; pp 1-54.
[2] DONEY S C, FABRY V J, FEELY R A, et al., Ocean acidification: The other CO2 problem[J]. Annual Review of Marine Science, 2009, 1, 169-192.
[3] MAHOWALD N M, HAMILTON D S, MACKEY K R M, et al., Aerosol trace metal leaching and impacts on marine microorganisms[J]. Nature Communications, 2018, 9, 2614.
[4] PINEDO-GONZALEZ P, HAWCO N J, BUNDY R M, et al., Anthropogenic Asian aerosols provide Fe to the North Pacific Ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(45), 27862-27868.
[5] BARKLEY A E, PROSPERO J M, MAHOWALD N, et al., African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(33), 16216-16221.
[6] BURROWS S M, EASTER R C, LIU X H, et al., OCEANFILMS (Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via Langmuir Molecular Surfactants) sea spray organic aerosol emissions - implementation in a global climate model and impacts on clouds[J]. Atmospheric Chemistry and Physics, 2022, 22(8), 5223-5251.
[7] MURPHY D M, ANDERSON J R, QUINN P K, et al., Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer[J]. Nature, 1998, 392(6671), 62-65.
[8] CARPENTER L J, MACDONALD S M, SHAW M D, et al., Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine[J]. Nature Geoscience, 2013, 6(2), 108-111.
[9] CARPENTER L J, ARCHER S D, BEALE R, Ocean-atmosphere trace gas exchange[J]. Chemical Society Reviews, 2012, 41(19), 6473-6506.
[10] POUND R J, SHERWEN T, HELMIG D, et al., Influences of oceanic ozone deposition on tropospheric photochemistry[J]. Atmospheric Chemistry and Physics, 2020, 20(7), 4227-4239.
[11] CHARLSON R J, LOVELOCK J E, ANDREAE M O, et al., Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate[J]. Nature, 1987, 326(6114), 655-661.
[12] QUINN P K, BATES T S, The case against climate regulation via oceanic phytoplankton sulphur emissions[J]. Nature, 2011, 480(7375), 51-56.
[13] QUINN P K, COFFMAN D J, JOHNSON J E, et al., Small fraction of marine cloud condensation nuclei made up of sea spray aerosol[J]. Nature Geoscience, 2017, 10(9), 674-679.
[14] CHRISTENSEN M W, JONES W K, STIER P, Aerosols enhance cloud lifetime and brightness along the stratus-to-cumulus transition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(30), 17591-17598.
[15] TWOMEY S, Pollution and planetary albedo[J]. Atmospheric Environment, 1974, 8(12), 1251-1256.
[16] ALBRECHT B A, Aerosols, cloud microphysics, and fractional cloudiness[J]. Science, 1989, 245(4923), 1227-1230.
[17] AYASH T, GONG S, JIA C Q, Direct and indirect shortwave radiative effects of sea salt aerosols[J]. Journal of Climate, 2008, 21(13), 3207-3220.
[18] SARWAR G, GANTT B, SCHWEDE D, et al., Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere[J]. Environmental Science & Technology, 2015, 49(15), 9203-9211.
[19] SHERWEN T, SCHMIDT J A, EVANS M J, et al., Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem[J]. Atmospheric Chemistry and Physics, 2016, 16(18), 12239-12271.
[20] STONE D, SHERWEN T, EVANS M J, et al., Impacts of bromine and iodine chemistry on tropospheric OH and HO2: Comparing observations with box and global model perspectives[J]. Atmospheric Chemistry and Physics, 2018, 18(5), 3541-3561.
[21] ORDóñEZ C, LAMARQUE J F, TILMES S, et al., Bromine and iodine chemistry in a global chemistry-climate model: Description and evaluation of very short-lived oceanic sources[J]. Atmospheric Chemistry and Physics, 2012, 12(3), 1423-1447.
[22] SHERWEN T, EVANS M J, SOMMARIVA R, et al., Effects of halogens on European air-quality[J]. Faraday Discussions, 2017, 200, 75-100.
[23] 李云哲, 唐傲寒, 刘学军, 大气环境中二甲基硫的研究进展[J]. 中国农业大学学报, 2021, 26(10), 164-174.
[24] MESKHIDZE N, NENES A, Phytoplankton and cloudiness in the Southern Ocean[J]. Science, 2006, 314(5804), 1419-1423.
[25] PLATT U, HONNINGER G, The role of halogen species in the troposphere[J]. Chemosphere, 2003, 52(2), 325-338.
[26] VON GLASOW R, CRUTZEN P J, Tropospheric halogen chemistry[J]. Treatise on Geochemistry, 2003, 4, 347.
[27] BARRIE L A, BOTTENHEIM J W, SCHNELL R C, et al., Ozone destruction and photochemical-reactions at polar sunrise in the lower arctic atmosphere[J]. Nature, 1988, 334(6178), 138-141.
[28] GAO Z, GEILFUS N-X, SAIZ-LOPEZ A, et al., Reproducing Arctic springtime tropospheric ozone and mercury depletion events in an outdoor mesocosm sea ice facility[J]. Atmospheric Chemistry and Physics, 2022, 22(3), 1811-1824.
[29] 何真, 倪洁, 杨桂朋, 海洋中挥发性卤代烃的研究进展[J]. 中国海洋大学学报(自然科学版), 2020, 50(03), 27-36.
[30] WANG X, JACOB D J, DOWNS W, et al., Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants[J]. Atmospheric Chemistry and Physics, 2021, 21(18), 13973-13996.
[31] LANA A, BELL T G, SIMO R, et al., An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean[J]. Global Biogeochemical Cycles, 2011, 25, Gb1004.
[32] HULSWAR S, SIMO R, GALI M, et al., Third revision of the global surface seawater dimethyl sulfide climatology (DMS-Rev3)[J]. Earth System Science Data, 2022, 14(7), 2963-2987.
[33] WANG W L, SONG G, PRIMEAU F, et al., Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network[J]. Biogeosciences, 2020, 17(21), 5335-5354.
[34] ZISKA F, QUACK B, ABRAHAMSSON K, et al., Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide[J]. Atmospheric Chemistry and Physics, 2013, 13(17), 8915-8934.
[35] GANTT B, MESKHIDZE N, KAMYKOWSKI D, A new physically-based quantification of marine isoprene and primary organic aerosol emissions[J]. Atmospheric Chemistry and Physics, 2009, 9(14), 4915-4927.
[36] GALI M, DEVRED E, LEVASSEUR M, et al., A remote sensing algorithm for planktonic dimethylsulfoniopropionate (DMSP) and an analysis of global patterns[J]. Remote Sensing of Environment, 2015, 171, 171-184.
[37] GALI M, LEVASSEUR M, DEVRED E, et al., Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales[J]. Biogeosciences, 2018, 15(11), 3497-3519.
[38] BRUGGEMANN M, HAYECK N, GEORGE C, Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols[J]. Nature Communications, 2018, 9, 2101.
[39] BRUGGEMANN M, HAYECK N, BONNINEAU C, et al., Interfacial photochemistry of biogenic surfactants: A major source of abiotic volatile organic compounds[J]. Faraday Discussions, 2017, 200, 59-74.
[40] LUO G, YU F, A numerical evaluation of global oceanic emissions of alpha-pinene and isoprene[J]. Atmospheric Chemistry and Physics, 2010, 10(4), 2007-2015.
[41] ARNOLD S R, SPRACKLEN D V, WILLIAMS J, et al., Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol[J]. Atmospheric Chemistry and Physics, 2009, 9(4), 1253-1262.
[42] LIANG Q, STOLARSKI R S, KAWA S R, et al., Finding the missing stratospheric Bry: A global modeling study of CHBr3 and CH2Br2[J]. Atmospheric Chemistry and Physics, 2010, 10(5), 2269-2286.
[43] RAYNER P J, MICHALAK A M, CHEVALLIER F, Fundamentals of data assimilation applied to biogeochemistry[J]. Atmospheric Chemistry and Physics, 2019, 19(22), 13911-13932.
[44] MONAHAN E, SPIEL D, DAVIDSON K, A model of marine aerosol generation via whitecaps and wave disruption[M]. In Oceanic Whitecaps, Monahan, E.; Niocaill, G. M., Eds. Springer: 1986; pp 167-174.
[45] ODOWD C D, SMITH M H, CONSTERDINE I E, et al., Marine aerosol, sea-salt, and the marine sulphur cycle: A short review[J]. Atmospheric Environment, 1997, 31(1), 73-80.
[46] GONG S L, A parameterization of sea-salt aerosol source function for sub- and super-micron particles[J]. Global Biogeochemical Cycles, 2003, 17(4), 1097.
[47] GRYTHE H, STROM J, KREJCI R, et al., A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements[J]. Atmospheric Chemistry and Physics, 2014, 14(3), 1277-1297.
[48] BARTHEL S, TEGEN I, WOLKE R, Do new sea spray aerosol source functions improve the results of a regional aerosol model?[J]. Atmospheric Environment, 2019, 198, 265-278.
[49] JAEGLé L, QUINN P K, BATES T S, et al., Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations[J]. Atmospheric Chemistry and Physics, 2011, 11(7), 3137-3157.
[50] GANTT B, KELLY J T, BASH J O, Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2[J]. Geoscientific Model Development, 2015, 8(11), 3733-3746.
[51] OVADNEVAITE J, MANDERS A, DE LEEUW G, et al., A sea spray aerosol flux parameterization encapsulating wave state[J]. Atmospheric Chemistry and Physics, 2014, 14(4), 1837-1852.
[52] LIU S, LIU C-C, FROYD K D, et al., Sea spray aerosol concentration modulated by sea surface temperature[J]. Proceedings of the National Academy of Sciences, 2021, 118(9), e2020583118.
[53] CHEN Y, CHENG Y F, MA N, et al., Sea salt emission, transport and influence on size-segregated nitrate simulation: A case study in northwestern Europe by WRF-Chem[J]. Atmospheric Chemistry and Physics, 2016, 16(18), 12081-12097.
[54] SHERWEN T, EVANS M J, CARPENTER L J, et al., Iodine's impact on tropospheric oxidants: A global model study in GEOS-Chem[J]. Atmospheric Chemistry and Physics, 2016, 16(2), 1161-1186.
[55] SARWAR G, GANTT B, FOLEY K, et al., Influence of bromine and iodine chemistry on annual, seasonal, diurnal, and background ozone: CMAQ simulations over the Northern Hemisphere[J]. Atmospheric Environment, 2019, 213, 395-404.
[56] SEKIYA T, KANAYA Y, SUDO K, et al., Global bromine- and iodine-mediated tropospheric ozone loss estimated using the CHASER chemical transport model[J]. Sola, 2020, 16, 220-227.
[57] TINEL L, ADAMS T J, HOLLIS L D J, et al., Influence of the sea surface microlayer on oceanic iodine emissions[J]. Environmental Science & Technology, 2020, 54(20), 13228-13237.
[58] LIM Y K, KENG F S L, PHANG S M, et al., Effect of irradiance on the emission of short-lived halocarbons from three common tropical marine microalgae[J]. Peerj, 2019, 7, e6758.
[59] WANG X, JACOB D J, EASTHAM S D, et al., The role of chlorine in global tropospheric chemistry[J]. Atmospheric Chemistry and Physics, 2019, 19(6), 3981-4003.
[60] BADIA A, REEVES C E, BAKER A R, et al., Importance of reactive halogens in the tropical marine atmosphere: A regional modelling study using WRF-Chem[J]. Atmospheric Chemistry and Physics, 2019, 19(5), 3161-3189.
[61] SAIZ-LOPEZ A, LAMARQUE J F, KINNISON D E, et al., Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere[J]. Atmospheric Chemistry and Physics, 2012, 12(9), 3939-3949.
[62] PARRELLA J P, JACOB D J, LIANG Q, et al., Tropospheric bromine chemistry: Implications for present and pre-industrial ozone and mercury[J]. Atmospheric Chemistry and Physics, 2012, 12(15), 6723-6740.
[63] SCHMIDT J A, JACOB D J, HOROWITZ H M, et al., Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(19), 11819-11835.
[64] ZHU L, JACOB D J, EASTHAM S D, et al., Effect of sea salt aerosol on tropospheric bromine chemistry[J]. Atmospheric Chemistry and Physics, 2019, 19(9), 6497-6507.
[65] LI Q, BORGE R, SARWAR G, et al., Impact of halogen chemistry on summertime air quality in coastal and continental Europe: Application of the CMAQ model and implications for regulation[J]. Atmospheric Chemistry and Physics, 2019, 19(24), 15321-15337.
[66] MUNIZ-UNAMUNZAGA M, BORGE R, SARWAR G, et al., The influence of ocean halogen and sulfur emissions in the air quality of a coastal megacity: The case of Los Angeles[J]. Science of the Total Environment, 2018, 610, 1536-1545.
[67] LI Q, BADIA A, WANG T, et al., Potential effect of halogens on atmospheric oxidation and air quality in China[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(9), e2019JD032058.
[68] HUANG Y, LU X, FUNG J C H, et al., Effect of bromine and iodine chemistry on tropospheric ozone over Asia-Pacific using the CMAQ model[J]. Chemosphere, 2020, 262, 127595-127595.
[69] DAI J N, LIU Y M, WANG P, et al., The impact of sea-salt chloride on ozone through heterogeneous reaction with N2O5 in a coastal region of south China[J]. Atmospheric Environment, 2020, 236, 117604.
[70] KETTLE A J, ANDREAE M O, AMOUROUX D, et al., A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month[J]. Global Biogeochemical Cycles, 1999, 13(2), 399-444.
[71] KETTLE A J, ANDREAE M O, Flux of dimethylsulfide from the oceans: A comparison of updated data seas and flux models[J]. Journal of Geophysical Research, 2000, 105(D22), 26793-26808.
[72] CRESSMAN G P, An operational objective analysis system[J]. Monthly Weather Review, 1959, 87(10), 367-374.
[73] BOUTTIER F, COURTIER P, Data assimilation concepts and methods March 1999[J]. Meteorological training course lecture series. ECMWF, 2002, 718, 59.
[74] ZHAO J, MA W, BILSBACK K R, et al., Simulating the radiative forcing of oceanic dimetnylsulfide (DMS) in Asia based on machine learning estimates[J]. Atmospheric Chemistry and Physics, 2022, 22(14), 9583-9600.
[75] GEER A J, Learning earth system models from observations: Machine learning or data assimilation?[J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2021, 379(2194), 20200089.
[76] BELL T G, PORTER J G, WANG W-L, et al., Predictability of seawater DMS during the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES)[J]. Frontiers in Marine Science, 2021, 7, 596763.
[77] SHAW S L, CHISHOLM S W, PRINN R G, Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton[J]. Marine Chemistry, 2003, 80(4), 227-245.
[78] PALMER P I, SHAW S L, Quantifying global marine isoprene fluxes using MODIS chlorophyll observations[J]. Geophysical Research Letters, 2005, 32(9), L09805.
[79] BOOGE D, MARANDINO C A, SCHLUNDT C, et al., Can simple models predict large-scale surface ocean isoprene concentrations?[J]. Atmospheric Chemistry and Physics, 2016, 16(18), 11807-11821.
[80] BOOGE D, SCHLUNDT C, BRACHER A, et al., Marine isoprene production and consumption in the mixed layer of the surface ocean - a field study over two oceanic regions[J]. Biogeosciences, 2018, 15(2), 649-667.
[81] CONTE L, SZOPA S, AUMONT O, et al., Sources and sinks of isoprene in the global open ocean: Simulated patterns and emissions to the atmosphere[J]. Journal of Geophysical Research: Oceans, 2020, 125(9), e2019JC015946.
[82] NOVAK G A, BERTRAM T H, Reactive VOC production from photochemical and heterogeneous reactions occurring at the air-ocean interface[J]. Accounts of Chemical Research, 2020, 53(5), 1014-1023.
[83] ZHU Y T, KIEBER D J, Concentrations and photochemistry of acetaldehyde, glyoxal, and methylglyoxal in the Northwest Atlantic Ocean[J]. Environmental Science & Technology, 2019, 53(16), 9512-9521.
[84] ZHU Y, KIEBER D J, Global model for depth-dependent carbonyl photochemical production rates in seawater[J]. Global Biogeochemical Cycles, 2020, 34(4), e2019GB006431.
[85] HOFFMANN E H, TILGNER A, SCHRODNER R, et al., An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42), 11776-11781.
[86] HOFFMANN E H, SCHRODNER R, TILGNER A, et al., CAPRAM reduction towards an operational multiphase halogen and dimethyl sulfide chemistry treatment in the chemistry transport model COSMO-MUSCAT(5.04e)[J]. Geoscientific Model Development, 2020, 13(6), 2587-2609.
[87] FUNG K M, HEALD C L, KROLL J H, et al., Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing[J]. Atmospheric Chemistry and Physics, 2022, 22(2), 1549-1573.
[88] NOVAK G A, FITE C H, HOLMES C D, et al., Rapid cloud removal of dimethyl sulfide oxidation products limits SO2 and cloud condensation nuclei production in the marine atmosphere[J]. Proceedings of the National Academy of Sciences, 2021, 118(42), e2110472118.
[89] YE Q, GOSS M B B, KRECHMER J E E, et al., Product distribution, kinetics, and aerosol formation from the OH oxidation of dimethyl sulfide under different RO2 regimes[J]. Atmospheric Chemistry and Physics, 2022, 22(24), 16003-16015.
[90] LI S, SARWAR G, ZHAO J, et al., Modeling the impact of marine DMS emissions on summertime air quality over the coastal East China Seas[J]. Earth and Space Science, 2020, 7(10), e2020EA001220.
[91] LI S, ZHANG Y, ZHAO J R, et al., Regional and urban-scale environmental influences of oceanic DMS emissions over coastal China Seas[J]. Atmosphere, 2020, 11(8), 849.
[92] ZHAO J R, SARWAR G, GANTT B, et al., Impact of dimethylsulfide chemistry on air quality over the Northern Hemisphere[J]. Atmospheric Environment, 2021, 244, 117961.
[93] GANTT B, MESKHIDZE N, ZHANG Y, et al., The effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States[J]. Atmospheric Environment, 2010, 44(1), 115-121.
[94] SEINFELD J H, PANDIS S N, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change[M]. 3 ed.; John Wiley & Sons: 2016.
[95] APPEL K W, BASH J O, FAHEY K M, et al., The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: System updates and evaluation[J]. Geoscientific Model Development, 2021, 14(5), 2867-2897.
[96] VERON F, Ocean Spray[J]. Annual Review of Fluid Mechanics, 2015, 47, 507-538.
[97] ATHANASOPOULOU E, TOMBROU M, PANDIS S N, et al., The role of sea-salt emissions and heterogeneous chemistry in the air quality of polluted coastal areas[J]. Atmospheric Chemistry and Physics, 2008, 8(19), 5755-5769.
[98] ZHANG K M, KNIPPING E M, WEXLER A S, et al., Size distribution of sea-salt emissions as a function of relative humidity[J]. Atmospheric Environment, 2005, 39(18), 3373-3379.
[99] ZHANG K M, KNIPPING E M, WEXLER A S, et al., Reply to comment on "Size distribution of sea-salt emissions as a function of relative humidity"[J]. Atmospheric Environment, 2006, 40(3), 591-592.
[100]BRASSEUR G P, JACOB D J, Modeling of atmospheric chemistry[M]. Cambridge University Press: 2017.
[101]BERTRAM T H, COCHRAN R E, GRASSIAN V H, et al., Sea spray aerosol chemical composition: Elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions[J]. Chemical Society Reviews, 2018, 47(7), 2374-2400.
[102]GANTT B, MESKHIDZE N, FACCHINI M C, et al., Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol[J]. Atmospheric Chemistry and Physics, 2011, 11(16), 8777-8790.
[103]FAIRALL C W, HELMIG D, GANZEVELD L, et al., Water-side turbulence enhancement of ozone deposition to the ocean[J]. Atmospheric Chemistry and Physics, 2007, 7, 443-451.
[104]CHANG W N, HEIKES B G, LEE M H, Ozone deposition to the sea surface: Chemical enhancement and wind speed dependence[J]. Atmospheric Environment, 2004, 38(7), 1053-1059.
[105]LUHAR A K, WOODHOUSE M T, GALBALLY I E, A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air-sea exchange and the multi-year MACC composition reanalysis[J]. Atmospheric Chemistry and Physics, 2018, 18(6), 4329-4348.
[106]SARWAR G, KANG D W, FOLEY K, et al., Technical note: Examining ozone deposition over seawater[J]. Atmospheric Environment, 2016, 141, 255-262.
[107]MACDONALD S M, MARTIN J C G, CHANCE R, et al., A laboratory characterisation of inorganic iodine emissions from the sea surface: Dependence on oceanic variables and parameterisation for global modelling[J]. Atmospheric Chemistry and Physics, 2014, 14(11), 5841-5852.
[108]CHANCE R, BAKER A R, CARPENTER L, et al., The distribution of iodide at the sea surface[J]. Environmental Science-Processes & Impacts, 2014, 16(8), 1841-1859.
[109]SHERWEN T, CHANCE R J, TINEL L, et al., A machine-learning-based global sea-surface iodide distribution[J]. Earth System Science Data, 2019, 11(3), 1239-1262.
[110]CARPENTER L J, NIGHTINGALE P D, Chemistry and release of gases from the surface ocean[J]. Chemical Reviews, 2015, 115(10), 4015-4034.
[111]LIM Y K, PHANG S M, STURGES W T, et al., Emission of short-lived halocarbons by three common tropical marine microalgae during batch culture[J]. Journal of Applied Phycology, 2018, 30(1), 341-353.
[112]WANNINKHOF R, Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography-Methods, 2014, 12, 351-362.
[113]LISS P S, MERLIVAT L, Air-sea gas exchange rates: Introduction and synthesis[M]. In The role of air-sea exchange in geochemical cycling, Springer: 1986; pp 113-127.
[114]DACEY J W H, WAKEHAM S G, HOWES B L, Henry law constants for dimethylsulfide in fresh-water and seawater[J]. Geophysical Research Letters, 1984, 11(10), 991-994.
[115]ENGEL A, RIGBY M, BURKHOLDER J, et al., Update on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol[M]. In Scientific Assessment of Ozone Depletion: 2018, 2019; pp 1-87.
[116]TAN Z F, LU K D, HOFZUMAHAUS A, et al., Experimental budgets of OH, HO2, and RO2 radicals and implications for ozone formation in the Pearl River Delta in China 2014[J]. Atmospheric Chemistry and Physics, 2019, 19(10), 7129-7150.
[117]WHALLEY L K, SLATER E J, WOODWARD-MASSEY R, et al., Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NOx in Beijing[J]. Atmospheric Chemistry and Physics, 2021, 21(3), 2125-2147.
[118]LIU Y L, NIE W, XU Z, et al., Semi-quantitative understanding of source contribution to nitrous acid (HONO) based on 1 year of continuous observation at the SORPES station in eastern China[J]. Atmospheric Chemistry and Physics, 2019, 19(20), 13289-13308.
[119]ROHRER F, LU K D, HOFZUMAHAUS A, et al., Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere[J]. Nature Geoscience, 2014, 7(8), 559-563.
[120]LELIEVELD J, BUTLER T M, CROWLEY J N, et al., Atmospheric oxidation capacity sustained by a tropical forest[J]. Nature, 2008, 452(7188), 737-740.
[121]HOFZUMAHAUS A, ROHRER F, LU K D, et al., Amplified trace gas removal in the troposphere[J]. Science, 2009, 324(5935), 1702-1704.
[122]LU K D, GUO S, TAN Z F, et al., Exploring atmospheric free-radical chemistry in China: The self-cleansing capacity and the formation of secondary air pollution[J]. National Science Review, 2019, 6(3), 579-594.
[123]FUCHS H, HOFZUMAHAUS A, ROHRER F, et al., Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation[J]. Nature Geoscience, 2013, 6(12), 1023-1026.
[124]STONE D, WHALLEY L K, HEARD D E, Tropospheric OH and HO2 radicals: Field measurements and model comparisons[J]. Chemical Society Reviews, 2012, 41(19), 6348-6404.
[125]FITTSCHEN C, AL AJAMI M, BATUT S, et al., ROOOH: A missing piece of the puzzle for OH measurements in low-NO environments?[J]. Atmospheric Chemistry and Physics, 2019, 19(1), 349-362.
[126]BATES K H, JACOB D J, A new model mechanism for atmospheric oxidation of isoprene: Global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol[J]. Atmospheric Chemistry and Physics, 2019, 19(14), 9613-9640.
[127]ARCHIBALD A T, COOKE M C, UTEMBE S R, et al., Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene[J]. Atmospheric Chemistry and Physics, 2010, 10(17), 8097-8118.
[128]MAHAJAN A S, LI Q, INAMDAR S, et al., Modelling the impacts of iodine chemistry on the northern Indian Ocean marine boundary layer[J]. Atmospheric Chemistry and Physics, 2021, 21(11), 8437-8454.
[129]WHALLEY L K, FURNEAUX K L, GODDARD A, et al., The chemistry of OH and HO2 radicals in the boundary layer over the tropical Atlantic Ocean[J]. Atmospheric Chemistry and Physics, 2010, 10(4), 1555-1576.
[130]YIN S S, ZHENG J Y, LU Q, et al., A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China[J]. Science of the Total Environment, 2015, 514, 426-438.
[131]ZHENG J Y, ZHANG L J, CHE W W, et al., A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment[J]. Atmospheric Environment, 2009, 43(32), 5112-5122.
[132]GUENTHER A B, JIANG X, HEALD C L, et al., The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions[J]. Geoscientific Model Development, 2012, 5(6), 1471-1492.
[133]SARWAR G, SIMON H, XING J, et al., Importance of tropospheric ClNO2 chemistry across the Northern Hemisphere[J]. Geophysical Research Letters, 2014, 41(11), 4050-4058.
[134]SARWAR G, SIMON H, BHAVE P, et al., Examining the impact of heterogeneous nitryl chloride production on air quality across the United States[J]. Atmospheric Chemistry and Physics, 2012, 12(14), 6455-6473.
[135]LOADES D C, YANG M X, BELLI T G, et al., Ozone deposition to a coastal sea: Comparison of eddy covariance observations with reactive air-sea exchange models[J]. Atmospheric Measurement Techniques, 2020, 13(12), 6915-6931.
[136]LUHAR A K, GALBALLY I E, WOODHOUSE M T, et al., An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate-chemistry model[J]. Atmospheric Chemistry and Physics, 2017, 17(5), 3749-3767.
[137]DAVIS J M, BHAVE P V, FOLEY K M, Parameterization of N2O5 reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate[J]. Atmospheric Chemistry and Physics, 2008, 8(17), 5295-5311.
[138]BERTRAM T H, THORNTON J A, Toward a general parameterization of N2O5 reactivity on aqueous particles: The competing effects of particle liquid water, nitrate and chloride[J]. Atmospheric Chemistry and Physics, 2009, 9(21), 8351-8363.
[139]EMERY C, LIU Z, RUSSELL A G, et al., Recommendations on statistics and benchmarks to assess photochemical model performance[J]. Journal of the Air & Waste Management Association, 2017, 67(5), 582-598.
[140]GAO J, LI Y, ZHU B, et al., What have we missed when studying the impact of aerosols on surface ozone via changing photolysis rates?[J]. Atmospheric Chemistry and Physics, 2020, 20(18), 10831-10844.
[141]LI Y, ZHAO X, DENG X, et al., The impact of peripheral circulation characteristics of typhoon on sustained ozone episodes over the Pearl River Delta region, China[J]. Atmospheric Chemistry and Physics, 2022, 22(6), 3861-3873.
[142]GAO J, LI Y, XIE Z, et al., The impact of the aerosol reduction on the worsening ozone pollution over the Beijing-Tianjin-Hebei region via influencing photolysis rates[J]. Science of the Total Environment, 2022, 821, 153197.
[143]YAO T, LI Y, GAO J, et al., Source apportionment of secondary organic aerosols in the Pearl River Delta region: Contribution from the oxidation of semi-volatile and intermediate volatility primary organic aerosols[J]. Atmospheric Environment, 2020, 222, 117111.
[144]SAIZ-LOPEZ A, VON GLASOW R, Reactive halogen chemistry in the troposphere[J]. Chemical Society Reviews, 2012, 41(19), 6448-6472.
[145]KOENIG T K, VOLKAMER R, BAIDAR S, et al., BrO and inferred Bry profiles over the western Pacific: Relevance of inorganic bromine sources and a Bry minimum in the aged tropical tropopause layer[J]. Atmospheric Chemistry and Physics, 2017, 17(24), 15245-15270.
[146]LE BRETON M, BANNAN T J, SHALLCROSS D E, et al., Enhanced ozone loss by active inorganic bromine chemistry in the tropical troposphere[J]. Atmospheric Environment, 2017, 155, 21-28.
[147]READ K A, MAHAJAN A S, CARPENTER L J, et al., Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean[J]. Nature, 2008, 453(7199), 1232-1235.
[148]GROßMANN K, FRIESS U, PETERS E, et al., Iodine monoxide in the Western Pacific marine boundary layer[J]. Atmospheric Chemistry and Physics, 2013, 13(6), 3363-3378.
[149]TAN Z F, LU K D, JIANG M Q, et al., Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: A case study based on box model simulation[J]. Atmospheric Chemistry and Physics, 2019, 19(6), 3493-3513.
[150]ZHU J, WANG S S, WANG H L, et al., Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China[J]. Atmospheric Chemistry and Physics, 2020, 20(3), 1217-1232.
[151]PENG Z, LEE-TAYLOR J, STARK H, et al., Evolution of OH reactivity in NO-free volatile organic compound photooxidation investigated by the fully explicit GECKO-A model[J]. Atmospheric Chemistry and Physics, 2021, 21(19), 14649-14669.
[152]GEYER A, ALICKE B, KONRAD S, et al., Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin[J]. Journal of Geophysical Research-Atmospheres, 2001, 106(D8), 8013-8025.
[153]SIMPSON W R, BROWN S S, SAIZ-LOPEZ A, et al., Tropospheric halogen chemistry: Sources, cycling, and impacts[J]. Chemical Reviews, 2015, 115(10), 4035-4062.
[154]MURPHY B N, NOLTE C G, SIDI F, et al., The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module in the Community Multiscale Air Quality (CMAQ) modeling system version 5.3.2[J]. Geoscientific Model Development, 2021, 14(6), 3407-3420.
[155]COOPER O R, PARRISH D D, ZIEMKE J, et al., Global distribution and trends of tropospheric ozone: An observation-based review[J]. Elementa: Science of the Anthropocene, 2014, 2, 000029.
[156]MONKS P S, ARCHIBALD A T, COLETTE A, et al., Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer[J]. Atmospheric Chemistry and Physics, 2015, 15(15), 8889-8973.
[157]YU C, WANG Z, XIA M, et al., Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites: Improving model representation of uptake parameters[J]. Atmospheric Chemistry and Physics, 2020, 20(7), 4367-4378.
[158]MORGAN W T, OUYANG B, ALLAN J D, et al., Influence of aerosol chemical composition on N2O5 uptake: Airborne regional measurements in northwestern Europe[J]. Atmospheric Chemistry and Physics, 2015, 15(2), 973-990.
[159]MCDUFFIE E E, FIBIGER D L, DUBE W P, et al., Heterogeneous N2O5 uptake during winter: Aircraft measurements during the 2015 WINTER campaign and critical evaluation of current parameterizations[J]. Journal of Geophysical Research-Atmospheres, 2018, 123(8), 4345-4372.
[160]WANG H C, CHEN X R, LU K D, et al., Wintertime N2O5 uptake coefficients over the North China Plain[J]. Science Bulletin, 2020, 65(9), 765-774.
[161]CHEN Q, SCHMIDT J A, SHAH V, et al., Sulfate production by reactive bromine: Implications for the global sulfur and reactive bromine budgets[J]. Geophysical Research Letters, 2017, 44(13), 7069-7078.
[162]THAM Y J, HE X-C, LI Q, et al., Direct field evidence of autocatalytic iodine release from atmospheric aerosol[J]. Proceedings of the National Academy of Sciences, 2021, 118(4), e2009951118.
[163]KANAYA Y, YOKOUCHI Y, MATSUMOTO J, et al., Implications of iodine chemistry for daytime HO2 levels at Rishiri Island[J]. Geophysical Research Letters, 2002, 29(8), 1212.
[164]SONG H, CHEN X, LU K, et al., Influence of aerosol copper on HO2 uptake: A novel parameterized equation[J]. Atmospheric Chemistry and Physics, 2020, 20(24), 15835-15850.
[165]TAKETANI F, KANAYA Y, AKIMOTO H, Heterogeneous loss of HO2 by KCl, synthetic sea salt, and natural seawater aerosol particles[J]. Atmospheric Environment, 2009, 43(9), 1660-1665.
[166]WANG X, JACOB D J, FU X, et al., Effects of Anthropogenic Chlorine on PM2.5 and Ozone Air Quality in China[J]. Environmental Science & Technology, 2020, 54(16), 9908-9916.
[167]YANG L, LUO H, YUAN Z, et al., Quantitative impacts of meteorology and precursor emission changes on the long-term trend of ambient ozone over the Pearl River Delta, China, and implications for ozone control strategy[J]. Atmospheric Chemistry and Physics, 2019, 19(20), 12901-12916.
[168]LIAO Z, LING Z, GAO M, et al., Tropospheric ozone variability over Hong Kong based on recent 20 years (2000-2019) ozonesonde observation[J]. Journal of Geophysical Research-Atmospheres, 2021, 126(3), e2020JD033054.
[169]LI Y, LAU A K H, FUNG J C H, et al., Importance of NOx control for peak ozone reduction in the Pearl River Delta region[J]. Journal of Geophysical Research-Atmospheres, 2013, 118(16), 9428-9443.
[170]NIU Y B, ZHU B, HE L Y, et al., Fast nocturnal heterogeneous chemistry in a coastal background atmosphere and its implications for daytime photochemistry[J]. Journal of Geophysical Research-Atmospheres, 2022, 127(13), e2022JD036716.
[171]THAM Y J, YAN C, XUE L K, et al., Presence of high nitryl chloride in Asian coastal environment and its impact on atmospheric photochemistry[J]. Chinese Science Bulletin, 2014, 59(4), 356-359.
[172]WANG T, THAM Y J, XUE L, et al., Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China[J]. Journal of Geophysical Research-Atmospheres, 2016, 121(5), 2476-2489.
[173]ZHENG J, ZHONG L, WANG T, et al., Ground-level ozone in the Pearl River Delta region: Analysis of data from a recently established regional air quality monitoring network[J]. Atmospheric Environment, 2010, 44(6), 814-823.
[174]XIA M, WANG T, WANG Z, et al., Pollution-derived Br2 boosts oxidation power of the coastal atmosphere[J]. Environmental Science & Technology, 2022, 56, 12055−12065.
[175]XIA M, PENG X, WANG W, et al., Significant production of ClNO2 and possible source of Cl2 from N2O5 uptake at a suburban site in eastern China[J]. Atmospheric Chemistry and Physics, 2020, 20(10), 6147-6158.
[176]WANG H, YUAN B, ZHENG E, et al., Formation and impacts of nitryl chloride in Pearl River Delta[J]. Atmospheric Chemistry and Physics, 2022, 22(22), 14837-14858.
[177]QIU X H, YING Q, WANG S X, et al., Modeling the impact of heterogeneous reactions of chlorine on summertime nitrate formation in Beijing, China[J]. Atmospheric Chemistry and Physics, 2019, 19(10), 6737-6747.
[178]KIM K-H, KABIR E, KABIR S, A review on the human health impact of airborne particulate matter[J]. Environment International, 2015, 74, 136-143.
[179]ZHENG B, TONG D, LI M, et al., Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics, 2018, 18(19), 14095-14111.
[180]HUANG R-J, ZHANG Y, BOZZETTI C, et al., High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521), 218-222.
[181]ZHAI S, JACOB D J, WANG X, et al., Control of particulate nitrate air pollution in China[J]. Nature Geoscience, 2021, 14, 389-395.
[182]GUO H, XU L, BOUGIATIOTI A, et al., Fine-particle water and pH in the southeastern United States[J]. Atmospheric Chemistry and Physics, 2015, 15(9), 5211-5228.
[183]WEBER R J, GUO H, RUSSELL A G, et al., High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years[J]. Nature Geoscience, 2016, 9(4), 282-285.
[184]SHI G, XU J, PENG X, et al., pH of aerosols in a polluted atmosphere: Source contributions to highly acidic aerosol[J]. Environmental Science & Technology, 2017, 51(8), 4289-4296.
[185]SONG S, GAO M, XU W, et al., Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models[J]. Atmospheric Chemistry and Physics, 2018, 18(10), 7423-7438.
[186]PYE H O T, NENES A, ALEXANDER B, et al., The acidity of atmospheric particles and clouds[J]. Atmospheric Chemistry and Physics, 2020, 20(8), 4809-4888.
[187]ZHENG G J, SU H, WANG S W, et al., Multiphase buffer theory explains contrasts in atmospheric aerosol acidity[J]. Science, 2020, 369(6509), 1374-1377.
[188]KAKAVAS S, PATOULIAS D, ZAKOURA M, et al., Size-resolved aerosol pH over Europe during summer[J]. Atmospheric Chemistry and Physics, 2021, 21(2), 799-811.
[189]KARYDIS V A, TSIMPIDI A P, POZZER A, et al., How alkaline compounds control atmospheric aerosol particle acidity[J]. Atmospheric Chemistry and Physics, 2021, 21(19), 14983-15001.
[190]LIU Y M, ZHANG S T, FAN Q, et al., Accessing the impact of sea-salt emissions on aerosol chemical formation and deposition over Pearl River Delta, China[J]. Aerosol and Air Quality Research, 2015, 15(6), 2232-2245.
[191]NEUMANN D, MATTHIAS V, BIESER J, et al., Sensitivity of modeled atmospheric nitrogen species and nitrogen deposition to variations in sea salt emissions in the North Sea and Baltic Sea regions[J]. Atmospheric Chemistry and Physics, 2016, 16(5), 2921-2942.
[192]NEUMANN D, MATTHIAS V, BIESER J, et al., A comparison of sea salt emission parameterizations in northwestern Europe using a chemistry transport model setup[J]. Atmospheric Chemistry and Physics, 2016, 16(15), 9905-9933.
[193]HIRATA T, HARDMAN-MOUNTFORD N J, BREWIN R J W, et al., Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types[J]. Biogeosciences, 2011, 8(2), 311-327.
[194]CHEN Y, CHENG Y, MA N, et al., Natural sea-salt emissions moderate the climate forcing of anthropogenic nitrate[J]. Atmospheric Chemistry and Physics, 2020, 20(2), 771-786.
[195]GARD E E, KLEEMAN M J, GROSS D S, et al., Direct observation of heterogeneous chemistry in the atmosphere[J]. Science, 1998, 279(5354), 1184-1187.
[196]KNIPPING E M, DABDUB D, Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone[J]. Environmental Science & Technology, 2003, 37(2), 275-284.
[197]APPEL K W, NAPELENOK S L, FOLEY K M, et al., Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1[J]. Geoscientific Model Development, 2017, 10(4), 1703-1732.
[198]FAHEY K M, CARLTON A G, PYE H O T, et al., A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1[J]. Geoscientific Model Development, 2017, 10(4), 1587-1605.
[199]AKSOYOGLU S, CIARELLI G, EL-HADDAD I, et al., Secondary inorganic aerosols in Europe: Sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate[J]. Atmospheric Chemistry and Physics, 2017, 17(12), 7757-7773.
[200]VEHKAMAKI H, KULMALA M, NAPARI I, et al., An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions[J]. Journal of Geophysical Research, 2002, 107(D22), 4622.
[201]WILLIAMSON C J, KUPC A, AXISA D, et al., A large source of cloud condensation nuclei from new particle formation in the tropics[J]. Nature, 2019, 574(7778), 399-403.
[202]MAYER K J, WANG X, SANTANDER M V, et al., Secondary marine aerosol plays a dominant role over primary sea spray aerosol in cloud formation[J]. ACS Central Science, 2020, 6(12), 2259-2266.
[203]MORAN M D, ASTITHA M, BARSANTI K C, et al. Final report: Fifth peer review of the CMAQ model[R]; 2015.
[204]BINKOWSKI F S, ROSELLE S J, Models-3 community multiscale air quality (CMAQ) model aerosol component - 1. Model description[J]. Journal of Geophysical Research, 2003, 108(D6), 4183.
[205]NOLTE C G, APPEL K W, KELLY J T, et al., Evaluation of the Community Multiscale Air Quality (CMAQ) model v5.0 against size-resolved measurements of inorganic particle composition across sites in North America[J]. Geoscientific Model Development, 2015, 8(9), 2877-2892.
[206]MANN G W, CARSLAW K S, RIDLEY D A, et al., Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model[J]. Atmospheric Chemistry and Physics, 2012, 12(10), 4449-4476.
[207]KAJINO M, EASTER R C, GHAN S J, Modal Bin Hybrid Model: A surface area consistent, triple-moment sectional method for use in process-oriented modeling of atmospheric aerosols[J]. Journal of Geophysical Research-Atmospheres, 2013, 118(17), 10011-10040.
[208]SPRACKLEN D V, PRINGLE K J, CARSLAW K S, et al., A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties[J]. Atmospheric Chemistry and Physics, 2005, 5, 2227-2252.
[209]KODROS J K, HANNA S J, BERTRAM A K, et al., Size-resolved mixing state of black carbon in the Canadian high Arctic and implications for simulated direct radiative effect[J]. Atmospheric Chemistry and Physics, 2018, 18(15), 11345-11361.
[210]KODROS J K, PIERCE J R, Important global and regional differences in aerosol cloud-albedo effect estimates between simulations with and without prognostic aerosol microphysics[J]. Journal of Geophysical Research-Atmospheres, 2017, 122(7), 4003-4018.
[211]LIU X, MA P L, WANG H, et al., Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model[J]. Geoscientific Model Development, 2016, 9(2), 505-522.

所在学位评定分委会
力学
国内图书分类号
X13
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544426
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
范仕东. 高污染区域海洋排放对大气化学影响的数值模拟研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930718-范仕东-海洋科学与工程(41527KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[范仕东]的文章
百度学术
百度学术中相似的文章
[范仕东]的文章
必应学术
必应学术中相似的文章
[范仕东]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。