[1] VORMAYR G, ZSEBY T, FABINI J. Botnet communication patterns[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2768-2796.
[2] VINAYAKUMAR R, ALAZAB M, SRINIVASAN S, et al. A visualized botnet detection system based deep learning for the internet of things networks of smart cities[J]. IEEE Transactions on Industry Applications, 2020, 56(4): 4436-4456.
[3] HASAN M. State of IoT 2022: Number of connected IoT devices growing 18% to 14.4 billion globally[EB/OL]. 2022
[2022-05-18]. https://iot-analytics.com/number-connected-iot-devices.
[4] ALI I, AHMED A I A, ALMOGREN A, et al. Systematic literature review on IoT-based botnet attack[J]. IEEE Access, 2020, 8: 212220-212232.
[5] ANTONAKAKIS M, APRIL T, BAILEY M, et al. Understanding the mirai botnet[C]//26th {USENIX} security symposium ({USENIX} Security 17). 2017: 1093-1110.
[6] BARRADAS D, SANTOS N, RODRIGUES L, et al. FlowLens: Enabling Efficient Flow Classification for ML-based Network Security Applications.[C]//NDSS. 2021.
[7] GARRE J T M, PÉREZ M G, RUIZ-MARTÍNEZ A. A novel Machine Learning-based approach for the detection of SSH botnet infection[J]. Future Generation Computer Systems, 2021, 115: 387-396.
[8] HOUIDI Z B, AZORIN R, GALLO M, et al. Towards a systematic multi-modal representation learning for network data[C]//The 21st ACM Workshop on Hot Topics in Networks. 2022: 181-187.
[9] WIKIPEDIA. One-hot[EB/OL]. 2023
[2023-02-25]. https://en.wikipedia.org/wiki/One-hot.
[10] JIE L, JIAHAO C, XUEQIN Z, et al. One-hot encoding and convolutional neural network based anomaly detection[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(7): 523-529.
[11] RING M, SCHLÖR D, LANDES D, et al. Flow-based network traffic generation using generative adversarial networks[J]. Computers & Security, 2019, 82: 156-172.
[12] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in neural information processing systems: Vol. 26. 2013.
[13] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient Estimation of Word Representations in Vector Space[M/OL]. arXiv, 2013. https://arxiv.org/abs/1301.3781.
[14] RING M, DALLMANN A, LANDES D, et al. Ip2vec: Learning similarities between ip addresses[C]//2017 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2017: 657-666.
[15] COHEN D, MIRSKY Y, KAMP M, et al. DANTE: A framework for mining and monitoring darknet traffic[C]//Computer Security–ESORICS 2020: 25th European Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK, September 14–18, 2020, Proceedings, Part I 25. Springer, 2020: 88-109.
[16] GIOACCHINI L, VASSIO L, MELLIA M, et al. Darkvec: Automatic analysis of darknet traffic with word embeddings[C]//The 17th International Conference on emerging Networking EXperiments and Technologies. 2021: 76-89.
[17] XING Y, SHU H, ZHAO H, et al. Survey on botnet detection techniques: classification, methods, and evaluation[J]. Mathematical Problems in Engineering, 2021, 2021: 1-24.
[18] XIE Y, YU F, ACHAN K, et al. Spamming botnets: signatures and characteristics[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(4): 171-182.
[19] LIU L, CHEN S, YAN G, et al. Bottracer: Execution-based bot-like malware detection[C]// Information Security: 11th International Conference, ISC 2008, Taipei, Taiwan, September 1518, 2008. Proceedings 11. Springer, 2008: 97-113.
[20] APOSTOL I, PREDA M, NILA C, et al. IoT botnet anomaly detection using unsupervised deep learning[J]. Electronics, 2021, 10(16): 1876.
[21] XING Y, SHU H, KANG F. PeerRemove: An Adaptive Node Removal Strategy for P2P Botnet Based on Deep Reinforcement Learning[J]. Computers & Security, 2023: 103129.
[22] CHOWDHURY S, KHANZADEH M, AKULA R, et al. Botnet detection using graph-based feature clustering[J]. Journal of Big Data, 2017, 4: 1-23.
[23] FRANÇOIS J, WANG S, ENGEL T, et al. BotTrack: tracking botnets using NetFlow and PageRank[C]//10th IFIP Networking Conference (NETWORKING): Part I. Springer, 2011: 1-14.
[24] ZHUANG D, CHANG J M. Peerhunter: Detecting peer-to-peer botnets through community behavior analysis[C]//2017 IEEE Conference on Dependable and Secure Computing. IEEE, 2017: 493-500.
[25] WANG J, PASCHALIDIS I C. Botnet detection based on anomaly and community detection [J]. IEEE Transactions on Control of Network Systems, 2016, 4(2): 392-404.
[26] AL SHORMAN A, FARIS H, ALJARAH I. Unsupervised intelligent system based on one class support vector machine and Grey Wolf optimization for IoT botnet detection[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11: 2809-2825.
[27] AWS, Inc. 什么是 NLP?[EB/OL]. 2023. https://aws.amazon.com/cn/what-is/nlp.
[28] LAI S, LIU K, HE S, et al. How to generate a good word embedding[J]. IEEE Intelligent Systems, 2016, 31(6): 5-14.
[29] LIU Z, NAMKUNG H, NIKOLAIDIS G, et al. Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating Volumetric DDoS Attacks with Programmable Switches [C]//30th USENIX Security Symposium (USENIX Security 21). Virtual Conference, 2021: 3829-3846.
[30] CRISCUOLO P J. Distributed denial of service: Trin00, tribe flood network, tribe flood network 2000, and stacheldraht ciac-2319[R]. California Univ Livermore Radiation Lab, 2000.
[31] ZARGAR S T, JOSHI J, TIPPER D. A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks[J]. IEEE communications surveys & tutorials, 2013, 15(4): 2046-2069.
[32] Cloudflare, Inc. Blockbuster DDoS attack | Largest DDoS attack ever[EB/OL]. 2023
[2023-0225]. https://www.cloudflare.com/zh-cn/learning/ddos/famous-ddos-attacks.
[33] TYAGI A K, AGHILA G. A wide scale survey on botnet[J]. International Journal of Computer Applications, 2011, 34(9): 10-23.
[34] KREBS B. Mirai Botnet Authors Avoid Jail Time[EB/OL]. 2018
[2018-09-18]. https://krebso nsecurity.com/2018/09/mirai-botnet-authors-avoid-jail-time.
[35] GRIFFIOEN H, DOERR C. Examining mirai’s battle over the internet of things[C]//The 2020 ACM SIGSAC Conference on Computer and Communications Security. 2020: 743-756.
[36] HERWIG S, HARVEY K, HUGHEY G, et al. Measurement and analysis of Hajime, a peerto-peer IoT botnet[C]//Network and Distributed Systems Security (NDSS) Symposium. San Diego, California, USA, 2019.
[37] EDWARDS S, PROFETIS I. Hajime: Analysis of a decentralized internet worm for IoT devices [J]. Rapidity Networks, 2016, 16: 1-18.
[38] CVITIĆ I, PERAKOVIĆ D, PERIŠA M, et al. Novel approach for detection of IoT generated DDoS traffic[J]. Wireless Networks, 2021, 27(3): 1573-1586.
[39] XIA H, LI L, CHENG X, et al. Modeling and analysis botnet propagation in social internet of things[J]. IEEE Internet of Things Journal, 2020, 7(8): 7470-7481.
[40] WANG A, CHANG W, CHEN S, et al. Delving into internet DDoS attacks by botnets: characterization and analysis[J]. IEEE/ACM Transactions on Networking, 2018, 26(6): 2843-2855.
[41] LASTDRAGER E, HESSELMAN C, JANSEN J, et al. Protecting home networks from insecure IoT devices[C]//NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium. Budapest, Hungary: IEEE, 2020: 1-6.
[42] MCDERMOTT C D, MAJDANI F, PETROVSKI A V. Botnet detection in the internet of things using deep learning approaches[C]//2018 international joint conference on neural networks (IJCNN). IEEE, 2018: 1-8.
[43] ALAUTHMAN M, ASLAM N, AL-KASASSBEH M, et al. An efficient reinforcement learning-based Botnet detection approach[J]. Journal of Network and Computer Applications, 2020, 150: 102479.
[44] ZHAO Y, XIE Y, YU F, et al. Botgraph: large scale spamming botnet detection.[C]//NSDI: Vol. 9. 2009: 321-334.
[45] SÜSSTRUNK S, BUCKLEY R, SWEN S. Standard RGB color spaces[C]//Proc. IS&T;/SID 7th Color Imaging Conference: Vol. 7. 1999: 127-134.
[46] ALCOZ A G, STROHMEIER M, LENDERS V, et al. Aggregate-based congestion control for pulse-wave DDoS defense[C]//The ACM SIGCOMM 2022 Conference. 2022: 693-706.
[47] BENDER E M, GEBRU T, MCMILLAN-MAJOR A, et al. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?[C/OL]//FAccT ’21: The 2021 ACM Conference on Fairness, Accountability, and Transparency. New York, NY, USA: Association for Computing Machinery, 2021: 610–623. https://doi.org/10.1145/3442188.3445922.
[48] LIU P, YUAN W, FU J, et al. Pre-Train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing[J/OL]. ACM Comput. Surv., 2023, 55(9). https: //doi.org/10.1145/3560815.
[49] MENON T. Empirical analysis of cbow and skip gram nlp models[D]. Portland: Portland State University, 2020.
[50] PANDIT S, GUPTA S, et al. A comparative study on distance measuring approaches for clustering[J]. International journal of research in computer science, 2011, 2(1): 29-31.
[51] Techopedia. What Does 5-Tuple Mean?[EB/OL]. 2014
[2014-05-21]. https://www.techopedia .com/definition/28190/5-tuple.
[52] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise.[C]//kdd: Vol. 96. 1996: 226-231.
[53] BAILEY M, COOKE E, JAHANIAN F, et al. The internet motion sensor-a distributed blackhole monitoring system.[C]//NDSS. 2005.
[54] CERON J M, STEDING-JESSEN K, HOEPERS C, et al. Improving iot botnet investigation using an adaptive network layer[J]. Sensors, 2019, 19(3): 727.
[55] THE SEARCH ENGINE. About OCLC: History of Cooperation[EB/OL]. 2023
[2023-02-25]. https://www.shodan.io.
[56] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise.[C]//kdd: Vol. 96. 1996: 226-231.
[57] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics: theory and experiment, 2008, 2008(10): P10008.
[58] Enigma, Inc. Ares Botnet[EB/OL]. 2023
[2023-02-25]. https://www.enigmasoftware.com/are sbotnet-removal.
[59] 安全内参. IoT 僵尸网络 Ares 利用开放 ADB 端口感染安卓机顶盒[EB/OL]. 2019
[201908-29]. https://www.secrss.com/articles/13292.
[60] AUGUSTO R I, MARK V. Miori IoT Botnet Delivered via ThinkPH Exploit[EB/OL]. 2018
[2018-12-20]. https://www.trendmicro.com/en_us/research/18/l/with-mirai-comes-miori-iot-b otnet-delivered-via-thinkphp-remote-code-execution-exploit.html.
[61] SRISURESH P, EGEVANG K. Traditional IP network address translator (Traditional NAT)[R]. 2001.
[62] XeroBank, Inc. xB Browser is the free and open-source anonymous web browser[EB/OL]. 2023
[2023-02-25]. https://xb-browser.apponic.com.
[63] MEZQUITA Y, ALONSO R S, CASADO-VARA R, et al. A review of k-nn algorithm based on classical and quantum machine learning[C]//Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference. Springer, 2021: 189-198.
[64] BIAU G, SCORNET E. A random forest guided tour[J]. Test, 2016, 25: 197-227.
[65] AGGARWAL C C, et al. Data mining: the textbook: Vol. 1[M]. Springer, 2015.
[66] 摘繁华. 常用端口及范围[EB/OL]. 2021
[2021-12-27]. https://cloud.tencent.com/developer/ article/1925309.
[67] TECHNOLOGIES R. gensim–Topic Modelling in Python[EB/OL]. 2023
[2023-03-03]. https: //github.com/RaRe-Technologies/gensim.
[68] CHRIS P. K Means[EB/OL]. 2013
[2012-09-01]. https://stanford.edu/~cpiech/cs221/handouts /kmeans.html.
[69] UNB. Intrusion Detection Evaluation Dataset(CICIDS2017)[EB/OL]. 2018
[2018-02-18]. http s://www.unb.ca/cic/datasets/ids-2017.html.
[70] SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization[J]. ICISSp, 2018, 1: 108-116.
[71] SWEETSOFTWARE. Ares[EB/OL]. 2023
[2023-02-25]. https://github.com/sweetsoftware/A res.
[72] JOE T, ELIOT L, KUMIKO O. Service Name and Transport Protocol Port Number Registry [EB/OL]. 2023
[2023-04-13]. https://www.iana.org/assignments/service-names-port-numbers /service-names-port-numbers.xhtml?&page=1.
[73] BIRANT D, KUT A. ST-DBSCAN: An algorithm for clustering spatial–temporal data[J]. Data & knowledge engineering, 2007, 60(1): 208-221.
[74] ARANGANAYAGI S, THANGAVEL K. Clustering categorical data using silhouette coefficient as a relocating measure[C]//International conference on computational intelligence and multimedia applications (ICCIMA 2007): Vol. 2. IEEE, 2007: 13-17.
[75] VERLEYSEN M, FRANÇOIS D. The curse of dimensionality in data mining and time series prediction[C]//Computational Intelligence and Bioinspired Systems: 8th International WorkConference on Artificial Neural Networks, IWANN 2005, Vilanova i la Geltrú, Barcelona, Spain, June 8-10, 2005. Proceedings 8. Springer, 2005: 758-770.
[76] ZAKARIA J. A Step-by-Step Explanation of Principal Component Analysis (PCA)[EB/OL]. 2022
[2022-09-26]. https://builtin.com/data-science/step-step-explanation-principal-compone nt-analysis.
[77] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE.[J]. Journal of machine learning research, 2008, 9(11).
[78] YA L. P2P 僵尸网络:回顾·现状·持续监测[EB/OL]. 2022
[2022-11-30]. https://blog.net lab.360.com/p2p-botnet-monitor.
修改评论