[1] GRAY H B. Powering the planet with solar fuel [J]. Nature Chemistry, 2009,1(1): 7.
[2] ZüTTEL A, REMHOF A, BORGSCHULTE A, et al. Hydrogen: the futureenergy carrier [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2010, 368(1923):3329-3342.
[3] BALZANI V, CREDI A, VENTURI M. Photochemical conversion of solarenergy [J]. ChemSusChem: Chemistry & Sustainability Energy & Materials,2008, 1(1-2): 26-58.
[4] CHEN X, SHEN S, GUO L, et al. Semiconductor-based photocatalytichydrogen generation [J]. Chemical Reviews, 2010, 110(11): 6503-6570.
[5] CHRISTOFORIDIS K C, FORNASIERO P. Photocatalytic hydrogenproduction: a rift into the future energy supply [J]. ChemCatChem, 2017, 9(9):1523-1544.
[6] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2photocatalysis: mechanisms and materials [J]. Chemical Reviews, 2014,114(19): 9919-9986.
[7] PINAUD B A, BENCK J D, SEITZ L C, et al. Technical and economicfeasibility of centralized facilities for solar hydrogen production viaphotocatalysis and photoelectrochemistry [J]. Energy & EnvironmentalScience, 2013, 6(7): 1983-2002.
[8] FABIAN D M, HU S, SINGH N, et al. Particle suspension reactors andmaterials for solar-driven water splitting [J]. Energy & EnvironmentalScience, 2015, 8(10): 2825-2850.
[9] KANG U, CHOI S K, HAM D J, et al. Photosynthesis of formate from CO2and water at 1% energy efficiency via copper iron oxide catalysis [J]. Energy& Environmental Science, 2015, 8(9): 2638-2643.
[10] CHEN S, TAKATA T, DOMEN K. Particulate photocatalysts for overall watersplitting [J]. Nature Reviews Materials, 2017, 2(10): 1-17.
[11] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at asemiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.
[12] WANG Q, HISATOMI T, JIA Q, et al. Scalable water splitting on particulatephotocatalyst sheets with a solar-to-hydrogen energy conversion efficiencyexceeding 1% [J]. Nature Materials, 2016, 15(6): 611-615.
[13] PAN C, TAKATA T, NAKABAYASHI M, et al. A complex perovskite-typeoxynitride: the first photocatalyst for water splitting operable at up to 600 nm[J]. Angewandte Chemie International Edition, 2015, 54(10): 2955-2959.
[14] MAEDA K, TAKATA T, HARA M, et al. GaN: ZnO solid solution as aphotocatalyst for visible-light-driven overall water splitting [J]. Journal of theAmerican Chemical Society, 2005, 127(23): 8286-8287.
[15] MARTIN D J, REARDON P J T, MONIZ S J, et al. Visible light-driven purewater splitting by a nature-inspired organic semiconductor-based system [J].Journal of the American Chemical Society, 2014, 136(36): 12568-12571.
[16] HE F, CHEN G, YU Y, et al. Facile approach to synthesize g-PAN/g-C3N4composites with enhanced photocatalytic H2 evolution activity [J]. ACSApplied Materials & Interfaces, 2014, 6(10): 7171-7179.
[17] SCHWINGHAMMER K, MESCH M B, DUPPEL V, et al. Crystalline carbonnitride nanosheets for improved visible-light hydrogen evolution [J]. Journalof the American Chemical Society, 2014, 136(5): 1730-7133.
[18] MARSCHALL R. Semiconductor composites: strategies for enhancing chargecarrier separation to improve photocatalytic activity [J]. Advanced FunctionalMaterials, 2014, 24(17): 2421-40.
[19] ZHANG X, YU L, ZHUANG C, et al. Highly asymmetric phthalocyanine as asensitizer of graphitic carbon nitride for extremely efficient photocatalytic H2production under near-infrared light [J]. ACS Catalysis, 2014, 4(1): 162-170.
[20] LIU J, LIU Y, LIU N, et al. Metal-free efficient photocatalyst for stablevisible water splitting via a two-electron pathway [J]. Science, 2015,347(6225): 970-974.
[21] FUJISHIMA A, ZHANG X, TRYK D A. TiO2 photocatalysis and relatedsurface phenomena [J]. Surface Science Reports, 2008, 63(12): 515-582.
[22] CHOI W, TERMIN A, HOFFMANN M R. The role of metal ion dopants inquantum-sized TiO2: correlation between photoreactivity and charge carrierrecombination dynamics [J]. The Journal of Physical Chemistry, 2002, 98(51):13669-13679.
[23] CHOI W, TERMIN A, HOFFMANN M R. Einfl ü sse vondotierungs-metall-ionen auf die photokatalytische reaktivität vonTiO2-Quantenteilchen [J]. Angewandte Chemie, 1994, 106(10): 1148-1149.
[24] MARTIN S T, MORRISON C L, HOFFMANN M R. Photochemicalmechanism of size-quantized vanadium-doped TiO2 particles [J]. The Journalof Physical Chemistry, 1994, 98(51): 13695-704.
[25] WANG Y, HAO Y, CHENG H, et al. The photoelectrochemistry of transitionmetal-ion-doped TiO2 nanocrystalline electrodes and higher solar cellconversion efficiency based on Zn2+-doped TiO2 electrode [J]. Journal ofMaterials Science, 1999, 34(12): 2773-2779.
[26] WANG J, TAFEN D N, LEWIS J P, et al. Origin of photocatalytic activity ofnitrogen-doped TiO2 nanobelts [J]. Journal of the American Chemical Society,2009, 131(34): 12290-12297.
[27] WANG C-Y, BAHNEMANN D W, DOHRMANN J K. A novel preparation ofiron-doped TiO2 nanoparticles with enhanced photocatalytic activity [J].Chemical Communications, 2000, (16): 1539-1540.
[28] HAMEDANI H A, ALLAM N K, GARMESTANI H, et al. Electrochemicalfabrication of strontium-doped TiO2 nanotube array electrodes andinvestigation of their photoelectrochemical properties [J]. The Journal ofPhysical Chemistry C, 2011, 115(27): 13480-13486.
[29] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis innitrogen-doped titanium oxides [J]. Science, 2001, 293(5528): 269-271.
[30] BURDA C, LOU Y, CHEN X, et al. Enhanced nitrogen doping in TiO2nanoparticles [J]. Nano Letters, 2003, 3(8): 1049-1051.
[31] UMEBAYASHI T, YAMAKI T, YAMAMOTO S, et al. Sulfur-doping ofrutile-titanium dioxide by ion implantation: photocurrent spectroscopy andfirst-principles band calculation studies [J]. Journal of Applied Physics, 2003,93(9): 5156-5160.
[32] UMEBAYASHI T, YAMAKI T, ITOH H, et al. Band gap narrowing oftitanium dioxide by sulfur doping [J]. Applied physics letters, 2002, 81(3):454-456.
[33] IRIE H, WATANABE Y, HASHIMOTO K. Nitrogen-concentrationdependence on photocatalytic activity of TiO2-xNx powders [J]. The Journal ofPhysical Chemistry B, 2003, 107(23): 5483-5486.
[34] LI D, HANEDA H, LABHSETWAR N K, et al. Visible-light-drivenphotocatalysis on fluorine-doped TiO2 powders by the creation of surfaceoxygen vacancies [J]. Chemical Physics Letters, 2005, 401(4-6): 579-584.
[35] HAMILTON J W, BYRNE J A, DUNLOP P S, et al. Evaluating themechanism of visible light activity for N, F-TiO2 using photoelectrochemistry[J]. The Journal of Physical Chemistry C, 2014, 118(23): 12206-12215.
[36] LUO H, TAKATA T, LEE Y, et al. Photocatalytic activity enhancing fortitanium dioxide by co-doping with bromine and chlorine [J]. Chemistry ofMaterials, 2004, 16(5): 846-849.
[37] ZHANG Q, GAO T, ANDINO J M, et al. Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor[J]. Applied Catalysis B: Environmental, 2012, 123: 257-264.
[38] ZHANG J, XI J, JI Z. Mo+N codoped TiO2 sheets with dominant {001} facetsfor enhancing visible-light photocatalytic activity [J]. Journal of MaterialsChemistry, 2012, 22(34): 17700-17708.
[39] DONG B-B, ZHANG B-B, WU H-Y, et al. Synthesis, characterization andcatalytic evaluation of SBA-15 supported 12-tungstophosphoric acidmesoporous materials in the oxidation of benzaldehyde to benzoic acid [J].Materials Research Bulletin, 2013, 48(7): 2491-2496.
[40] WU X, YIN S, DONG Q, et al. Photocatalytic properties of Nd and Ccodoped TiO2 with the whole range of visible light absorption [J]. The Journalof Physical Chemistry C, 2013, 117(16): 8345-8352.
[41] YAN C, YI W, YUAN H, et al. A highly photoactive S, Cu-codopednano-TiO2 photocatalyst: Synthesis and characterization for enhancedphotocatalytic degradation of neutral red [J]. Environmental Progress &Sustainable Energy, 2014, 33(2): 419-429.
[42] ZHANG M, WU J, HOU J, et al. Molybdenum and nitrogen co-dopedtitanium dioxide nanotube arrays with enhanced visible light photocatalyticactivity [J]. Science of Advanced Materials, 2013, 5(6): 535-541.
[43] CHEN X, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysiswith black hydrogenated titanium dioxide nanocrystals [J]. Science, 2011,331(6018): 746-750.
[44] LIU M, CHEN Y, SU J, et al. Photocatalytic hydrogen production usingtwinned nanocrystals and an unanchored NiSx co-catalyst [J]. Nature Energy,2016, 1(11): 1-8.
[45] RAN J, ZHANG J, YU J, et al. Earth-abundant cocatalysts forsemiconductor-based photocatalytic water splitting [J]. Chemical SocietyReviews, 2014, 43(22): 7787-7812.
[46] ZHANG J, XU Q, FENG Z, et al. Importance of the relationship betweensurface phases and photocatalytic activity of TiO2 [J]. Angewandte ChemieInternational Edition, 2008, 120(9): 1790-1793.
[47] WANG X, XU Q, LI M, et al. Photocatalytic overall water splitting promotedby an α-β phase junction on Ga2O3 [J]. Angewandte Chemie InternationalEdition, 2012, 124(52): 13266-13269.
[48] MONIZ S J, SHEVLIN S A, MARTIN D J, et al. Visible-light drivenheterojunction photocatalysts for water splitting–a critical review [J]. Energy& Environmental Science, 2015, 8(3): 731-759.
[49] WANG H, ZHANG L, CHEN Z, et al. Semiconductor heterojunctionphotocatalysts: design, construction, and photocatalytic performances [J].Chemical Society Reviews, 2014, 43(15): 5234-5244.
[50] LI R, ZHANG F, WANG D, et al. Spatial separation of photogeneratedelectrons and holes among {010} and {110} crystal facets of BiVO4 [J].Nature Communications, 2013, 4(1): 1-7.
[51] LIU G, YANG H G, PAN J, et al. Titanium dioxide crystals with tailoredfacets [J]. Chemical Reviews, 2014, 114(19): 9559-9612.
[52] YANG Y, GU J, YOUNG J L, et al. Semiconductor interfacial carrierdynamics via photoinduced electric fields [J]. Science, 2015, 350(6264):1061-1065.
[53] ABDI F F, HAN L, SMETS A H, et al. Efficient solar water splitting byenhanced charge separation in a bismuth vanadate-silicon tandemphotoelectrode [J]. Nature Communications, 2013, 4(1): 1-7.
[54] CHEN R, PANG S, AN H, et al. Charge separation via asymmetricillumination in photocatalytic Cu2O particles [J]. Nature Energy, 2018, 3(8):655-663.
[55] NAKAMURA R, NAKATO Y. Primary intermediates of oxygenphotoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIRabsorption and photoluminescence measurements [J]. Journal of the AmericanChemical Society, 2004, 126(4): 1290-1298.
[56] NAKAMURA R, OKAMURA T, OHASHI N, et al. Molecular mechanisms ofphotoinduced oxygen evolution, PL emission, and surface roughening atatomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidicsolutions [J]. Journal of the American Chemical Society, 2005, 127(37):12975-12983.
[57] IMANISHI A, OKAMURA T, OHASHI N, et al. Mechanism of waterphotooxidation reaction at atomically flat TiO2 (rutile) (110) and (100)surfaces: dependence on solution pH [J]. Journal of the American ChemicalSociety, 2007, 129(37): 11569-11578.
[58] VALDES A, QU Z-W, KROES G-J, et al. Oxidation and photo-oxidation ofwater on TiO2 surface [J]. The Journal of Physical Chemistry C, 2008,112(26): 9872-9879.
[59] TANG J, DURRANT J R, KLUG D R. Mechanism of photocatalytic watersplitting in TiO2. Reaction of water with photoholes, importance of chargecarrier dynamics, and evidence for four-hole chemistry [J]. Journal of theAmerican Chemical Society, 2008, 130(42): 13885-13891.
[60] TAN S, FENG H, JI Y, et al. Observation of photocatalytic dissociation ofwater on terminal Ti sites of TiO2(110)-1×1 surface [J]. Journal of theAmerican Chemical Society, 2012, 134(24): 9978-9985.
[61] LEE J, SORESCU D C, DENG X, et al. Water chain formation on TiO2(110)[J]. The Journal of Physical Chemistry Letters, 2012, 4(1): 53-57.
[62] YANG W, WEI D, JIN X, et al. Effect of the hydrogen bond in photoinducedwater dissociation: A double-edged sword [J]. The Journal of PhysicalChemistry Letters, 2016, 7(4): 603-608.
[63] LI Y-F, SELLONI A. Pathway of photocatalytic oxygen evolution on aqueousTiO2 anatase and insights into the different activities of anatase and rutile [J].ACS Catalysis, 2016, 6(7): 4769-4774.
[64] CHEN J, LI Y-F, SIT P, et al. Chemical dynamics of the first proton-coupledelectron transfer of water oxidation on TiO2 anatase [J]. Journal of theAmerican Chemical Society, 2013, 135(50): 18774-18777.
[65] WANG D, SHENG T, CHEN J, et al. Identifying the key obstacle inphotocatalytic oxygen evolution on rutile TiO2 [J]. Nature Catalysis, 2018,1(4): 291-299.
[66] LI Z, TIAN B, ZHEN W, et al. Inhibition of hydrogen and oxygenrecombination using oxygen transfer reagent hemin chloride in Pt/TiO2dispersion for photocatalytic hydrogen generation [J]. Applied Catalysis B:Environmental, 2017, 203: 408-15.
[67] MONTOYA J, BAHNEMANN D, SALVADOR P, et al. Catalytic role ofbridging oxygens in TiO2 liquid phase photocatalytic reactions: analysis ofH216O photooxidation on labeled Ti18O2 [J]. Catalysis Science & Technology,2017, 7(4): 902-910.
[68] ZHANG H, BANFIELD J F. Understanding polymorphic phasetransformation behavior during growth of nanocrystalline aggregates: insightsfrom TiO2 [J]. The Journal of Physical Chemistry B, 2000, 104(15):3481-3487.
[69] RANADE M, NAVROTSKY A, ZHANG H, et al. Energetics ofnanocrystalline TiO2 [J]. Proceedings of the National Academy of Sciences,2002, 99(suppl 2): 6476-6481.
[70] SHKLOVER V, NAZEERUDDIN M K, SAKEERUDDIN S, et al. Structureof nanocrystalline TiO2 powders and precursor to their highly efficientphotosensitizer [J]. Chemistry of Materials, 1997, 9(2): 430-439.
[71] BURNSIDE S, SHKLOVER V, BARBE C, et al. Self-organization of TiO2nanoparticles in thin films [J]. Chemistry of Materials, 1998, 10(9): 2419-2425.
[72] WILSON R. Observation and analysis of surface states on TiO2 electrodes inaqueous electrolytes [J]. Journal of The Electrochemical Society, 1980,127(1): 228-34.
[73] SALVADOR P, GUTIERREZ C. The nature of surface states involved in thephoto- and electroluminescence spectra of n-titanium dioxide electrodes [J].The Journal of Physical Chemistry, 1984, 88(16): 3696-3698.
[74] CHANG X, WANG T, GONG J. CO2 photo-reduction: insights into CO2activation and reaction on surfaces of photocatalysts [J]. Energy &Environmental Science, 2016, 9(7): 2177-2196.
[75] JANG J W, CHO S, MAGESH G, et al. Aqueous-solution route to zinctelluride films for application to CO2 reduction [J]. Angewandte ChemieInternational Edition, 2014, 53(23): 5852-5857.
[76] JANG Y J, JANG J-W, LEE J, et al. Selective CO production by Au coupledZnTe/ZnO in the photoelectrochemical CO2 reduction system [J]. Energy &Environmental Science, 2015, 8(12): 3597-3604.
[77] LIN J, PAN Z, WANG X. Photochemical reduction of CO2 by graphiticcarbon nitride polymers [J]. ACS Sustainable Chemistry & Engineering, 2014,2(3): 353-358.
[78] YU J, WANG K, XIAO W, et al. Photocatalytic reduction of CO2 intohydrocarbon solar fuels over gC3N4-Pt nanocomposite photocatalysts [J].Physical Chemistry Chemical Physics, 2014, 16(23): 11492-11501.
[79] XIE S, ZHANG Q, LIU G, et al. Photocatalytic and photoelectrocatalyticreduction of CO2 using heterogeneous catalysts with controllednanostructures [J]. Chemical Communications, 2016, 52(1): 35-59.
[80] KUMAR B, LLORENTE M, FROEHLICH J, et al. Photochemical andphotoelectrochemical reduction of CO2 [J]. Annual Review of PhysicalChemistry, 2012, 63(1): 541-569.
[81] HONG J, ZHANG W, REN J, et al. Photocatalytic reduction of CO2: a briefreview on product analysis and systematic methods [J]. Analytical Methods,2013, 5(5): 1086-1097.
[82] LI X, WEN J, LOW J, et al. Design and fabrication of semiconductorphotocatalyst for photocatalytic reduction of CO2 to solar fuel [J]. ScienceChina Materials, 2014, 57(1): 70-100.
[83] TU W, ZHOU Y, ZOU Z. Photocatalytic conversion of CO2 into renewablehydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects[J]. Advanced Materials, 2014, 26(27): 4607-4626.
[84] NGUYEN T-V, WU J C, CHIOU C-H. Photoreduction of CO2 overRuthenium dye-sensitized TiO2-based catalysts under concentrated naturalsunlight [J]. Catalysis Communications, 2008, 9(10): 2073-2076.
[85] WANG C, THOMPSON R L, BALTRUS J, et al. Visible light photoreductionof CO2 using CdSe/Pt/TiO2 heterostructured catalysts [J]. The Journal ofPhysical Chemistry Letters, 2010, 1(1): 48-53.
[86] CAO L, SAHU S, ANILKUMAR P, et al. Carbon nanoparticles asvisible-light photocatalysts for efficient CO2 conversion and beyond [J].Journal of the American Chemical Society, 2011, 133(13): 4754-4757.
[87] WANG C, THOMPSON R L, OHODNICKI P, et al. Size-dependentphotocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2heterostructured photocatalysts [J]. Journal of Materials Chemistry, 2011,21(35): 13452-13457.
[88] TSAI C-W, CHEN H M, LIU R-S, et al. Ni@NiO core-shellstructure-modified nitrogen-doped InTaO4 for solar-driven highly efficientCO2 reduction to methanol [J]. The Journal of Physical Chemistry C, 2011,115(20): 10180-10186.
[89] ZHANG Q, LI Y, ACKERMAN E A, et al. Visible light responsiveiodine-doped TiO2 for photocatalytic reduction of CO2 to fuels [J]. AppliedCatalysis A: General, 2011, 400(1-2): 195-202.
[90] RICHARDSON P, PERDIGOTO M L, WANG W, et al. RETRACTED:manganese-and copper-doped titania nanocomposites for the photocatalyticreduction of carbon dioxide into methanol [Z]. Elsevier. 2012
[91] HOU W, HUNG W, PAVASKAR P, et al. Photocatalytic conversion of CO2 tohydrocarbon fuels via plasmon-enhanced absorption and metallic interbandtransitions. ACS Catalysis, 2011, 1(8): 929-936.
[92] TU W, ZHOU Y, LI H, et al. Au@TiO2 yolk–shell hollow spheres forplasmon-induced photocatalytic reduction of CO2 to solar fuel via a localelectromagnetic field [J]. Nanoscale, 2015, 7(34): 14232-14236.
[93] ZHANG Z, WANG Z, CAO S-W, et al. Au/Pt nanoparticle-decorated TiO2nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuelconversion [J]. The Journal of Physical Chemistry C, 2013, 117(49):25939-25947.
[94] LIU Y, HUANG B, DAI Y, et al. Selective ethanol formation fromphotocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst[J]. Catalysis Communications, 2009, 11(3): 210-213.
[95] MAO J, PENG T, ZHANG X, et al. Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation [J].Catalysis Communications, 2012, 28: 38-41.
[96] BA X, YAN L-L, HUANG S, et al. New way for CO2 reduction under visiblelight by a combination of a Cu electrode and semiconductor thin film: Cu2Oconduction type and morphology effect [J]. The Journal of PhysicalChemistry C, 2014, 118(42): 24467-24478.
[97] SCHREIER M, GAO P, MAYER M T, et al. Efficient and selective carbondioxide reduction on low cost protected Cu2O photocathodes using amolecular catalyst [J]. Energy & Environmental Science, 2015, 8(3):855-861.
[98] PAN P-W, CHEN Y-W. Photocatalytic reduction of carbon dioxide onNiO/InTaO4 under visible light irradiation [J]. Catalysis Communications,2007, 8(10): 1546-1549.
[99] GU J, WUTTIG A, KRIZAN J W, et al. Mg-doped CuFeO2 photocathodes forphotoelectrochemical reduction of carbon dioxide [J]. The Journal of PhysicalChemistry C, 2013, 117(24): 12415-12422.
[100] YU J, LOW J, XIAO W, et al. Enhanced photocatalytic CO2-reductionactivity of anatase TiO2 by coexposed {001} and {101} facets [J]. Journal ofthe American Chemical Society, 2014, 136(25): 8839-8842.
[101] LI P, ZHOU Y, ZHAO Z, et al. Hexahedron prism-anchored octahedronalCeO2: crystal facet-based homojunction promoting efficient solar fuelsynthesis [J]. Journal of the American Chemical Society, 2015, 137(30):9547-9550.
[102] LI G, CISTON S, SAPONJIC Z V, et al. Synthesizing mixed-phase TiO2nanocomposites using a hydrothermal method for photo-oxidation andphotoreduction applications [J]. Journal of Catalysis, 2008, 253(1): 105-110.
[103] LI P, XU H, LIU L, et al. Constructing cubic-orthorhombic surface-phasejunctions of NaNbO3 towards significant enhancement of CO2 photoreduction[J]. Journal of Materials Chemistry A, 2014, 2(16): 5606-5609.
[104] TU W, ZHOU Y, LIU Q, et al. Robust hollow spheres consisting of alternatingtitania nanosheets and graphene nanosheets with high photocatalytic activityfor CO2 conversion into renewable fuels [J]. Advanced Functional Materials,2012, 22(6): 1215-1221.
[105] SHI H, CHEN G, ZHANG C, et al. Polymeric g-C3N4 coupled with NaNbO3nanowires toward enhanced photocatalytic reduction of CO2 into renewablefuel [J]. ACS Catalysis, 2014, 4(10): 3637-3643.
[106] CAO S-W, LIU X-F, YUAN Y-P, et al. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts [J]. Applied Catalysis B: Environmental,2014, 147: 940-946.
[107] AN X, LI K, TANG J. Cu2O/reduced graphene oxide composites for thephotocatalytic conversion of CO2 [J]. ChemSusChem, 2014, 7(4): 1086-1093.
[108] KOČí K, OBALOVá L, MATĚJOVá L, et al. Effect of TiO2 particle size onthe photocatalytic reduction of CO2 [J]. Applied Catalysis B: Environmental,2009, 89(3-4): 494-502.
[109] LIU Q, ZHOU Y, KOU J, et al. High-yield synthesis of ultralong and ultrathinZn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 intorenewable hydrocarbon fuel [J]. Journal of the American Chemical Society,2010, 132(41): 14385-14387.
[110] ZHANG X, HAN F, SHI B, et al. Photocatalytic conversion of diluted CO2into light hydrocarbons using periodically modulated multiwalled nanotubearrays [J]. Angewandte Chemie International Edition, 2012, 51(51):12732-12735.
[111] YAN S, WANG J, GAO H, et al. An Ion-Exchange Phase Transformation toZnGa2O4 Nanocube Towards Efficient Solar Fuel Synthesis [J]. AdvancedFunctional Materials, 2013, 23(6): 758-763.
[112] HABISREUTINGER S N, SCHMIDT‐MENDE L, STOLARCZYK J K.Photocatalytic reduction of CO2 on TiO2 and other semiconductors [J].Angewandte Chemie International Edition, 2013, 52(29): 7372-7408.
[113] FREUND H-J, ROBERTS M W. Surface chemistry of carbon dioxide [J].Surface Science Reports, 1996, 25(8): 225-273.
[114] SONG C. Global challenges and strategies for control, conversion andutilization of CO2 for sustainable development involving energy, catalysis,adsorption and chemical processing [J]. Catalysis Today, 2006, 115(1-4):2-32.
[115] SURDHAR P S, MEZYK S P, ARMSTRONG D A. Reduction potential of thecarboxyl radical anion in aqueous solutions [J]. The Journal of PhysicalChemistry, 1989, 93(8): 3360-3363.
[116] ROSEN B A, SALEHI-KHOJIN A, THORSON M R, et al. Ionicliquid-mediated selective conversion of CO2 to CO at low overpotentials [J].Science, 2011, 334(6056): 643-644.
[117] SCHWARZ H, DODSON R. Reduction potentials of CO2- and the alcoholradicals [J]. The Journal of Physical Chemistry, 1989, 93(1): 409-414.
[118] BENSON E E, KUBIAK C P, SATHRUM A J, et al. Electrocatalytic andhomogeneous approaches to conversion of CO2 to liquid fuels [J]. Chemical Society Reviews, 2009, 38(1): 89-99.
[119] LI W. Electrocatalytic reduction of CO2 to small organic molecule fuels onmetal catalysts [M]. Advances in CO2 conversion and utilization. ACSPublications. 2010: 55-76.
[120] INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reductionof carbon dioxide in aqueous suspensions of semiconductor powders [J].Nature, 1979, 277(5698): 637-638.
[121] HUYNH M H V, MEYER T J. Proton-coupled electron transfer [J]. ChemicalReviews, 2007, 107(11): 5004-5064.
[122] COSTENTIN C, ROBERT M, SAVéANT J-M. Catalysis of theelectrochemical reduction of carbon dioxide [J]. Chemical Society Reviews,2013, 42(6): 2423-2436.
[123] WHITE J L, BARUCH M F, PANDER III J E, et al. Light-drivenheterogeneous reduction of carbon dioxide: photocatalysts andphotoelectrodes [J]. Chemical Reviews, 2015, 115(23): 12888-12935.
[124] HARA K, KUDO A, SAKATA T, et al. High efficiency electrochemicalreduction of carbon dioxide under high pressure on a gas diffusion electrodecontaining Pt catalysts [J]. Journal of the Electrochemical Society, 1995,142(4): L57-L59.
[125] YIN W-J, WEN B, BANDARU S, et al. The effect of excess electron and holeon CO2 adsorption and activation on rutile (110) surface [J]. ScientificReports, 2016, 6(1): 1-9.
[126] JI Y, LUO Y. Theoretical Study on the Mechanism of Photoreduction of CO2to CH4 on the Anatase TiO2 (101) Surface [J]. ACS Catalysis, 2016, 6(3):2018-2025.
[127] JI Y, LUO Y. New mechanism for photocatalytic reduction of CO2 on theanatase TiO2(101) surface: the essential role of oxygen vacancy [J]. Journal ofthe American Chemical Society, 2016, 138(49): 15896-15902.
[128] WU X, LANG J, SUN Z, et al. Photocatalytic conversion of carbon monoxide:from pollutant removal to fuel production [J]. Applied Catalysis B:Environmental, 2021, 295: 120312.
[129] CHEN B-H, CLOSE J, WHITE J. The role of ultraviolet radiation inpromoting the palladium-catalyzed oxidation of carbon monoxide [J]. Journalof Catalysis, 1977, 46(3): 253-258.
[130] TRIPA C E, ARUMANINAYAGAM C R, YATES JR J T. Kineticsmeasurements of CO photo-oxidation on Pt(111) [J]. The Journal of ChemicalPhysics, 1996, 105(4): 1691-1696.
[131] KAO F-J, BUSCH D, DA COSTA D G, et al. Femtosecond versusnanosecond surface photochemistry: O2+CO on Pt(111) at 80 K [J]. PhysicalReview Letters, 1993, 70(26): 4098.
[132] MIEHER W, HO W. Bimolecular surface photochemistry: mechanisms of COoxidation on Pt(111) at 85 k [J]. The Journal of Chemical Physics, 1993,99(11): 9279-9295.
[133] SASTRE F, OTERI M, CORMA A, et al. Photocatalytic water gas shift usingvisible or simulated solar light for the efficient, room-temperature hydrogengeneration [J]. Energy & Environmental Science, 2013, 6(7): 2211-2215.
[134] WU X, LANG J, JIANG Y, et al. Thermo-photo catalysis for methanolsynthesis from syngas [J]. ACS Sustainable Chemistry & Engineering, 2019,7(23): 19277-19285.
[135] WANG Y, XIA Q. Fischer-Tropsch synthesis steps into the solar era: lowerolefins from syngas [J]. Chem, 2018, 4(12): 2741-2743.
[136] SASTRE F, CORMA A, GARC í A H. Visible-Light PhotocatalyticConversion of Carbon Monoxide to Methane by Nickel (II) Oxide [J].Angewandte Chemie International Edition, 2013, 125(49): 13221-13225.
[137] DOHNáLEK Z, KIM J, BONDARCHUK O, et al. Physisorption of N2, O2,and CO on fully oxidized TiO2(110) [J]. The Journal of Physical Chemistry B,2006, 110(12): 6229-6235.
[138] ZHANG Z, JR J T Y. Electron-mediated CO oxidation on the TiO2(110)surface during electronic excitation [J]. Journal of the American ChemicalSociety, 2010, 132(37): 12804-12807.
[139] PETRIK N G, KIMMEL G A. Off-Normal CO2 Desorption from thePhotooxidation of CO on Reduced TiO2(110) [J]. Journal of PhysicalChemistry Letters, 2010, 1(17): 2508-2513.
[140] PETRIK N G, KIMMEL G A. Multiple Nonthermal Reaction Steps for thePhotooxidation of CO to CO2 on Reduced TiO2(110) [J]. Journal of PhysicalChemistry Letters, 2013, 4(3): 344-349.
[141] YONGFEI, JI, BING, et al. First Principles Study of O2 Adsorption onReduced Rutile TiO2-(110) Surface Under UV Illumination and Its Role onCO Oxidation [J]. The Journal of Physical Chemistry C, 2013, 117(2): 956–961.
[142] KWEON K E, MANOGARAN D, HWANG G S. Synergetic Role ofPhotogenerated Electrons and Holes in the Oxidation of CO to CO2 onReduced TiO2(110): A First-Principles Study [J]. ACS Catalysis, 2014, 4(11):4051-4056.
[143] PILLAY D, HWANG G S. O2-coverage-dependent CO oxidation on reducedTiO2(110): A first principles study [J]. Journal of Chemical Physics, 2006,125(14): 9438.
[144] LINSEBIGLER A, LU G, YATES J T. CO Photooxidation on TiO2(110) [J].The Journal of Physical Chemistry, 1996, 100(16): 6631-6636.
[145] THEVENET A, JUILLET F, TEICHNER S J. Photointeraction on the Surfaceof Titanium Dioxide between Oxygen and Carbon Monoxide [J]. JapaneseJournal of Applied Physics, 1974, 13(S2): 529.
[146] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for watersplitting [J]. Chemical Society Reviews, 2009, 38(1): 253-278.
[147] WALTER M G, WARREN E L, MCKONE J R, et al. Solar water splittingcells [J]. Chemical Reviews, 2010, 110(11): 6446-6473.
[148] WANG Z, LI C, DOMEN K. Recent developments in heterogeneousphotocatalysts for solar-driven overall water splitting [J]. Chemical SocietyReviews, 2019, 48(7): 2109-2125.
[149] YE S, DING C, LIU M, et al. Water Oxidation Catalysts for ArtificialPhotosynthesis [J]. Adv Mater, 2019, 31(50): 1902069.
[150] TAKATA T, JIANG J, SAKATA Y, et al. Photocatalytic water splitting with aquantum efficiency of almost unity [J]. Nature, 2020, 581(7809): 411-414.
[151] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J].Physical Review B, 1993, 47(1): 558.
[152] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of theliquid-metal–amorphous-semiconductor transition in germanium [J]. PhysicalReview B, 1994, 49(20): 14251.
[153] KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energycalculations for metals and semiconductors using a plane-wave basis set [J].Computational Materials Science, 1996, 6(1): 15-50.
[154] KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al. Influence of theexchange screening parameter on the performance of screened hybridfunctionals [J]. The Journal of Chemical Physics, 2006, 125(22): 224106.
[155] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on ascreened Coulomb potential [J]. The Journal of Chemical Physics, 2003,118(18): 8207-8215.
[156] LANY S, ZUNGER A. Polaronic hole localization and multiple hole bindingof acceptors in oxide wide-gap semiconductors [J]. Physical Review B, 2009,80(8): 085202.
[157] LæGSGAARD J, STOKBRO K. Hole trapping at Al impurities in silica: A challenge for density functional theories [J]. Physical Review Letters, 2001,86(13): 2834.
[158] D’AVEZAC M, CALANDRA M, MAURI F. Density functional theorydescription of hole-trapping in SiO2: A self-interaction-corrected approach [J].Physical Review B, 2005, 71(20): 205210.
[159] DROGHETTI A, PEMMARAJU C, SANVITO S. Predicting d0 magnetism:Self-interaction correction scheme [J]. Physical Review B, 2008, 78(14):140404.
[160] HENKELMAN G, UBERUAGA B P, JóNSSON H. A climbing image nudgedelastic band method for finding saddle points and minimum energy paths [J].The Journal of Chemical Physics, 2000, 113(22): 9901-9904.
[161] HENRICH V E, DRESSELHAUS G, ZEIGER H. Observation ofTwo-Dimensional Phases Associated with Defect States on the Surface ofTiO2 [J]. Physical Review Letters, 1976, 36(22): 1335.
[162] GANDUGLIA-PIROVANO M V, HOFMANN A, SAUER J. Oxygenvacancies in transition metal and rare earth oxides: Current state ofunderstanding and remaining challenges [J]. Surface Science Reports, 2007,62(6): 219-270.
[163] DIEBOLD U. The surface science of titanium dioxide [J]. Surface ScienceReports, 2003, 48(5-8): 53-229.
[164] TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysisalgorithm without lattice bias [J]. Journal of Physics: Condensed Matter, 2009,21(8): 084204.
[165] ZHAO W-N, LIU Z-P. Mechanism and active site of photocatalytic watersplitting on titania in aqueous surroundings [J]. Chemical Science, 2014, 5(6):2256-2264.
[166] WENDT S, MATTHIESEN J, SCHAUB R, et al. Formation and splitting ofpaired hydroxyl groups on reduced TiO2(110) [J]. Physical Review Letters,2006, 96(6): 066107.
[167] DU Y, DESKINS N A, ZHANG Z, et al. Two pathways for water interactionwith oxygen adatoms on TiO2(110) [J]. Physical Review Letters, 2009, 102(9):096102.
[168] WANG Z-T, WANG Y-G, MU R, et al. Probing equilibrium of molecular anddeprotonated water on TiO2(110) [J]. Proceedings of the National Academy ofSciences, 2017, 114(8): 1801-1805.
[169] INDRAKANTI V P, KUBICKI J D, SCHOBERT H H. Photoinducedactivation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook [J]. Energy & EnvironmentalScience, 2009, 2(7): 745-758.
[170] KOVACIC Z, LIKOZAR B, HUS M. Photocatalytic CO2 reduction: A reviewof ab initio mechanism, kinetics, and multiscale modeling simulations [J].ACS Catalysis, 2020, 10(24): 14984-15007.
[171] JIANG Z, XU X, MA Y, et al. Filling metal-organic framework mesoporeswith TiO2 for CO2 photoreduction [J]. Nature, 2020, 586(7830): 549-554.
[172] COMPTON R, REINHARDT P, COOPER C. Collisional ionization of Na, K,and Cs by CO2, COS, and CS2: Molecular electron affinities [J]. The Journalof Chemical Physics, 1975, 63(9): 3821-3827.
[173] NOZIK A J, MEMMING R. Physical chemistry of semiconductor-liquidinterfaces [J]. The Journal of Physical Chemistry, 1996, 100(31):13061-13078.
[174] SORESCU D C, LEE J, AL-SAIDI W A, et al. CO2 adsorption on TiO2(110)rutile: Insight from dispersion-corrected density functional theorycalculations and scanning tunneling microscopy experiments [J]. The Journalof Chemical Physics, 2011, 134(10): 104707.
[175] TAMAKI Y, FURUBE A, MURAI M, et al. Dynamics of efficientelectron-hole separation in TiO2 nanoparticles revealed by femtosecondtransient absorption spectroscopy under the weak-excitation condition [J].Physical Chemistry Chemical Physics, 2007, 9(12): 1453-1460.
[176] RETICCIOLI M, SOKOLOVIĆ I, SCHMID M, et al. Interplay betweenadsorbates and polarons: CO on rutile TiO2(110) [J]. Physical Review Letters,2019, 122(1): 016805.
[177] MORGAN B J, WATSON G W. A DFT+ U description of oxygen vacancies atthe TiO2 rutile (110) surface [J]. Surface Science, 2007, 601(21): 5034-5041.
[178] MORGAN B J, WATSON G W. A density functional theory+U study ofoxygen vacancy formation at the (110),(100),(101), and (001) surfaces ofrutile TiO2 [J]. The Journal of Physical Chemistry C, 2009, 113(17):7322-7328.
[179] MAZHEIKA A, WANG Y-G, VALERO R, et al. Artificial-intelligence-drivendiscovery of catalyst genes with application to CO2 activation onsemiconductor oxides [J]. Nature Communications, 2022, 13(1): 1-13.
[180] HE H, ZAPOL P, CURTISS L A. Computational screening of dopants forphotocatalytic two-electron reduction of CO2 on anatase (101) surfaces [J].Energy & Environmental Science, 2012, 5(3): 6196-6205.
[181] MATHEW K, KOLLURU V C, MULA S, et al. Implicit self-consistent electrolyte model in plane-wave density-functional theory [J]. The Journal ofChemical Physics, 2019, 151(23): 234101.
[182] MATHEW K, SUNDARARAMAN R, LETCHWORTH-WEAVER K, et al.Implicit solvation model for density-functional study of nanocrystal surfacesand reaction pathways [J]. The Journal of Chemical Physics, 2014, 140(8):084106.
[183] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate abinitio parametrization of density functional dispersion correction (DFT-D) forthe 94 elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15):154104.
[184] CHEN G, WATERHOUSE G I, SHI R, et al. From Solar Energy to Fuels:Recent Advances in Light-Driven C1 Chemistry [J]. Angewandte ChemieInternational Edition, 2019, 58(49): 17528-17551.
[185] ZHAO Y, GAO W, LI S, et al. Solar-versus thermal-driven catalysis forenergy conversion [J]. Joule, 2019, 3(4): 920-37.
[186] FREUND H J, MEIJER G, SCHEFFLER M, et al. CO oxidation as aprototypical reaction for heterogeneous processes [J]. Angewandte ChemieInternational Edition, 2011, 50(43): 10064-10094.
[187] SAAVEDRA J, DOAN H A, PURSELL C J, et al. The critical role of water atthe gold-titania interface in catalytic CO oxidation [J]. Science, 2014,345(6204): 1599-1602.
[188] GREEN I X, TANG W, NEUROCK M, et al. Spectroscopic observation ofdual catalytic sites during oxidation of CO on a Au/TiO2 catalyst [J]. Science,2011, 333(6043): 736-739.
[189] CHEN M S, GOODMAN D W. The Structure of Catalytically Active Gold onTitania [J]. Science, 2004, 306(5694): 252-255.
[190] YANG F, GRACIANI J, EVANS J, et al. CO oxidation on inverseCeO(x)/Cu(111) catalysts: high catalytic activity and ceria-promoteddissociation of O2 [J]. Journal of the American Chemical Society, 2011,133(10): 3444-3451.
[191] KUSADA K, KOBAYASHI H, IKEDA R, et al. Solid Solution AlloyNanoparticles of Immiscible Pd and Ru Elements Neighboring on Rh:Changeover of the Thermodynamic Behavior for Hydrogen Storage andEnhanced CO-Oxidizing Ability [J]. Journal of the American ChemicalSociety, 2014 , 136(5): 1864-1871.
[192] SHIRLEY H, SU X, SANJANWALA H, et al. Durable Solar PoweredSystems with Ni-Catalysts for Conversion of CO2 or CO to CH4 [J]. Journal of the American Chemical Society, 2019, 141(16): 6617-6622.
[193] YAN-YAN, YU, XUE-QING, et al. CO Oxidation at Rutile TiO2(110): Roleof Oxygen Vacancies and Titanium Interstitials [J]. ACS Catalysis, 2015, 5(4):2042-2050.
[194] YING Z, DORONKIN D E, ZHAO Z, et al. Photothermal Catalysis overNon-plasmonic Pt/TiO2 Studied by Operando HERFD-XANES, ResonantXES and DRIFTS [J]. ACS Catalysis, 2018, 8(12): 11398-11406.
[195] WU X, LANG J, SUN Z, et al. Photocatalytic conversion of carbon monoxide:from pollutant removal to fuel production [J]. Applied Catalysis B:Environmental, 2021, 295: 120312.
[196] KOLOBOV N S, SVINTSITSKIY D, KOZLOVA E A, et al. UV-LEDphotocatalytic oxidation of carbon monoxide over TiO2 supported with noblemetal nanoparticles [J]. Chemical Engineering Journal, 2017, 314: 600-611.
[197] KAO F J, BUSCH D G, GOMES D, et al. Femtosecond versus nanosecondsurface photochemistry: O2+CO on Pt(111) at 80 K [J]. Physical ReviewLetters, 1993, 70(26): 4098-4101.
[198] LINSEBIGLER, AMY, RUSU, et al. Absence of platinum enhancement of aphotoreaction on TiO2-CO photooxidation on Pt/TiO2(110) [J]. Journal of theAmerican Chemical Society, 1996, 118(22): 5284-5289.
[199] JIAO Y, JIANG H, FENG C. RuO2/TiO2/Pt Ternary Photocatalysts withEpitaxial Heterojunction and Their Application in CO Oxidation [J]. ACSCatalysis, 2014, 4(7): 2249–2257.
[200] YOON Y, WANG Y G, ROUSSEAU R, et al. Impact of Nonadiabatic ChargeTransfer on the Rate of Redox Chemistry of Carbon Oxides on RutileTiO2(110) Surface [J]. ACS Catalysis, 2015, 5(3): 1764-1771.
[201] KOLOBOV N S, SELISHCHEV D S, BUKHTIYAROV A V, et al. UV-LEDPhotocatalytic Oxidation of CO over the Pd/TiO2 Catalysts Synthesized bythe Decomposition of Pd(acac)2 [J]. Materials Today: Proceedings, 2017,4(11): 11356-11359.
[202] HENDERSON M A. A Surface Science Perspective on TiO2 Photocatalysis[J]. Surface Science Reports, 2011, 66(6-7): 185-297.
[203] LU G, LINSEBIGLER A, YATES JR J T. The photochemical identification oftwo chemisorption states for molecular oxygen on TiO2(110) [J]. The Journalof Chemical Physics, 1995, 102(7): 3005-3008.
[204] HENDERSON M A, EPLING W S, PERKINS C L, et al. Interaction ofmolecular oxygen with the vacuum-annealed TiO2(110) surface: molecularand dissociative channels [J]. The Journal of Physical Chemistry B, 1999, 103(25): 5328-5337.
[205] SCHEIBER P, RISS A, SCHMID M, et al. Observation and destruction of anelusive adsorbate with STM: O2/TiO2(110) [J]. Physical Review Letters, 2010,105(21): 216101.
[206] WANG D, HAN D, LI X-B, et al. Determination of formation and ionizationenergies of charged defects in two-dimensional materials [J]. Physical ReviewLetters, 2015, 114(19): 196801.
[207] XIAO J, YANG K, GUO D, et al. Realistic dimension-independent approachfor charged-defect calculations in semiconductors [J]. Physical Review B,2020, 101(16): 165306.
[208] WANG D, WANG H, HU P. Identifying the distinct features of geometricstructures for hole trapping to generate radicals on rutile TiO2(110) inphotooxidation using density functional theory calculations with hybridfunctional [J]. Physical Chemistry Chemical Physics, 2015, 17(3):1549-1555.
[209] THOMPSON T L, YATES J T. Surface science studies of the photoactivationof TiO2 new photochemical processes [J]. Chemical Reviews, 2006, 106(10):4428-4453.
[210] THOMPSON T L, YATES J T. TiO2-based photocatalysis: surface defects,oxygen and charge transfer [J]. Topics in Catalysis, 2005, 35(3): 197-210.
[211] PERKINS C L, HENDERSON M A. Photodesorption and Trapping ofMolecular Oxygen at the TiO2(110)-Water Ice Interface [J]. The Journal ofPhysical Chemistry B, 2001, 105(18): 3856-3863.
[212] THOMPSON T L, YATES J T. Control of a surface photochemical process byfractal electron transport across the surface: O2 photodesorption fromTiO2(110) [J]. The Journal of Physical Chemistry B, 2006, 110(14):7431-7435.
[213] SPORLEDER D, WILSON D P, WHITE M G. Final state distributions of O2photodesorbed from TiO2(110) [J]. The Journal of Physical Chemistry C,2009, 113(30): 13180-13191.
[214] DE LARA-CASTELLS M, KRAUSE J L. Theoretical study of theUV-induced desorption of molecular oxygen from the reduced TiO2(110)surface [J]. The Journal of Chemical Physics, 2003, 118(11): 5098-5105.
[215] LIDE D R. CRC handbook of chemistry and physics [M]. CRC press, 2004.
[216] ASAHI R, MORIKAWA T, IRIE H, et al. Nitrogen-doped titanium dioxide asvisible-light-sensitive photocatalyst: designs, developments, and prospects [J].Chemical Reviews, 2014, 114(19): 9824-9852.
[217] SATO S. Photocatalytic activity of NOx-doped TiO2 in the visible light region[J]. Chemical Physics Letters, 1986, 123(1-2): 126-128.
[218] DI VALENTIN C, PACCHIONI G, SELLONI A. Origin of the differentphotoactivity of N-doped anatase and rutile TiO2 [J]. Physical Review B,2004, 70(8): 085116.
[219] LIVRAGHI S, PAGANINI M C, GIAMELLO E, et al. Origin of photoactivityof nitrogen-doped titanium dioxide under visible light [J]. Journal of theAmerican Chemical Society, 2006, 128(49): 15666-71.
[220] BATZILL M, MORALES E H, DIEBOLD U. Influence of nitrogen doping onthe defect formation and surface properties of TiO2 rutile and anatase [J].Physical Review Letters, 2006, 96(2): 026103.
[221] YU Y, YANG X, ZHAO Y, et al. Engineering the band gap states of the rutileTiO2(110) surface by modulating the active heteroatom [J]. AngewandteChemie International Edition, 2018, 57(28): 8550-8554.
[222] ZUNGER A. Practical doping principles [J]. Applied Physics Letters, 2003,83(1): 57-59.
[223] WEI S-H. Overcoming the doping bottleneck in semiconductors [J].Computational Materials Science, 2004, 30(3-4): 337-348.
[224] ZUNGER A, MALYI O I. Understanding doping of quantum materials [J].Chemical Reviews, 2021, 121(5): 3031-3060.
[225] CAI X, SABINO F P, JANOTTI A, et al. Approach to achieving a p-typetransparent conducting oxide: Doping of bismuth-alloyed Ga2O3 with astrongly correlated band edge state [J]. Physical Review B, 2021, 103(11):115205.
[226] SOKOLOVIĆ I, RETICCIOLI M, ČALKOVSKý M, et al. Resolving theadsorption of molecular O2 on the rutile TiO2(110) surface by noncontactatomic force microscopy [J]. Proceedings of the National Academy ofSciences, 2020, 117(26): 14827-14837.
[227] TILOCCA A, SELLONI A. O2 and vacancy diffusion on rutile (110):pathways and electronic properties [J]. ChemPhysChem, 2005, 6(9):1911-1916.
修改评论