[1] MASUD T, SOONG C, XU H, et al. Ubiquitin-mediated DNA damage response is synthetic lethal with G-quadruplex stabilizer CX-5461[J]. Scientific Reports, 2021, 11(1): 9812.
[2] BELAN O, SEBALD M, ADAMOWICZ M, et al. POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells[J]. Molecular Cell, 2022, 82(24): 4664-4680 e4669.
[3] PORUBSKY D, HOPS W, ASHRAF H, et al. Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders[J]. Cell, 2022, 185(11): 1986-2005 e1926.
[4] STILLMAN B. Reconsidering DNA Polymerases at the Replication Fork in Eukaryotes[J]. Molecular Cell, 2015, 59(2): 139-141.
[5] MUELLER S C, BACKES C, HAAS J, et al. Pathogenicity prediction of non-synonymous single nucleotide variants in dilated cardiomyopathy[J]. Briefings in Bioinformatics, 2015, 16(5): 769-779.
[6] KENIRY M A, et al. NMR solution structure of the theta subunit of DNA polymerase III from Escherichia coli[J]. Protein Science, 2000, 9(4): 721-733.
[7] JAIN R, AGGARWAL A K, RECHKOBLIT O. Eukaryotic DNA polymerases[J]. Current Opinion in Structural Biology, 2018, 53: 77-87.
[8] RAO X, XING B, WU Z, et al. Targeting polymerase theta impairs tumorigenesis and enhances radiosensitivity in lung adenocarcinoma[J]. Cancer Science, 2023, 1: 1-4.
[9] KENT T, CHANDRAMOULY G, MCDEVITT S M, et al. Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta[J]. Nature Structural & Molecular Biology, 2015, 22(3): 230-237.
[10] SFEIR A, SYMINGTON L S. Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway[J]. Trends in Biochemical Sciences, 2015, 40(11): 701-714.
[11] LEMEE F, BERGOGLIO V, et al. DNA polymerase theta up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(30): 13390-13395.
[12] MATEOS,et al. The helicase domain of Poltheta counteracts RPA to promote alt-NHEJ[J]. Nature Structural & Molecular Biology, 2017, 24(12): 1116-1123.
[13] FERNANDEZ-VIDAL A, et al. A role for DNA polymerase theta in the timing of DNA replication[J]. Nature Communication, 2014, 5: 4285.
[14] KOSICKI, et al. Cas9-induced large deletions and small indels are controlled in a convergent fashion[J]. Nature Communication, 2022, 13(1): 3422.
[15] CHEN X S, POMERANTZ R T. DNA Polymerase theta: A Cancer Drug Target with Reverse Transcriptase Activity[J]. Genes (Basel), 2021, 12(8).
[16] CHANDRAMOULY G, ZHAO J, MCDEVITT S, et al. Poltheta reverse transcribes RNA and promotes RNA-templated DNA repair[J]. Science Advance, 2021, 7(24): 2256.
[17] SEKI M, MARINI F, WOOD R D, et al. POLQ (Pol theta), a DNA polymerase and DNA-dependent ATPase in human cells[J]. Nucleic Acids Research, 2003, 31(21): 6117-6126.
[18] WOOD R D, DOUBLIE S. DNA polymerase theta (POLQ), double-strand break repair, and cancer[J]. DNA Repair, 2016, 44: 22-32.
[19] WANG Z, SONG Y, LI S, et al. DNA polymerase theta (POLQ) is important for repair of DNA double-strand breaks caused by fork collapse[J]. Journal of Biological Chemistry, 2019, 294(11): 3909-3919.
[20] YOUSEFZADEH M J, WOOD R D, et al. DNA polymerase POLQ and cellular defense against DNA damage[J]. DNA Repair, 2013, 12(1): 1-9.
[21] DENG L, WU R A, SONNEVILLE R, et al. Mitotic CDK Promotes Replisome Disassembly, Fork Breakage, and Complex DNA Rearrangements[J]. Molecular Cell, 2019, 73(5): 915-929 e916.
[22] YOON J H, et al. Error-Prone Replication through UV Lesions by DNA Polymerase theta Protects against Skin Cancers[J]. Cell, 2019, 176(6): 1295-1309 e1215.
[23] BEAGAN K, MCVEY M, et al. Linking DNA polymerase theta structure and function in health and disease[J]. Cellular and Molecular Life Sciences, 2016, 73(3): 603-615.
[24] SEKI M, WOOD R D, et al. DNA polymerase theta (POLQ) can extend from mismatches and from bases opposite a (6-4) photoproduct[J]. DNA Repair (Amst), 2008, 7(1): 119-127.
[25] ZHENG D Q, PETES T D, et al. Genome Instability Induced by Low Levels of Replicative DNA Polymerases in Yeast[J]. Genes (Basel), 2018, 9(11).
[26] KRAMARA J, OSIA B, MALKOVA A, et al. Break-Induced Replication: The Where, The Why, and The How[J]. Trends in Genetics, 2018, 34(7): 518-531.
[27] GROELLY F J, FAWKES M, DAGG R A, et al. Targeting DNA damage response pathways in cancer[J]. Nature Reviews: Cancer, 2022, 5: 120-123.
[28] BALDACCI G, et al. Impact of the DNA polymerase Theta on the DNA replication program[J]. Genome Data, 2015, 3: 90-93.
[29] ARNOULT N, et al. Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN[J]. Nature, 2017, 549(7673): 548-552.
[30] JACHIMOWICZ R D, GOERGENS J, REINHARDT H C, et al. DNA double-strand break repair pathway choice-from basic biology to clinical exploitation[J]. Cell Cycle, 2019, 18(13): 1423-1434.
[31] SONG B, et al. Analysis of NHEJ-Based DNA Repair after CRISPR-Mediated DNA Cleavage[J]. International Journal of Molecular Sciences, 2021, 22(12).
[32] CHANG H H Y, PANNUNZIO N R, ADACHI N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair[J]. Nature Reviews: Molecular Cell Biology, 2017, 18(8): 495-506.
[33] WYATT D W, FENG W, CONLIN M P, et al. Essential Roles for Polymerase theta-Mediated End Joining in the Repair of Chromosome Breaks[J]. Molecular Cell, 2016, 63(4): 662-673.
[34] ROSSI M J, DIDOMENICO S F, PATEL M, et al. RAD52: Paradigm of Synthetic Lethality and New Developments[J]. Front Genet, 2021, 12: 780293.
[35] SCULLY R, PANDAY A, ELANGO R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells[J]. Nature Reviews: Molecular Cell Biology, 2019, 20(11): 698-714.
[36] TRUONG L N, et al. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7720-7725.
[37] LLORENS-AGOST M, ENSMINGER M, LE H P, et al. POL theta-mediated end joining is restricted by RAD52 and BRCA2 until the onset of mitosis[J]. Nature Cell Biology, 2021, 23(10): 1095-1104.
[38] CHANDRAMOULY G, JAMSEN J, BORISONNIK N, et al. Pollambda promotes microhomology-mediated end-joining[J]. Nature Structural & Molecular Biology, 2023, 30(1): 107-114.
[39] LAVERTY D J, MORTIMER I P, GREENBERG M, et al. Mechanistic Insight through Irreversible Inhibition: DNA Polymerase theta Uses a Common Active Site for Polymerase and Lyase Activities[J]. Journal of the American Chemical Society, 2018, 140(29): 9034-9037.
[40] CARVAJAL-GARCIA J, CROWN K N, et al. DNA polymerase theta suppresses mitotic crossing over[J]. PLos Genetics, 2021, 17(3): e1009267.
[41] CAMPBELL J L, LI H, et al. Pol theta helicase: drive or reverse[J]. Nature Structural & Molecular Biology, 2017, 24(12): 1007-1008.
[42] BLACK S J, KASHKINA E, KENT T, et al. DNA Polymerase theta: A Unique Multifunctional End-Joining Machine[J]. Genes (Basel), 2016, 7(9): 2214.
[43] BRANDSMA I, et al. Pathway choice in DNA double strand break repair: observations of a balancing act[J]. Functional & Integrative Genomics, 2012, 3(1): 9.
[44] KENNEDY R D, D'ANDREA A D, et al. DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes[J]. Journal of Clinical Oncology, 2006, 24(23): 3799-3808.
[45] FARMER H, MCCABE N, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[J]. Nature, 2005, 434(7035): 917-921.
[46] ZHAO, N., SONG, Y., XIE, X., ZHU, Z, et al. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development[J]. Signal Transduct Target Therapy. 2023, 8, 112.
[47] YU, W, et al. The Development of Drug Delivery Systems for Efficient Intracranial Hemorrhage Therapy[J]. Advance Healthy Mater. 2023, 12: e2203141.
[48] MATEOS-GOMEZ P A, GONG F, NAIR N, et al. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination[J]. Nature, 2015, 518(7538): 254-257.
[49] GOULLET DE RUGY T, BASHKUROV M, DATTI A, et al. Excess Poltheta functions in response to replicative stress in homologous recombination-proficient cancer cells[J]. Biology Open, 2016, 5(10): 1485-1492.
[50] WARD, R.M, et al. Improving Drug Therapy for Pediatric Patients: Unfinished History of Pediatric Drug Development[J]. J Pediatr Pharmacol Ther. 2023, 28: 4-9.
[51] PUGH K W, ZHANG Z, et al. From Bacteria to Cancer: A Benzothiazole-Based DNA Gyrase B Inhibitor Redesigned for Hsp90 C-Terminal Inhibition[J]. ACS Medicinal Chemistry Letters, 2020, 11(8): 1535-1538.
[52] HYUN S Y, LE H T, NGUYEN C T, et al. Development of a novel Hsp90 inhibitor NCT-50 as a potential anticancer agent for the treatment of non-small cell lung cancer[J]. Scientific Reports, 2018, 8(1): 13924.
[53] ZHOU J, GELOT C, PANTELIDOU C, et al. A first-in-class Polymerase Theta Inhibitor selectively targets Homologous-Recombination-Deficient Tumors[J]. Nature Cancer, 2021, 2(6): 598-610.
[54] ZATREANU D, ROBINSON H M R, ALKHATIB O, et al. Poltheta inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance[J]. Nature Communication, 2021, 12(1): 3636.
[55] BUBENIK M, MADER P, MOCHIRIAN P, et al. Identification of RP-6685, an Orally Bioavailable Compound that Inhibits the DNA Polymerase Activity of Poltheta[J]. Journal of Medicinal Chemistry, 2022.
[56] SHINMURA K, KATO H, KAWANISHI Y, et al. POLQ Overexpression Is Associated with an Increased Somatic Mutation Load and PLK4 Overexpression in Lung Adenocarcinoma[J]. Cancers, 2019, 11(5).
[57] LI J, et al. Depletion of DNA Polymerase Theta Inhibits Tumor Growth and Promotes Genome Instability through the cGAS-STING-ISG Pathway in Esophageal Squamous Cell Carcinoma[J]. Cancers, 2021, 13(13):1256.
[58] CECCALDI R, LIU J C, AMUNUGAMA R, et al. Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair[J]. Nature, 2015, 518(7538): 258-262.
[59] SIMSEK D, JASIN M et al. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation[J]. Nature Structural & Molecular Biology, 2010, 17(4): 410-U443.
[60] MAH LJ, EL-OSTA A, KARAGIANNIS TC, et al. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia[J]. 2010 Apr;24(4):679-86.
[61] KUO LJ, YANG LX, et al. Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo[J]. 2008 May-Jun;22(3):305-9. PMID: 18610740.
[62] BYRNE BM, OAKLEY GG, et al. Replication protein A, the laxative that keeps DNA regular: The importance of RPA phosphorylation in maintaining genome stability[J]. Semin Cell Developmental Biology. 2019; 86:112-120.
[63] IFTODE C, DANIELY Y, et al. Replication protein A (RPA): the eukaryotic SSB. Crit Rev Biochemistry Molecular Biology[J]. 1999;34(3):141-80.
[64] SCHREMPF A, BERNARDO S, et al. POLθ processes ssDNA gaps and promotes replication fork progression in BRCA1-deficient cells[J]. Cell Report. 2022 Nov 29;41(9):111716.
[65] MOMOZAWA Y, SASAI R, USUI Y, et al. Expansion of Cancer Risk Profile for BRCA1 and BRCA2 Pathogenic Variants[J]. JAMA Oncology. 2022 Jun 1;8(6):871-878.
[66] MANN A, RAMIREZ-OTERO MA, DE ANTONI A, et al. POLθ prevents MRE11-NBS1-CtIP-dependent fork breakage in the absence of BRCA2/RAD51 by filling lagging-strand gaps[J]. Molecular Cell. 2022 Nov 17;82(22):4218-4231.e8.
[67] DAVIES H, GLODZIK D, MORGANELLA S, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures[J]. Nature Medicine. 2017 Apr;23(4):517-525.
修改评论