中文版 | English
题名

质子交换膜燃料电池衰减机制及抗反极膜电极研究

其他题名
INVESTIGATION ON ATTENUATION MECHANISM AND ANTI-REVERSAL MEMBRANE ELECTRODE ASSEMBLY FOR PROTON EXCHANGE MEMBRANE FUEL CELLS
姓名
姓名拼音
WANG Yameng
学号
11930876
学位类型
博士
学位专业
080104 工程力学
学科门类/专业学位类别
08 工学
导师
曾林
导师单位
机械与能源工程系
论文答辩日期
2023-05-17
论文提交日期
2023-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

质子交换膜燃料电池(PEMFCs)因其功率密度高、零污染以及加氢速度快等优点在近年来得到了广泛地研究、发展和应用。但由阳极缺氢引起的反极工况会拉高PEMFCs单电池(膜电极)的阳极电势,对阳极含碳材料造成不可逆的腐蚀破坏,从而严重削弱PEMFCs的放电功率、稳定性以及寿命,是其大规模商业化推广应用过程中的一大障碍。虽然反极工况可以通过监测电池电压以及尾气成分等手段及时发现并采取短接以及停机等被动措施来中断,但上述被动措施会增加控制系统复杂性和成本并且无法阻止反极对膜电极的破坏。在阳极催化层中加入具有高活性和高稳定性的氧析出反应(OER)催化剂(例如IrOx, 0x2)能够通过延长OER电势平台来延缓阳极电势的进一步升高,从而延缓碳腐蚀速率的增大,提高膜电极的抗反极性能。然而上述OER电势平台经过一段时间反极后仍会突然结束,导致阳极电势急剧升高,膜电极失去抗反极能力。

针对上述OER电势平台突然结束的原因目前国际上提出了三种观点:(1)阳极催化层缺水导致OER催化剂缺少反应物,(2OER催化剂因碳腐蚀导致与周围物质隔绝(物理失活),(3OER催化剂本身失去催化OER活性(化学失活)。无明确证据支持阳极催化层缺水和OER催化剂化学失活导致OER电势平台失效。本文综述并分析了相关文献研究数据,认为OER催化剂的物理失活是导致OER电势平台突然结束的主要原因。更具体地,OER平台存在的碳腐蚀反应将OER催化剂逐渐与阳极催化层物理隔绝,导致OER催化剂不能有效地向阳极催化层传导OER所产生的电子和质子。因此,建立稳定的电子和质子通道有利于延长OER电势平台,提高膜电极的首次抗反极时间(FRT)。

本文制备了高金属含量的Ir-Pt(1:2)/C复合催化剂,其碳载体表面连续的贵金属纳米颗能够在阳极催化层中构建稳定的电子和质子传输通道,延缓OER催化剂(铱纳米颗粒)的物理失活。与低金属含量的Ir-Pt(1:2)/C相比,高金属含量的Ir-Pt(1:2)/C能够将膜电极的FRT提高至10倍,达到20小时。

常用的商业化OER催化剂(Com-IrOx)因其团聚状态的微观结构更容易因碳腐蚀而发生物理失活,本文通过低比表面积的碳粉作为牺牲模板成功合成了具有强连接结构的OER催化剂(SC-IrOx)。SC-IrOx催化剂由相互连接的IrOx纳米颗粒组成,同时具有良好的分散性,其在阳极催化层中形成的网状结构可以为OER催化剂提供稳定的电子和质子传输通道,延缓其自身物理失活。与Com-IrOx催化剂相比,SC-IrOx催化剂能够将膜电极的FRT延长至3.2倍,达到9.32小时。

由于阳极催化层中碳材料的电化学腐蚀能够引起OER催化剂的物理失活,本文通过低比表面积碳粉作为牺牲模板成功合成了具有树枝状结构的铂黑催化剂并将其与SC-IrOx催化剂结合用于制备无碳抗反极阳极催化层。无碳阳极催化层能够最大程度地避免因碳腐蚀导致的OER催化剂物理失活。与商业化铂碳催化剂相比,使用铂黑催化剂的无碳阳极催化层能够将膜电极的FRT提高至4.8倍,达到44.5小时。

本文的研究结果表明高金属含量的Ir-Pt(1:2)/C复合催化剂、具有网状互连结构的强连接SC-IrOx催化剂以及无碳抗反极阳极催化层能够为OER催化剂建立稳定的电子和质子传输通道,延缓OER催化剂因碳腐蚀导致的物理失活,为抗反极阳极催化剂以及催化层的设计和制备提供了新的思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] CHAPMAN A, ITAOKA K, FARABI-ASL H, et al. Societal Penetration of Hydrogen into the Future Energy System: Impacts of Policy, Technology and Carbon Targets[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3883-3898.
[2] HAIDER S A, SAJID M, IQBAL S. Forecasting Hydrogen Production Potential in Islamabad from Solar Energy Using Water Electrolysis[J]. International Journal of Hydrogen Energy, 2021, 46(2): 1671-1681.
[3] HOSSEINI S E, WAHID M A. Hydrogen from Solar Energy, a Clean Energy Carrier from a Sustainable Source of Energy[J]. International Journal of Energy Research, 2020, 44(6): 4110-4131.
[4] BRANDON N P, KURBAN Z. Clean Energy and the Hydrogen Economy[J]. Philos Trans A Math Phys Eng Sci, 2017, 375: 20160400.
[5] YI B L, YU H M, HOU Z J, et al. Electrocatalysts for Proton Exchange Membrane Fuel Cells in Dalian Institute of Chemical Physics, Chinese Academy of Sciences-Study on the Pt/C Electrocatalyst[J]. Precious Metals, 2002, 23(3): 1-7.
[6]YOSHIDA T, KOJIMA K. Toyota MIRAI Fuel Cell Vehicle and Progress Toward a Future Hydrogen Society[J]. The Electrochemical Society Interface, 2015, 24(2): 45-49.
[7] KADDOURI A E, FLANDIN L, BAS C. Chemical Degradation of PFSA Ionomer Binder in PEMFC's Catalyst Layer[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15386-15397.
[8] KUSOGLU A, WEBER A Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers[J]. Chemical Reviews, 2017, 117(3): 987-1104.
[9] MAJLAN E H, ROHENDI D, DAUD W R W, et al. Electrode for Proton Exchange Membrane Fuel Cells: A Review[J]. Renewable & Sustainable Energy Reviews, 2018, 89: 117-134.
[10] SOBOLEVA T, MALEK K, XIE Z, et al. PEMFC Catalyst Layers: The Role of Micropores and Mesopores on Water Sorption and Fuel Cell Activity[J]. ACS Applied Materials & Interfaces, 2011, 3(6): 1827-1837.
[11] ZHANG F Y, SPERNJAK D, PRASAD A K, et al. In Situ Characterization of the Catalyst Layer in a Polymer Electrolyte Membrane Fuel Cell[J]. Journal of The Electrochemical Society, 2007, 154(11): B1152-B1157.
[12] GOSTICK J T, IOANNIDIS M A, FOWLER M W, et al. On the Role of the Microporous Layer in PEMFC Operation[J]. Electrochemistry Communications, 2009, 11(3): 576-579.
[13] LI H, TANG Y H, WANG Z W, et al. A review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell[J]. Journal of Power Sources, 2008, 178(1): 103-117.
[14] HU L M, HONG B K, OH J G, et al. Investigation of Hydrogen Starvation of Polymer Electrolyte Fuel Cells in Freezing Condition Using Reference Electrode[J]. ECS Transactions, 2017, 80(8): 535-542.
[15] HU L M, HONG B K, OH J G, et al. Robust Operation of Fuel Cell Systems in Subfreezing Conditions: A Material-Based Solution to Achieve Better Anode Durability[J]. ACS Applied Energy Materials, 2019, 2(10): 7152-7161.
[16] LIANG D, SHEN Q, HOU M, et al. Study of the Cell Reversal Process of Large Area Proton Exchange Membrane Fuel Cells under Fuel Starvation[J]. Journal of Power Sources, 2009, 194(2): 847-853.
[17] TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of Degradation in PEMFC Caused by Cell Reversal During Air Starvation[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2323-2329.
[18] GERARD M, POIROT-CROUVEZIER J-P, HISSEL D, et al. Oxygen Starvation Analysis During Air Feeding Faults in PEMFC[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12295-12307.
[19] REISER C A, BREGOLI L, PATTERSON T W, et al. A Reverse-Current Decay Mechanism for Fuel Cells[J]. Electrochemical and Solid-State Letters, 2005, 8(6): A273-A276.
[20] PATTERSON T W, DARLING R M. Damage to the Cathode Catalyst of a PEM Fuel Cell Caused by Localized Fuel Starvation[J]. Electrochemical and Solid-State Letters, 2006, 9(4): A183-A185.
[21] LIU Z Y, BRADY B K, CARTER R N, et al. Characterization of Carbon Corrosion-Induced Structural Damage of PEM Fuel Cell Cathode Electrodes Caused by Local Fuel Starvation[J]. Journal of The Electrochemical Society, 2008, 155(10): B979-B984.
[22] RALPH T R, HOGARTH M P. Catalysis for Low Temperature Fuel Cells[J]. Platinum Metals Review, 2002, 46(3): 117-135.
[23] ZHOU F, ANDREASEN S J, KÆR S K, et al. Analysis of Accelerated Degradation of a HT-PEM Fuel Cell Caused by Cell Reversal in Fuel Starvation Condition[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2833-2839.
[24] MANDAL P, HONG B K, OH J G, et al. 3D Imaging of Fuel Cell Electrode Structure Degraded Under Cell Voltage Reversal Conditions Using Nanoscale X-Ray Computed Tomography[J]. ECS Transactions, 2015, 69(17): 443-453.
[25] Chapter 2: Fuel Cell Thermodynamics[M]. Fuel Cell Fundamentals. 2016: 25-76.
[26] LIN R, YU H, ZHONG D, et al. Investigation of Real-time Changes and Recovery of Proton Exchange Membrane Fuel Cell in Voltage Reversal[J]. Energy Conversion and Management, 2021, 236: 114037.
[27] ZHANG L C, CAI C, TAN J T, et al. Study on the Durability of the Microporous Layer of Proton Exchange Membrane Fuel Cell During the Voltage Reversal Process[J]. Materials Reports, 2022, 36(14): 21030086-7.
[28] PENG Y, CHOI J Y, BAI K, et al. Pulsed vs. Galvanostatic Accelerated Stress Test Protocols: Comparing Predictions for Anode Reversal Tolerance in Proton Exchange Membrane Fuel Cells[J]. Journal of Power Sources, 2021, 500: 229986.
[29] TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of Electrocatalyst Degradation in PEMFC Caused by Cell Reversal During Fuel Starvation[J]. Journal of Power Sources, 2004, 130(1-2): 42-49.
[30] BARTON R H. Cell Voltage Monitor for a Fuel Cell Stack: United States, 6724194[P/OL]. 2004-4-20.
[31] KNIGHTS S D, VAAL J W D, LAURITZEN M V, et al. Electrochemical Fuel Cell Stack Having a Plurality of Intergated Voltage Reversal Protection Diodes: United States, 7235315[P/OL]. 2007-6-26.
[32] RALPH T R, HUDSON S, WILKINSON D P. Electrocatalyst Stability in PEMFCs and the Role of Fuel Starvation and Cell Reversal Tolerant Anodes[J]. ECS Transactions, 2006, 1(8): 67-84.
[33] JUNG J, PARK B, KIM J. Durability Test with Fuel Starvation Using a Pt/CNF Catalyst in PEMFC[J]. Nanoscale Research Letters, 2012, 7(1): 34-41.
[34] 王紫君, 朱贻安, 成洪业, 等. 鱼骨式纳米碳纤维的微观结构研究[J]. 石油化工, 2016, 45(9): 1037-1042.
[35] IOROI T, YASUDA K. Highly Reversal-tolerant Anodes Using Ti4O7-supported Platinum with a Very Small Amount of Water-splitting Catalyst[J]. Journal of Power Sources, 2020, 450: 227656.
[36] HALALAY I C, SWATHIRAJAN S, MERZOUGUI B, et al. Anode Materials for Mitigating Hydrogen Starvation Effects in PEM Fuel Cells[J]. Journal of The Electrochemical Society, 2011, 158(3): B313-B321.
[37] SHEN G R, LIU J, WU H B, et al. Multi-functional Anodes Boost the Transient Power and Durability of Proton Exchange Membrane Fuel Cells[J]. Nat Commun, 2020, 11(1): 1191.
[38] REIER T, OEZASLAN M, STRASSER P. Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials[J]. ACS Catalysis, 2012, 2(8): 1765-1772.
[39] LIM K H, LEE W H, JEONG Y, et al. Analysis of Carbon Corrosion in Anode Under Fuel Starvation Using On-Line Mass Spectrometry in Polymer Electrolyte Membrane Fuel Cells[J]. Journal of The Electrochemical Society, 2017, 164(14): F1580-F1586.
[40] MOORE C E, AFSAHI F, YOUNG A P, et al. Vibrating Powders: Electrochemical Quartz Crystal Microbalance Study of IrO2 and Pt/C Catalyst Layers for Voltage Reversal Tolerant Anodes in Fuel Cells[J]. The Journal of Physical Chemistry C, 2019, 123(38): 23361-23373.
[41] AHN C Y, KANG S Y, CHOI H J, et al. Effect of Anode Iridium Oxide Content on the Electrochemical Performance and Resistance to Cell Reversal Potential of Polymer Electrolyte Membrane Fuel Cells[J]. International Journal of Hydrogen Energy, 2021, 46(27): 14713-14723.
[42] FATHI TOVINI M, DAMJANOVIC A M, EL-SAYED H A, et al. Degradation Mechanism of an IrO2 Anode Co-Catalyst for Cell Voltage Reversal Mitigation Under Transient Operation Conditions of a PEM Fuel Cell[J]. Journal of The Electrochemical Society, 2021, 168(6): 064521.
[43] LIM J, KANG G, JEON H, et al. Amorphous Ir Atomic Clusters Anchored on Crystalline IrO2 Nanoneedles for Proton Exchange Membrane Water Oxidation[J]. Journal of Power Sources, 2022, 524: 231069.
[44] HONG B K, MANDAL P, OH J-G, et al. On the Impact of Water Activity on Reversal Tolerant Fuel Cell Anode Performance and Durability[J]. Journal of Power Sources, 2016, 328: 280-288.
[45] MANDAL P, HONG B K, OH J-G, et al. Understanding the Voltage Reversal Behavior of Automotive Fuel Cells[J]. Journal of Power Sources, 2018, 397: 397-404.
[46] ADAMS R, SHRINER R L. Platinum Oxide as a Catalyst in the Reduction of Organic Compounds. III. Preparation and Properties of the Oxide of Platinum Obtained by the Fusion of Chloroplatinic Acid with Sodium Nitrate[J]. Journal of the American Chemical Society, 1923, 45(9): 2171-2179.
[47] JOO T, HU L M, HONG B K, et al. On the Origin of Deactivation of Reversal-tolerant Fuel Cell Anodes Under Voltage Reversal Conditions[J]. Journal of Power Sources, 2020, 472: 228439.
[48] 陈威. 质子交换膜燃料电池反极研究[D]. 武汉理工大学, 2020.
[49] 蔡超. 质子交换膜燃料电池反极过程动力学[D]. 武汉理工大学, 2021.
[50] WANG Y J, XIE X J, ZHOU C, et al. Study of Relative Humidity on Durability of the Reversal Tolerant Proton Exchange Membrane Fuel Cell Anode Using a Segmented Cell[J]. Journal of Power Sources, 2020, 449: 227542.
[51] CAI C, WAN Z H, RAO Y, et al. Water Electrolysis Plateau in Voltage Reversal Process for Proton Exchange Membrane Fuel Cells[J]. Journal of Power Sources, 2020, 455: 227952.
[52] SANCHEZ D G, RUIU T, BISWAS I, et al. Local Impact of Humidification on Degradation in Polymer Electrolyte Fuel Cells[J]. Journal of Power Sources, 2017, 352: 42-55.
[53] CAI C, RAO Y, ZHOU J, et al. Carbon Corrosion: A Novel Termination Mechanism of the Water Electrolysis Plateau During Voltage Reversal[J]. Journal of Power Sources, 2020, 473: 228542.
[54] ROH C-W, KIM H-E, CHOI J, et al. Monodisperse IrOx Deposited on Pt/C for Reversal Tolerant Anode in Proton Exchange Membrane Fuel Cell[J]. Journal of Power Sources, 2019, 443: 227270.
[55] KIM H-E, SHIN S, LEE H. Pt-IrOx Catalysts Immobilized on Defective Carbon for Efficient Reversal Tolerant Anode in Proton Exchange Membrane Fuel Cells[J]. Journal of Catalysis, 2021, 395: 404-411.
[56] CHEN W, CAI C, LI S, et al. Thickness Effects of Anode Catalyst Layer on Reversal Tolerant Performance in Proton Exchange Membrane Fuel Cell[J]. International Journal of Hydrogen Energy, 2021, 46(12): 8749-8757.
[57] AHN C-Y, KIM S, CHOI H J, et al. Effect of Iridium Oxide as an Additive on Catalysts with Different Pt Contents in Cell Reversal Conditions of Polymer Electrolyte Membrane Fuel Cells[J]. International Journal of Hydrogen Energy, 2022, 47(3): 1863-1873.
[58] ZHOU X Y, JI H, LI B, et al. High-Repetitive Reversal Tolerant Performance of Proton-Exchange Membrane Fuel Cell by Designing a Suitable Anode[J]. ACS Omega, 2020, 5(17): 10099-10105.
[59] HU L M, HONG B K, OH J-G, et al. Reversal Tolerant Anodes Using Protective Layers for Highly Robust Automotive Fuel Cells[J]. ACS Applied Energy Materials, 2021, 4(1): 119-127.
[60] ZHOU X Y, YANG Y G, LI B, et al. Advanced Reversal Tolerant Anode in Proton Exchange Membrane Fuel Cells: Study on the Attenuation Mechanism During Fuel Starvation[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2455-2461.
[61] MCBREEN J. Voltammetric Studies of Electrodes in Contact with Ionomeric Membranes[J]. Journal of The Electrochemical Society, 1985, 132(5): 1112-1116.
[62] XIONG Z A, ZHOU H K, ZENG R J, et al. Reversal Tolerance GDL for Proton Exchange Membrane Fuel Cell[J]. Ionics, 2022, 28(9): 4331-4340.
[63] SHENG X, RU C, ZHAO H, et al. Study on Anode Catalyst Layer Configuration for Proton Exchange Membrane Fuel Cell with Enhanced Reversal Tolerance and Polarization Performance[J]. Energies, 2022, 15(8): 2732.
[64] LEE D-H, DOO G, CHOI S, et al. Toward Highly Robust Reversal-tolerant Anodes in Polymer Electrolyte Membrane Fuel Cells[J]. Journal of Industrial and Engineering Chemistry, 2022, 109: 245-252.
[65] KNIGHTS S D, COLBOW K M, ST-PIERRE J, et al. Aging Mechanisms and Lifetime of PEFC and DMFC[J]. Journal of Power Sources, 2004, 127(1-2): 127-134.
[66] LIANG Y Y, LI Y G, WANG H L, et al. Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction[J]. Nature Materials, 2011, 10(10): 780-786.
[67] SHARMA R, ANDERSEN S M. Quantification on Degradation Mechanisms of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers During an Accelerated Stress Test[J]. ACS Catalysis, 2018, 8(4): 3424-3434.
[68] MEYER Q, ZENG Y C, ZHAO C. Electrochemical Impedance Spectroscopy of Catalyst and Carbon Degradations in Proton Exchange Membrane Fuel Cells[J]. Journal of Power Sources, 2019, 437: 226922.
[69] WANG Y J, ZHOU C, XIE X J, et al. Study of Failure Mechanisms of the Reversal Tolerant Fuel Cell Anode via Novel In-situ Measurements[J]. International Journal of Hydrogen Energy, 2020, 45(1): 996-1007.
[70] YE S Y. Reversal-tolerant Catalyst Layers[M]//ZHANG J J. PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications. London; Springer London. 2008: 835-860.
[71] BADAM R, HARA M, HUANG H-H, et al. Synthesis and Electrochemical Analysis of Novel IrO2 Nanoparticle Catalysts Supported on Carbon Nanotube for Oxygen Evolution Reaction[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18095-18104.
[72] HU M R, ZHAO R X, PAN R X, et al. Disclosure of the Internal Mechanism During Activating a Proton Exchange Membrane Fuel Cell Based on the Three-step Activation Method[J]. International Journal of Hydrogen Energy, 2021, 46(3): 3008-3021.
[73] YANG C X, HU M R, WANG C, et al. A Three-step Activation Method for Proton Exchange Membrane Fuel Cells[J]. Journal of Power Sources, 2012, 197: 180-185.
[74] ŁUKASZEWSKI M, SOSZKO M, CZERWIŃSKI A. Electrochemical Methods of Real Surface Area Determination of Noble Metal Electrodes – an Overview[J]. International Journal of Electrochemical Science, 2016, 11: 4442-4469.
[75] WANG Y M, ZOU L L, HUANG Q H, et al. 3D Carbon Aerogel-supported PtNi Intermetallic Nanoparticles with High Metal Loading as a Durable Oxygen Reduction Electrocatalyst[J]. International Journal of Hydrogen Energy, 2017, 42(43): 26695-26703.
[76] JENKINS R, SNYDER R L. Introduction to X-Ray Powder Diffractometry[M]. Hoboken: John Wiley & Sons, Inc., 1996.
[77] SHI X Y, ZHU H W, DU J, et al. Directed Assembly of Ultrasmall Nitrogen Coordinated Ir Nanoparticles for Enhanced Electrocatalysis[J]. Electrochimica Acta, 2021, 370: 137710.
[78] CHEREVKO S, GEIGER S, KASIAN O, et al. Oxygen Evolution Activity and Stability of Iridium in Acidic Media. Part 1. – Metallic Iridium[J]. Journal of Electroanalytical Chemistry, 2016, 773: 69-78.
[79] CHEREVKO S, GEIGER S, KASIAN O, et al. Oxygen Evolution Activity and Stability of Iridium in Acidic Media. Part 2. – Electrochemically Grown Hydrous Iridium Oxide[J]. Journal of Electroanalytical Chemistry, 2016, 774: 102-110.
[80] DA SILVA G C, FERNANDES M R, TICIANELLI E A. Activity and Stability of Pt/IrO2 Bifunctional Materials as Catalysts for the Oxygen Evolution/Reduction Reactions[J]. ACS Catalysis, 2018, 8(3): 2081-2092.
[81] LI G Q, LI S T, XIAO M L, et al. Nanoporous IrO2 Catalyst with Enhanced Activity and Durability for Water Oxidation Owing to its Micro/mesoporous Structure[J]. Nanoscale, 2017, 9(27): 9291-9298.`
[82] LETTENMEIER P, WANG L, GOLLA-SCHINDLER U, et al. Nanosized IrOx-Ir Catalyst with Relevant Activity for Anodes of Proton Exchange Membrane Electrolysis Produced by a Cost-Effective Procedure[J]. Angewandte Chemie International Edition, 2016, 55(2): 742-746.
[83] MASSU C, PFEIFER V, HUANG X, et al. High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts[J]. ChemSusChem, 2017, 10(9): 1943-1957.
[84] SANCHEZ D G, DIAZ D G, HIESGEN R, et al. Oscillations of PEM Fuel Cells at Low Cathode Humidification[J]. Journal of Electroanalytical Chemistry, 2010, 649(1-2): 219-231.
[85] LABI T, SCHALKWYK F V, ANDERSEN S M, et al. Increasing Fuel Cell Durability During Prolonged and Intermittent Fuel Starvation Using Supported IrOx[J]. Journal of Power Sources, 2021, 490: 229568.
[86] ZHAI Y, BETHUNE K, BENDER G, et al. Analysis of the SO2 Contamination Effect on the Oxygen Reduction Reaction in PEMFCs by Electrochemical Impedance Spectroscopy[J]. Journal of The Electrochemical Society, 2012, 159(5): B524-B530.
[87] JORCIN J-B, ORAZEM M E, P B RE N, et al. CPE Analysis by Local Electrochemical Impedance Spectroscopy[J]. Electrochimica Acta, 2006, 51(8-9): 1473-1479.
[88] MOORE C E, EASTCOTT J, CIMENTI M, et al. Novel Methodology for Ex Situ Characterization of Iridium Oxide Catalysts in Voltage Reversal Tolerant Proton Exchange Membrane Fuel Cell Anodes[J]. Journal of Power Sources, 2019, 417: 53-60.
[89] LIAO J H, WANG Y M, CHEN M, et al. IrOX Supported onto Niobium-Doped Titanium Dioxide as an Anode Reversal Tolerant Electrocatalyst for Proton Exchange Membrane Fuel Cells[J]. ACS Applied Energy Materials, 2022, 5(3): 3259-3268.
[90] LI Y H, SONG W, JIANG G, et al. Ti4O7 Supported IrOx for Anode Reversal Tolerance in Proton Exchange Membrane Fuel Cell[J]. Frontiers in Energy, 2022, 16(5): 852-861.
[91] WANG Y J, ZHOU C, ZOU J X, et al. Uncoupling Characteristics of Temperature and Relative Humidity Distribution in a Commercial-Size Polymer Electrolyte Membrane Fuel Cell[J]. Journal of Energy Engineering, 2020, 146(5): 04020052.
[92] YOUN D H, MEYERSON M L, KLAVETTER K C, et al. Mixing Super P-Li with N-Doped Mesoporous Templated Carbon Improves the High Rate Performance of a Potential Lithium Ion Battery Anode[J]. Journal of The Electrochemical Society, 2016, 163(6): A953-A957.
[93] HUANG Z X, LI G Z, HUANG Y L, et al. Facile One-pot Synthesis of Low Cost MnO2 Nanosheet/Super P Li Composites with High Oxygen Reduction Reaction Activity for Zn-air Batteries[J]. Journal of Power Sources, 2020, 448: 227385.
[94] L ZARO M J, CALVILLO L, CELORRIO V, et al. Study and Application of Vulcan XC-72 in Low Temperature Fuel Cells[M]. 2011: 41-68.
[95] MOM R V, FALLING L J, KASIAN O, et al. Operando Structure–Activity–Stability Relationship of Iridium Oxides During the Oxygen Evolution Reaction[J]. ACS Catalysis, 2022, 12(9): 5174-5184.
[96] GEIGER S, KASIAN O, SHRESTHA B R, et al. Activity and Stability of Electrochemically and Thermally Treated Iridium for the Oxygen Evolution Reaction[J]. Journal of The Electrochemical Society, 2016, 163(11): F3132-F3138.
[97] TACHIKAWA T, BENIYA A, SHIGETOH K, et al. Relationship Between OER Activity and Annealing Temperature of Sputter-Deposited Flat IrO2 Thin Films[J]. Catalysis Letters, 2020, 150(7): 1976-1984.
[98] GEIGER S, KASIAN O, LEDENDECKER M, et al. The Stability Number as a Metric for Electrocatalyst Stability Benchmarking[J]. Nature Catalysis, 2018, 1(7): 508-515.
[99] RHEINL NDER P J, DURST J. Transformation of the OER-Active IrOx Species Under Transient Operation Conditions in PEM Water Electrolysis[J]. Journal of The Electrochemical Society, 2021, 168(2): 024511.
[100] WANG Y M, LIAO J H, LI Z, et al. Ir-Pt/C Composite with High Metal Loading as a High-performance Anti-reversal Anode Catalyst for Proton Exchange Membrane Fuel Cells[J]. International Journal of Hydrogen Energy, 2022, 47(26): 13101-13111.
[101] ZHAO Z, CASTANHEIRA L, DUBAU L, et al. Carbon Corrosion and Platinum Nanoparticles Ripening Under Open Circuit Potential Conditions[J]. Journal of Power Sources, 2013, 230: 236-243.
[102] DOGAN D C, CHO S, HWANG S M, et al. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27730-27739.
[103] KODAMA K, SHINOHARA A, HASEGAWA N, et al. Catalyst Poisoning Property of Sulfonimide Acid Ionomer on Pt (111) Surface[J]. Journal of The Electrochemical Society, 2014, 161(5): F649-F652.
[104] SHINOZAKI K, MORIMOTO Y, PIVOVAR B S, et al. Suppression of Oxygen Reduction Reaction Activity on Pt-based Electrocatalysts from Ionomer Incorporation[J]. Journal of Power Sources, 2016, 325: 745-751.
[105] MASUDA T, SONSUDIN F, SINGH P R, et al. Potential-Dependent Adsorption and Desorption of Perfluorosulfonated Ionomer on a Platinum Electrode Surface Probed by Electrochemical Quartz Crystal Microbalance and Atomic Force Microscopy[J]. The Journal of Physical Chemistry C, 2013, 117(30): 15704-15709.
[106] SUBBARAMAN R, STRMCNIK D, PAULIKAS A P, et al. Oxygen Reduction Reaction at Three-Phase Interfaces[J]. ChemPhysChem, 2010, 11(13): 2825-2833.
[107] YARLAGADDA V, CARPENTER M K, MOYLAN T E, et al. Boosting Fuel Cell Performance with Accessible Carbon Mesopores[J]. ACS Energy Letters, 2018, 3(3): 618-621.
[108] LIAO J H, ZAMAN S, WANG Y M, et al. Improved Reversal Tolerant Properties of IrOX as an Anode Electrocatalyst in Proton Exchange Membrane Fuel Cells[J]. ACS Applied Materials & Interfaces, 2023, 15(3): 4092-4100.

所在学位评定分委会
力学
国内图书分类号
O646.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544431
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
王亚蒙. 质子交换膜燃料电池衰减机制及抗反极膜电极研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930876-王亚蒙-机械与能源工程(12942KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王亚蒙]的文章
百度学术
百度学术中相似的文章
[王亚蒙]的文章
必应学术
必应学术中相似的文章
[王亚蒙]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。