[1] BERGGARD T, LINSE S, JAMES P. Methods for the detection and analysis of protein-protein interactions[J]. Proteomics, 2007, 7(16): 2833-42.
[2] PHIZICKY E M, FIElDS S. Protein-protein interactions: methods for detection and analysis[J]. Microbiological reviews, 1995, 59(1): 94-123.
[3] LIU X, LUO Y, LI P, et al. Deep geometric representations for modeling effects of mutations on protein-protein binding affinity[J]. PLoS computational biology, 2021, 17(8): e1009284.
[4] BARANWAL M, MAGNER A, SALDINGER J, et al. Struct2Graph: a graph attention network for structure based predictions of protein–protein interactions[J]. BMC bioinformatics, 2022, 23(1): 370.
[5] XUE Y, LIU Z, FANG X, et al. Multimodal pre-training model for sequence-based prediction of protein-protein interaction[C]//Machine Learning in Computational Biology. PMLR, 2022: 34-46.
[6] HOMOLA J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chemical reviews, 2008, 108(2): 462-93.
[7] CONCEPCION J, WITTE K, WARTCHOW C, et al. Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization[J]. Combinatorial chemistry & high throughput screening, 2009, 12(8): 791-800.
[8] LADBURY J E, CHOWDHRY B Z. Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions[J]. Chemistry & biology, 1996, 3(10): 791-801.
[9] RAO S N, SINGH U C, BASH P A, et al. Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin[J]. Nature, 1987, 328(6130): 551-4.
[10] SINGH U, BENKOVIC S. A free-energy perturbation study of the binding of methotrexate to mutants of dihydrofolate reductase[J]. Proceedings of the National Academy of Sciences, 1988, 85(24): 9519-23.
[11] VAN GUNSTEREN W F, BERENDSEN H J. Thermodynamic cycle integration by computer simulation as a tool for obtaining free energy differences in molecular chemistry[J]. Journal of computer-aided molecular design, 1987, 1: 171-6.
[12] KOLLMAN P A, MASSOVA I, REYES C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models[J]. Accounts of chemical research, 2000, 33(12): 889-97.
[13] WANG C, GREENE D A, XIAO L, et al. Recent developments and applications of the MMPBSA method[J]. Frontiers in molecular biosciences, 2018, 4: 87.
[14] KASTRITIS P L, BONVIN A M. On the binding affinity of macromolecular interactions: daring to ask why proteins interact[J]. Journal of The Royal Society Interface, 2013, 10(79): 20120835.
[15] SHENG Y J, YIN Y W, MA Y Q, et al. Improving the performance of MM/PBSA in protein–protein interactions via the screening electrostatic energy[J]. Journal of Chemical Information and Modeling, 2021, 61(5): 2454-2462.
[16] WANG Q, CHEN E, ZHANG Z. Free energy calculation and its application in bio-complex system[J]. SCIENTIA SINICA Chimica, 2014, 44(6): 854-63.
[17] ZHU Y X, SHENG Y J, MA Y Q, et al. Assessing the performance of screening MM/PBSA in protein–ligand interactions[J]. The Journal of Physical Chemistry B, 2022, 126(8): 1700-1708.
[18] LEE F S, CHU Z-T, BOLGER M B, et al. Calculations of antibody-antigen interactions: microscopic and semi-microscopic evaluation of the free energies of binding of phosphorylcholine analogs to McPC603[J]. Protein Engineering, Design and Selection, 1992, 5(3): 215-28.
[19] HANSSON T, MARELIUS J, ÅQVIST J. Ligand binding affinity prediction by linear interaction energy methods[J]. Journal of computer-aided molecular design, 1998, 12: 27-35.
[20] RASTELLI G, RIO A D, DEGLIESPOSTI G, et al. Fast and accurate predictions of binding free energies using MM‐PBSA and MM‐GBSA[J]. Journal of computational chemistry, 2010, 31(4): 797-810.
[21] GENHEDEN S, RYDE U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities[J]. Expert opinion on drug discovery, 2015, 10(5): 449-61.
[22] GOHLKE H, CASE D A. Converging free energy estimates: MM‐PB (GB) SA studies on the protein–protein complex Ras–Raf[J]. Journal of computational chemistry, 2004, 25(2): 238-50.
[23] SPILIOTOPOULOS D, KASTRITIS P L, Melquiond A S, et al. dMM-PBSA: a new HADDOCK scoring function for protein-peptide docking[J]. Frontiers in molecular biosciences, 2016, 3: 46.
[24] LIU X, PENG L, ZHANG J Z. Accurate and efficient calculation of protein–protein binding free energy-interaction entropy with residue type-specific dielectric constants[J]. Journal of chemical information and modeling, 2018, 59(1): 272-81.
[25] COVELL D, WALLQVIST A. Analysis of protein-protein interactions and the effects of amino acid mutations on their energetics. The importance of water molecules in the binding epitope[J]. Journal of molecular biology, 1997, 269(2): 281-97.
[26] MARIUZZA R A, POIJAK R J. The basics of binding: mechanisms of antigen recognition and mimicry by antibodies[J]. Current opinion in immunology, 1993, 5(1): 50-5.
[27] AHMAD M, GU W, GEYER T, et al. Adhesive water networks facilitate binding of protein interfaces[J]. Nature communications, 2011, 2(1): 261.
[28] MAFFUCCI I, CONTINI A. Explicit ligand hydration shells improve the correlation between MM-PB/GBSA binding energies and experimental activities[J]. Journal of Chemical Theory and Computation, 2013, 9(6): 2706-2717.
[29] WONG S, AMARO R E, MCCAMMON J A. MM-PBSA captures key role of intercalating water molecules at a protein—protein interface[J]. Journal of chemical theory and computation, 2009, 5(2): 422-9.
[30] MILLER III B R, MCGEE JR T D, SWAILS J M, et al. MMPBSA. py: an efficient program for end-state free energy calculations[J]. Journal of chemical theory and computation, 2012, 8(9): 3314-21.
[31] HOMEYER N, GOHLKE H. FEW: a workflow tool for free energy calculations of ligand binding[J]. Journal of computational chemistry, 2013, 34(11): 965-73.
[32] KUMARI R, KUMAR R, OPEN SOURCE DRUG DISCOVERY CONSORTIUM, et al. g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations[J]. Journal of chemical information and modeling, 2014, 54(7): 1951-1962.
[33] GRAVES J, BYERLY J, PRIEGO E, et al. A Review of Deep Learning Methods for Antibodies[J]. Antibodies (Basel), 2020, 9(2).
[34] BRONSTEIN M M, BRUNA J, LECUN Y, et al. Geometric deep learning: going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42.
[35] ALOYSIUS N, GEETHA M. A review on deep convolutional neural networks[C]//2017 international conference on communication and signal processing (ICCSP). IEEE, 2017: 0588-0592
[36] JURTZ V I, JOHANSEN A R, NIELSEN M, et al. An introduction to deep learning on biological sequence data: examples and solutions[J]. Bioinformatics, 2017, 33(22): 3685-90.
[37] ZHANG J, DU Y, ZHOU P, et al. Predicting unseen antibodies’ neutralizability via adaptive graph neural networks[J]. Nature Machine Intelligence, 2022, 4(11): 964-76.
[38] FOUT A, BYRD J, SHARIAT B, et al. Protein interface prediction using graph convolutional networks[J]. Advances in neural information processing systems, 2017, 30.
[39] YANG Z, ZHONG W, ZHAO L, et al. Mgraphdta: deep multiscale graph neural network for explainable drug–target binding affinity prediction[J]. Chemical science, 2022, 13(3): 816-33.
[40] JONES D, KIM H, ZHANG X, et al. Improved protein–ligand binding affinity prediction with structure-based deep fusion inference[J]. Journal of chemical information and modeling, 2021, 61(4): 1583-92.
[41] LI X-S, LIU X, LU L, et al. Multiphysical graph neural network (MP-GNN) for COVID-19 drug design[J]. Briefings in Bioinformatics, 2022, 23(4).
[42] WANG M, CANG Z, WEI G W. A topology-based network tree for the prediction of protein–protein binding affinity changes following mutation[J]. Nature Machine Intelligence, 2020, 2(2): 116-123.
[43] SHAN S, LUO S, YANG Z, et al. Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization[J]. Proceedings of the National Academy of Sciences, 2022, 119(11): e2122954119.
[44] SU M, YANG Q, DU Y, et al. Comparative assessment of scoring functions: the CASF-2016 update[J]. Journal of chemical information and modeling, 2018, 59(2): 895-913.
[45] VANGONE A, BONVIN A M. Contacts-based prediction of binding affinity in protein-protein complexes[J]. Elife, 2015, 4: e07454.
[46] YANG Y X, WANG P, ZHU B T. Importance of interface and surface areas in protein-protein binding affinity prediction: A machine learning analysis based on linear regression and artificial neural network[J]. Biophysical Chemistry, 2022, 283: 106762.
[47] CHEN X, WEBER I, HARRISON R W. Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures[J]. The Journal of Physical Chemistry B, 2008, 112(38): 12073-80.
[48] BHATTACHARJEE N, BISWAS P. Structure of hydration water in proteins: a comparison of molecular dynamics simulations and database analysis[J]. Biophysical Chemistry, 2011, 158(1): 73-80.
[49] HUŠ M, URBIC T. Strength of hydrogen bonds of water depends on local environment[J]. The Journal of Chemical Physics, 2012, 136(14): 144305.
[50] LI W, MOORE M J, VASILIEVA N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature, 2003, 426(6965): 450-4.
[51] PARK Y-J, DE MARCO A, STARR T N, et al. Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry[J]. Science, 2022, 375(6579): 449-54.
[52] PINTO D, PARK Y-J, BELTRAMELLO M, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody[J]. Nature, 2020, 583(7815): 290-5.
[53] BERMAN H M, WESTBROOK J, FENG Z, et al. The protein data bank[J]. Nucleic acids research, 2000, 28(1): 235-42.
[54] ANDRIO P, HOSPITAL A, CONEJERO J, et al. BioExcel Building Blocks, a software library for interoperable biomolecular simulation workflows[J]. Scientific data, 2019, 6(1): 169.
[55] VAN DER SPOEL D, LINDAHL E, HESS B, et al. GROMACS: fast, flexible, and free[J]. Journal of computational chemistry, 2005, 26(16): 1701-18.
[56] ABRAHAM M J, MURTOLA T, SCHULZ R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers[J]. SoftwareX, 2015, 1: 19-25.
[57] MAIER J A, MARTINEZ C, KASAVAJHALA K, et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB[J]. Journal of chemical theory and computation, 2015, 11(8): 3696-713.
[58] IEONG P, AMARO R E, LI W W. Molecular dynamics analysis of antibody recognition and escape by human H1N1 influenza hemagglutinin[J]. Biophysical Journal, 2015, 108(11): 2704-12.
[59] BEKKER G-J, FUKUDA I, HIGO J, et al. Mutual population-shift driven antibody-peptide binding elucidated by molecular dynamics simulations[J]. Scientific Reports, 2020, 10(1): 1-9.
[60] DELANO W L. Pymol: An open-source molecular graphics tool[J]. CCP4 Newsl Protein Crystallogr, 2002, 40(1): 82-92.
[61] CYBENKO G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of control, signals and systems, 1989, 2(4): 303-14.
[62] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-6.
[63] FLETCHER R, REEVES C M. Function minimization by conjugate gradients[J]. The computer journal, 1964, 7(2): 149-54.
[64] REED R. Pruning algorithms-a survey[J]. IEEE transactions on Neural Networks, 1993, 4(5): 740-7.
[65] DALIANIS P, TZAFESTAS S, ANTHOPOULOS G. A study of the generalization capability versus training in backpropagation neural networks[C]//Proceedings of IEEE Systems Man and Cybernetics Conference-SMC. IEEE, 1993, 4: 485-490.
[66] MORGAN N, BOURLARD H. Generalization and parameter estimation in feedforward nets: Some experiments[J]. Advances in neural information processing systems, 1989, 2.
[67] KROGH A, HERTZ J. A simple weight decay can improve generalization[J]. Advances in neural information processing systems, 1991, 4.
[68] MAKHZANI A, FREY B J. Winner-take-all autoencoders[J]. Advances in neural information processing systems, 2015, 28.
[69] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research, 2014, 15(1): 1929-58.
[70] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[71] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-44.
[72] CIODARO T, DEVA D, DE SEIXAS J, et al. Online particle detection with neural networks based on topological calorimetry information[C]//Journal of physics: conference series. IOP Publishing, 2012, 368(1): 012030.
[73] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-9.
[74] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-33.
[75] CHETLUR S, WOOLLEY C, VANDERMERSCH P, et al. cudnn: Efficient primitives for deep learning[J]. arXiv preprint arXiv: 14100759, 2014.
[76] CHU C-T, KIM S, LIN Y-A, et al. Map-reduce for machine learning on multicore[J]. Advances in neural information processing systems, 2006, 19.
[77] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[J]. Advances in neural information processing systems, 2017, 30.
[78] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv preprint arXiv: 171010903, 2017.
[79] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//International conference on machine learning. PMLR, 2017: 1263-1272.
[80] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7794-7803.
[81] BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[J]. arXiv preprint arXiv: 180601261, 2018.
[82] SIRIN S, APGAR J R, BENNETT E M, et al. AB‐Bind: antibody binding mutational database for computational affinity predictions[J]. Protein Science, 2016, 25(2): 393-409.
[83] RAWAT P, SHARMA D, PRABAKARAN R, et al. Ab-CoV: a curated database for binding affinity and neutralization profiles of coronavirus-related antibodies[J]. Bioinformatics, 2022, 38(16): 4051-4052.
[84] JANKAUSKAITĖ J, JIMÉNEZ-GARCÍA B, DAPKŪNAS J, et al. SKEMPI 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation[J]. Bioinformatics, 2019, 35(3): 462-469.
[85] COCK P J, ANTAO T, CHANG J T, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics[J]. Bioinformatics, 2009, 25(11): 1422-3.
[86] ISHIDA T, YAMANE I, SAKAI T, et al. Do we need zero training loss after achieving zero training error?[J]. arXiv preprint arXiv: 2002.08709, 2020.
[87] BEKKER G J, FUKUDA I, HIGO J, et al. Mutual population-shift driven antibody-peptide binding elucidated by molecular dynamics simulations[J]. Scientific Reports, 2020, 10(1): 1-9.
[88] 李 兰,张 颖.基于多因素耦合参数拟合蛋白质折叠速率[J].内蒙古工业大学学报,2023(02): 103-108.
[89] AHMAD B, BATOOL M, KIM M S, et al. Computational-driven epitope verification and affinity maturation of tlr4-targeting antibodies[J]. International Journal of Molecular Sciences, 2021, 22(11): 5989.
[90] CAI J, LUO J, WANG S, et al. Feature selection in machine learning: A new perspective[J]. Neurocomputing, 2018, 300: 70-79.
[91] 张明霞,赵巧红,额尔敦布和.Ito方程组的对称分析与守恒律[J].内蒙古工业大学学报,2023(02): 97-102.
[92] MUNGOLI N. Adaptive Feature Fusion: Enhancing Generalization in Deep Learning Models[J]. arXiv preprint arXiv: 2304.03290, 2023.
[93] MATHEW A, AMUDHA P, SIVAKUMARI S. Deep learning techniques: an overview[J]. Advanced Machine Learning Technologies and Applications: Proceedings of AMLTA 2020, 2021: 599-608.
修改评论