中文版 | English
题名

绿色航运背景下的船只燃料升级时机选择

其他题名
TIMING SELECTION OF SHIP FUEL UPGRADE UNDER THE BACKGROUND OF GREEN SHIPPING
姓名
姓名拼音
HE Wenjing
学号
12132973
学位类型
硕士
学位专业
0251 金融
学科门类/专业学位类别
0251 金融
导师
SHAUN SHUXUN WANG
导师单位
商学院
论文答辩日期
2023-05-18
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

本文首先从行业宏观的角度对目前航运业减碳的相关困境进行分析和 阐述总结。随后对行业巨头相关动态进行梳理,分析现行各种措施的优劣, 把握行业整体状态。 在广泛的阅读,分析和学习研究国内外相关文献后,本文以变动成本 (结合燃料成本及二氧化碳排放成本)为研究对象,通过收集相关数据 (包括数据清洗及整理建立数据集)并进行建模的研究方法进行分析,模 型可以得出在不同情景下适合进行绿色化燃料升级的时间,并可以展示出 燃料价格以及二氧化碳排放成本的未来变化趋势。 结合模型的定量结果,综合船只硬件升级改造,燃料自身限制,技术 限制等一系列在文章伊始做出过总结阐述的定性影响因素,本文最终站在 中国船东企业的角度结合不同政策情景的假设对船东公司未来的发展方向 做出讨论分析。 本文的意义在于,模型将切实的帮助船东企业对公司进行绿色改造的 时机进行把握,并且,不同时间,不同情景假设下,各个国家的二氧化碳 排放成本的价格预测,及各类化石燃料和绿色燃料价格预测数据集,将为 后续学者及政府方面把握绿色经济的发展走向提供便利,本模型的时机预 测结果也可以辅助政府对行业绿色化进程进行更好的把握,适时适当地进 行政策调控。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 赵建军, 徐敬博, 实现碳达峰碳中和, 为什么中国能举起这面旗帜[N/OL]?中国环境报. 2021-07-20. https://theory.gmw.cn/2021-07/20/content_35007298.htm.
[2] 埃及沙姆沙伊赫,第27届联合国气候变化大会特别报道. 2022年11月6日至18日. https://news.un.org/zh/events/cop27.
[3] 航运气候峰会释放明确信号,缺乏研发投资是航运去碳化的最大障碍.信德海事网. 2021-11-11. https://xindemarinenews.com/m/view.php?aid=33947.
[4] Schinas O. REDUCTION OF GHG EMISSIONS FROM SHIPS Wind propulsion solutions. 2020.
[5] IRENA (2021), A pathway to decarbonise the shipping sector by 2050, International Renewable Energy Agency, Abu Dhabi.
[6] T Gül, Pales A F, Levi P G, et al. Energy Technology Perspectives 2020[M]. 2020.
[7] Mckinlay C J, Turnock S, Hudson D. A Comparison of hydrogen and ammonia for future long distance shipping fuels[C]// LNG/LPG and Alternative Fuel Ships (29/01/20 - 30/01/20). 2020.
[8] Adolf J, Balzer C H, Louis J, et al. Energy of the future?: Sustainable mobility through fuel cells and H2 ; Shell hydrogen study. 2017.
[9] DNV GL (2019c), Comparison of alternative marine fuels, Det Norske Veritas Germanischer Lloyd AS Maritim, Høvik, Norway.2019
[10] KIM K, ROH G, KIM W, et al. A Preliminary Study on an Alternative Ship Propulsion System Fueled by Ammonia: Environmental and Economic Assessments[J]. Journal of Marine Science and Engineering, 2020, 8(3): 183.
[11] Ash N, Scarbrough T. Sailing on Solar - Could green ammonia decarbonise international shipping?.2019.
[12] Final report - Framework CO₂ reduction in shipping, Maritime Knowledge Centre, TNO and TU Delft.2017
[13] Lewis J. Fuels without carbon, Clean Air Task Force, Boston.2018
[14] Thorson Solvi G, Ruhlman L, Ammonia safety — Managing the risks, Ammonia Energy Association.2020
[15] Power-to-X: The crucial business on the way to a carbon-free world, Siemens Gas and Power GmbH & Co. KG, Munich.2020
[16] Fredriksen N. Achieving maritime climate ambitions[J]. First Break, 2020, 38(10).
[17] Brown T. Maritime ammonia engines in Japan; ammonia shipbuilding in South Korea, Ammonia Energy Association.2019.www.ammoniaenergy.org/articles/ maritime-ammonia-engines-in-japan-ammonia-shipbuilding-in-south-korea/
[18] Jung M H. Korea’s 3 shipbuilders stepping up efforts to develop ammonia-powered vessels, businesskorea.2020
[19] Green shift to create 1 billion tonne ‘green ammonia’market? Argus Media. 2020
[20] IHS Markit. Ammonia: Chemical economics handbook.2020. www.ihsmarkit.com/products/ammonia-chemical-economics-handbook.html
[21] Fraunhofer. Biofuel for ships, Fraunhofer Institute of Environmental Safety.2020. www.fraunhofer.de/en/press/research-news/2020/may/biofuel-for-ships.html.
[22] IRENA. Innovation outlook: Advanced liquid biofuels, International Renewable Energy Agency, Abu Dhabi.2016
[23] ICCT. The potential of liquid biofuels in reducing ship emissions, International Council on Clean Transportation. 2020. www.theicct.org/publications/marine-biofuels-sept2020.
[24] TFZ. Biodiesel - FAME [in German], TFZ. 2020.www.tfz.bayern.de/biokraftstoffe/biodiesel/index.php.
[25] ETIP. Fatty acid methyl esters (FAME) fact sheet, ETIP Bioenergy. 2020. www.etipbioenergy.eu/index.php?option=com_content&view=article&id=330.
[26] Biofuels International. MSC becomes first major shipping line to use 30% biofuel blends, Biofuels International. 2019. www.biofuels-news.com/news/msc-becomes-first-major-shipping-line-to-use-30-biofuel-blends/.
[27] EAFO. Advanced biofuels, European Alternative Fuels Observatory. 2019. www.eafo.eu/alternative-fuels/advanced-biofuels/hvo#.
[28] Oscar, P. R, van, et al. Fischer–Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis - ScienceDirect[J]. Energy Conversion and Management, 2009, 50(4):855-876.
[29] EAFO. BioDME (dimethylether) / Biomethanol, European Alternative Fuels Observatory.2019. www.eafo.eu/alternative-fuels/advanced-biofuels/BioDME.
[30] ITF. Decarbonising maritime transport: Pathways to zero-carbon shipping by 2035, International Transport Forum, Paris.2018.
[31] Methanex. Methanol as a marine fuel, Methanex.2020. www.methanex.com/about-methanol/methanol-marine-fuel#:~:text=Methanol%20is%20a%20safe%2C%20cost,-meet%20increasingly%20strict%20emissions%20regulations.
[32] IRENA, Innovation outlook: Renewable methanol, International Renewable Energy Agency and Methanol Institute, Abu Dhabi.2021.
[33] Balcombe P, Brierley J, Lewis C, et al. How to decarbonise international shipping: Options for fuels, technologies and policies[J]. Energy Conversion and Management, 2019, 182(FEB.):72-88.
[34] Liu M, Li C, Koh E K, et al. Is methanol a future marine fuel for shipping?[J]. Journal of Physics Conference Series, 2019, 1357:012014.
[35] IMO, Methanol as marine fuel: Environmental benefits, technology readiness, and economic feasibility, IMO, London.2016.
[36] ABS. Methanol as marine fuel, American Bureau of Shipping, Spring, Texas.2021.
[37] DNV GL. Alternative fuels in the Arctic, Det Norske Veritas Germanischer Lloyd. 2019b.
[38] Methanol Institute. The methanol industry, Methanol Institute.2020. www.methanol.org/the-methanol-industry/.
[39] IHS Markit. Methanol: Chemical economics handbook, IHS Markit.2019. www.ihsmarkit.com/products/methanol-chemical-economics-handbook.html.
[40] Dahlgren S . Biogas-based fuels as renewable energy in the transport sector: an overview of the potential of using CBG, LBG and other vehicle fuels produced from biogas[J]. Biofuels, 2020(1):1-13.
[41] IMO. IMO working group agrees further measures to cut ship emissions, IMO, London. 2020c. www.imo.org/en/MediaCentre/PressBriefings/pages/36-ISWG-GHG-7.aspx.
[42] IMO. Reducing greenhouse gas emissions from ships, IMO, London. 2020d. www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx.
[43] ITF. Navigating towards cleaner maritime shipping: Lessons from the Nordic region, International Transport Forum, Paris.2020.
[44] Hansson J, Mansson S, Brynolf S, et al. Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders[J]. Biomass & bioenergy, 2019, 126(JUL.):159-173.
[45] Offshore Energy. LBG supplier selected for Port of Gothenburg’s gas bunkering hub, Offshore Energy.2019. www.offshore-energy.biz/lbg-supplier-selected-for-port-of-gothenburgs-gas-bunkering-hub/.
[46] Bioenergy Insight. ESL Shipping first in Finland to use 100% renewable LBG in maritime transport, Bioenergy Insight.2020. www.bioenergy-news.com/news/esl-shipping-first-in-finland-to-use-100-renewable-lbg-in-maritime-transport/
[47] 朱子文. 典型船舶燃料电池推进系统及储氢技术研究[D]. 集美大学, 2015.
[48] IRENA. Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5°C climate goal, International Renewable Energy Agency, Abu Dhabi.2020a.
[49] IRENA & AEA, Innovation outlook: Renewable ammonia, International Renewable Energy Agency Abu Dhabi, Ammonia Energy Association, New York.2020.
[50] IRENA, Production costs of powerfuels for shipping, International Renewable Energy Agency, Abu Dhabi.2020.
[51] Dias V, Pochet M, Contino F, et al. Energy and Economic Costs of Chemical Storage[J]. Frontiers in Mechanical Engineering, 2020, 6:21.
[52] IRENA. Biogas for road vehicles, International Renewable Energy Agency, Abu Dhabi.2018.
[53] Gorre J, Ortloff F, Leeuwen C V . Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage[J]. Applied Energy, 2019, 253.
[54] 国际船舶网.马士基再投资电燃料初创公司以帮助实现脱碳目标.中国航务周刊. 2021-09-24
[55] 苏婉. 干、液散货同船运输,风帆技术护航,这种船能实现吗?.信德海事.2021-03-16
[56] 刘先成. 我国航运业低碳绿色发展研究[D]. 大连海事大学.
[57] 马琳.零碳燃料尚未成熟,积极探索“碳抵消”达至“碳中和”,信德海事, 2021-07-21
[58] IEA. World Energy Model Documentation October 2021
[59] IEA. World Energy Outlook 2021. www.iea.org/weo
[60] Oxford Research. Innovation needs for decarbonization of shipping Technical annex report, November 2021
[61] ICCT. DECARBONIZING BULK CARRIERS WITH HYDROGEN FUEL CELLS AND WIND-ASSISTED PROPULSION: A MODELED CASE STUDY ANALYSIS.2022
[62] Macfarlane D R, Cherepanov P V, Choi J, et al. A Roadmap to the Ammonia Economy[J]. Joule, 2020.
[63] SGAB. Building Up the Future -Cost of Biofuel. Sustainable Transport Forum. March – 2017
[64] Advanced Biofuels – Potential for Cost Reduction. IEA Bioenergy: Task 41: 2020:01
[65] Mckinlay C J, Turnock S, Hudson D. A Comparison of hydrogen and ammonia for future long distance shipping fuels[C]// LNG/LPG and Alternative Fuel Ships (29/01/20 - 30/01/20). 2020.
[66] Zc A, Mi B, Nl A, et al. Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants - ScienceDirect[J]. Applied Energy, 282.
[67] Zamfirescu C, Dincer I. Ammonia as a green fuel and hydrogen source for vehicular applications[J]. Fuel Processing Technology, 2009, 90(5):729-737.
[68] Apostolou D, Xydis G. A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects[J]. Renewable and Sustainable Energy Reviews, 2019, 113.
[69] IRENA. Navigating the way to a renewable future: Solutions to decarbonise shipping, International Renewable Energy Agency, Abu Dhabi.2019a.
[70] 经济和社会事务部统计司,统计文件,国际能源统计建议,M辑第93号ST/ESA/STAT/SER.M/93
[71] Paustian K, Ravindranath N H, Amstel A V. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[J]. International Panel on Climate Change, 2006.
[72] IPCC. Climate Change 2021: The Physical Science Basis, the Working Group I contribution to the Sixth Assessment Report. https://www.ipcc.ch/report/ar6/wg1/

所在学位评定分委会
金融
国内图书分类号
F790.51
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544427
专题商学院_金融系
推荐引用方式
GB/T 7714
何雯婧. 绿色航运背景下的船只燃料升级时机选择[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132973-何雯婧-金融系.pdf(2755KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[何雯婧]的文章
百度学术
百度学术中相似的文章
[何雯婧]的文章
必应学术
必应学术中相似的文章
[何雯婧]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。