中文版 | English
题名

带主动悬挂全向机器人的系统实现和典型全向底盘构型的对比研究

其他题名
SYSTEM IMPLEMENTATION OF OMNIDIRECTIONAL ROBOT WITH ACTIVE SUSPENSION AND COMPARATIVE STUDY OF REPRESENTATIVE OMNIDIRECTIONAL CHASSIS CONFIGURATIONS
姓名
姓名拼音
JIANG Shixing
学号
12032861
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
贾振中
导师单位
机械与能源工程系
论文答辩日期
2023-05-13
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

目前,移动机器人已广泛融入到人类的各个生产和生活领域,在应急救援、军事行动中,机器人需要在室内外复杂环境中快速移动甚至是实现快速锐角转向,这极大地考验了移动机器人的敏捷机动能力。全向机器人是移动机器人的一种重要类型,现有大部分全向机器人都不能适应室内外场景或极端工况的需求。基于主动分离偏置脚轮(Active Split Offset Castor,ASOC)的全向机器人相较于其他全向轮式移动机器人,展现出更为敏捷的机动性能,但其受限于无线通讯和被动悬挂,存在较高通讯延迟和车体倾翻风险。同时,现有对不同全向机器人优劣的分析主要基于运动学模型和仿真分析,缺乏真实工况下的实物对比研究。为充分挖掘全向机器人的特点和潜能,本文针对室内外复杂场景,以全向移动机器人为研究对象,从设计与控制两个方面展开对比研究。
(1)基于现有ASOC 全向机器人,优化了满足多种机电约束的ASOC 轮组设计,并设计了一种新型的大扭矩和快速响应的主动悬挂系统,最终搭建了一台带主动悬挂系统的ASOC 全向机器人(Omnidirectional active-Suspensioned CAstorwheel Robot,OSCAR),简称OSCAR 全向机器人。
(2)从是否采用特殊车轮设计和是否伪全向两个维度出发,选取三种典型的全向机器人,在机器人和实验的设计中遵循控制变量原则,排除无关变量的影响,搭建了三台典型的全向机器人(对比版ASOC 全向机器人、4WD4WS 全向机器人、Mecanum 全向机器人),用于研究机器人的实物性能。
(3)针对室内外场景和极端工况需求,完成OSCAR 全向机器人的运动学建模和控制算法设计,包括采用几何法设计轨迹跟踪控制算法,实现精确运动控制;设计三种不同的主动悬挂系统控制算法,实现变刚度变阻尼、姿态调节等功能。同时,完成三种典型的全向机器人的运动学建模和轨迹跟踪控制算法设计。
(4)对OSCAR 全向机器人进行探索性实验,包括软硬件系统评估实验、越障能力评估实验和主动悬挂系统控制算法对比实验,验证了OSCAR 全向机器人的可行性、机动特点和主动悬挂系统对轨迹跟踪控制的提升作用。同时,对三种典型的全向机器人进行系统化实验,包括各向运动实验和回字形轨迹跟踪实验,绘制了典型全向机器人实物性能图谱,可以为全向机器人设计提供参考依据。

其他摘要

Currently, mobile robots have been widely involved in various fields of human production and life. In emergency rescue and military operations, robots need to move and turn flexibly in complex indoor and outdoor environments or even conduct sharp turning rapidly, which makes higher demands on the agile maneuverability of mobile robots.
The omnidirectional robot is an important type of mobile robot, most of the existing omnidirectional robot can not adapt to indoor and outdoor scenes or extreme working conditions. Compared with other omnidirectional wheeled mobile robots, omnidirectional robots based on Active Split Offset Castor (ASOC) are more agile. However, limited by wireless communication and passive suspension, omnidirectional robots have higher communication delay and tip-over risk. At the same time, the current analysis of the advantages and disadvantages of different omnidirectional robots is mainly based on the kinematic model and simulation analysis and the lack of real comparison study under real working conditions. In order to fully develop the characteristics and potential of the omnidirectional robot, we take the omnidirectional mobile robot as the research object in complex indoor and outdoor scenes and carry out a comparative study from two aspects of design and control.
(1) Based on the existing ASOC omnidirectional robot, the design of ASOC satisfying various electromechanical constraints was optimized, and a new active suspension system with large torque and fast response was designed. Finally, an Omnidirectional active-suspensioned CAstor wheel Robot (OSCAR), referred to as OSCAR omnidirectional robot, is built.
(2) From the two dimensions of whether special wheel design is adopted and whether it is pseudo-omnidirectional, three typical omnidirectional robots are selected. The control variable principle is followed in the design of robots and experiments, and the influence of irrelevant variables is excluded. Three typical omnidirectional robots (comparative ASOC omnidirectional robot, 4WD4WS omnidirectional robot and Mecanum omnidirectional robot) are built to study the physical performance of the robots.
(3) According to the requirements of indoor and outdoor scenes and extreme working conditions, we complete the kinematic modeling and control algorithm design of the OSCAR omnidirectional robot, including the trajectory tracking control algorithm designed by geometric method to achieve accurate motion control; Three different control algorithms of the active suspension system are designed to achieve variable stiffness variable damping, attitude adjustment, and other functions. At the same time, the kinematics modeling and trajectory tracking control algorithm of three typical omnidirectional robots are completed.
(4) Exploratory experiments were carried out on the OSCAR omnidirectional robot, including software and hardware system evaluation experiment, obstacle crossing ability evaluation experiment, and control algorithm comparison experiment of the active suspension system. The feasibility and maneuvering characteristics of the OSCAR omnidirectional robot and the enhancement effect of the active suspension system on trajectory tracking control were verified. Meanwhile systematic experiments were carried out on three typical omnidirectional robots, including the omnidirectional motion experiment and the square trajectory tracking experiment, and the physical performance radar maps of typical omnidirectional robots were drawn, which can provide a reference for the design of omnidirectional robots.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] NOBLE B D, SATYANARAYANAN M, NARAYANAN D, et al. Agile application-awareadaptation for mobility[J]. ACM SIGOPS Operating Systems Review, 1997, 31(5): 276-287.
[2] PLAYTER R, BUEHLER M, RAIBERT M. BigDog[C]//GERHART G R, SHOEMAKER C M, GAGE D W. Unmanned Systems Technology VIII: volume 6230. SPIE, 2006: 62302O.
[3] BOUMAN A, GINTING M F, ALATUR N, et al. Autonomous Spot: Long-Range Autonomous Exploration of Extreme Environments with Legged Locomotion[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2020: 2518-2525.
[4] ZIMMERMANN S, PORANNE R, COROS S. Go Fetch! - Dynamic Grasps using Boston Dynamics Spot with External Robotic Arm[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). 2021: 4488-4494.
[5] KATZ B, CARLO J D, KIM S. Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control[C]//2019 International Conference on Robotics and Automation (ICRA). 2019: 6295-6301.
[6] KURTZ V, LI H, WENSING P M, et al. Mini Cheetah, the Falling Cat: A Case Study in Machine Learning and Trajectory Optimization for Robot Acrobatics[C]//2022 International Conference on Robotics and Automation (ICRA). 2022: 4635-4641.
[7] JEON S H, KIM S, KIM D. Online Optimal Landing Control of the MIT Mini Cheetah[C]//2022 International Conference on Robotics and Automation (ICRA). 2022: 178-184.
[8] HUTTER M, GEHRING C, JUD D, et al. ANYmal - a highly mobile and dynamic quadrupedal robot[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016: 38-44.
[9] GEHRING C, FANKHAUSER P, ISLER L, et al. ANYmal in the field: Solving industrialinspection of an offshore HVDC platform with a quadrupedal robot[C]//Field and Service Robotics: Results of the 12th International Conference. Springer, 2021: 247-260.
[10] BRUZZONE L, NODEHI S E, FANGHELLA P. Tracked Locomotion Systems for Ground Mobile Robots: A Review[J]. Machines, 2022, 10(8).
[11] 徐浩, 郭为忠. 轮式机器人:创新设计与实验研究[J]. 集成技术, 2022(3-18).
[12] TAHERI H, ZHAO C X. Omnidirectional mobile robots, mechanisms and navigation approaches[J]. Mechanism and Machine Theory, 2020, 153: 103958.
[13] ELHOFY M, ABDELAZIZ M, OMRAN I, et al. Effects of independent wheels steering system on vehicle cornering performance and road safety of the smart cities[J]. Ain Shams Engineering Journal, 2023, 14(6): 102097.
[14] THAI N H, LY T T K, DZUNG L. Trajectory tracking control for differential-drive mobile robot by a variable parameter PID controller[J]. Int. J. Mech. Eng. Robot. Res, 2022, 11(8): 614-621.
[15] CAMPION G, BASTIN G, DANDREA-NOVEL B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 47-62.
[16] TAGLIAVINI L, COLUCCI G, BOTTA A, et al. Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies [J]. Journal of Intelligent & Robotic Systems, 2022, 106(3): 57.
[17] ROJAS R. A short history of omnidirectional wheels[J]. white paper, 2006.
[18] SHABALINA K, SAGITOV A, MAGID E. Comparative analysis of mobile robot wheels design[C]//2018 11th International Conference on Developments in esystems Engineering (dese).IEEE, 2018: 175-179.
[19] BAYAR G, OZTURK S. Investigation of the effects of contact forces acting on rollers of a mecanum wheeled robot[J]. Mechatronics, 2020, 72: 102467.
[20] WILLIAMS R, CARTER B, GALLINA P, et al. Dynamic model with slip for wheeled omnidirectional robots[J]. IEEE Transactions on Robotics and Automation, 2002, 18(3): 285-293.
[21] DO QUANG H, MANH T N, MANH C N, et al. Mapping and navigation with four-wheeled omnidirectional mobile robot based on robot operating system[C]//2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE). IEEE, 2019: 54-59.
[22] ILON B E. Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base[M]. Google Patents, 1975.
[23] TADAKUMA K, TADAKUMA R, BERENGERES J. Development of holonomic omnidirectional Vehicle with“Omni-Ball”: spherical wheels[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2007: 33-39.
[24] ALYOUSIFY M A, ABBAS H S, HASSAN M M M, et al. Parameter Identification and Control of a Ball Balancing Robot[C]//2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE). 2022: 91-97.
[25] REN C, MA S, SUN Y, et al. A continuous dynamic modeling approach for an omnidirectional mobile robot[J]. Advanced Robotics, 2015, 29(4): 253-271.
[26] YU S, YE C, LIU H, et al. Development of an omnidirectional automated guided vehicle with MY3 wheels[J]. Perspectives in Science, 2016, 7: 364-368.
[27] YU S, YE C, JIANG C, et al. A Study on Slippage and Tip-over Stability for an Omnidirectional Mobile Robot with Longitudinal MY-wheels[C]//2019 IEEE International Conference on Mechatronics and Automation (ICMA). 2019: 1484-1489.
[28] CONNETTE C P, POTT A, HAGELE M, et al. Control of an pseudo-omnidirectional, nonholonomic, mobile robot based on an ICM representation in spherical coordinates[C]//2008 47th IEEE Conference on Decision and Control. 2008: 4976-4983.
[29] 李阳, 刘子明, 陈庆盈. 考虑打滑干扰的解耦式主动脚轮全向移动机器人跟踪控制[J]. 中国机械工程, 2020, 31(2247-2253).
[30] 李阳. 基于解耦式主动脚轮的全向移动机器人跟踪控制及运动分配[D]. 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2020.
[31] 贾文骥. 模块化全向移动操作机器人运动学、动力学及协调运动规划[D]. 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2021.
[32] YU H, DUBROWSKY S. Omni-Directional Mobility Using Active Split Offset Castors[C]//SAME IDETC/CIE 26th Biennial Mechanics and Robotics Conference. 2004: 822-829.
[33] ISHIGAMI G, IAGNEMMA K, OVERHOLT J, et al. Design, Development, and Mobility Evaluation of an Omnidirectional Mobile Robot for Rough Terrain: Design, Development, and Mobility Evaluation of an Omnidirectional[J]. Journal of Field Robotics, 2015, 32(6): 880-896.
[34] YU H. Mobility Design and Control of Personal Mobility Aids for the Elderly[D]. Massachusetts Institute of Technology, 2002.
[35] PARK T B, LEE J H, YI B J, et al. Optimal design and actuator sizing of redundantly actuated omni-directional mobile robots[C]//Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292): volume 1. 2002: 732-737.
[36] UDENGAARD M, IAGNEMMA K. Kinematic Analysis and Control of an Omnidirectional Mobile Robot in Rough Terrain[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA: IEEE, 2007: 795-800.
[37] IAGNEMMA K, UDENGAARD M, ISHIGAMI G, et al. Design and Development of an Agile, Man Portable Unmanned Ground Vehicle[C]//2008.
[38] UDENGAARD M, IAGNEMMA K. Analysis, Design, and Control of an Omnidirectional Mobile Robot in Rough Terrain[J]. Journal of Mechanical Design, 2009, 131(12): 121002.
[39] ISHIGAMI G, PINEDA E, OVERHOLT J, et al. Performance Analysis and Odometry Improvement of an Omnidirectional Mobile Robot for Outdoor Terrain[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA: IEEE, 2011: 4091-4096.
[40] NIE C, ASSALIYSKI M, SPENKO M. Design and Experimental Characterization of an Omnidirectional Unmanned Ground Vehicle for Unstructured Terrain[J]. Robotica, 2015, 33(9):1984-2000.
[41] HUNTSBERGER T, AGHAZARIAN H, BAUMGARTNER E, et al. Behavior-based control systems for planetary autonomous robot outposts[C]//2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484): volume 7. 2000: 679-686 vol.7.
[42] IAGNEMMA K, RZEPNIEWSKI A, DUBOWSKY S, et al. Control of Robotic Vehicles with Actively Articulated Suspensions in Rough Terrain[J]. Autonomous Robots, 2003, 14(1): 5-16.
[43] GIORDANO P R, FUCHS M, Albu-Schaffer A, et al. On the Kinematic Modeling and Control of a Mobile Platform Equipped with Steering Wheels and Movable Legs[C]//2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 4080-4087.
[44] FUCHS M, BORST C, GIORDANO P, et al. Rollin’ Justin - Design Considerations and Realization of a Mobile Platform for a Humanoid Upper Body[C]//2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 4131-4137.
[45] DIETRICH A, WIMBOCK T, Albu-Schaffer A, et al. Singularity Avoidance for Nonholonomic, Omnidirectional Wheeled Mobile Platforms with Variable Footprint[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 6136-6142.
[46] REID W, PéREZ-GRAU F J, GöKTOğAN A H, et al. Actively articulated suspension for a wheel-on-leg rover operating on a Martian analog surface[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). 2016: 5596-5602.
[47] CORDES F, BABU A, KIRCHNER F. Static Force Distribution and Orientation Control for a Rover with an Actively Articulated Suspension System[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC: IEEE, 2017: 5219-5224.
[48] REID W, FITCH R, GÖKTOĞAN A H, et al. Sampling-based hierarchical motion planning for a reconfigurable wheel-on-leg planetary analogue exploration rover[J]. Journal of Field Robotics, 2020, 37(5): 786-811.
[49] KLEMM V, MORRA A, SALZMANN C, et al. A Two-Wheeled Jumping Robot[C]//2019 International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada: IEEE, 2019: 7515-7521.
[50] KLEMM V, MORRA A, GULICH L, et al. LQR-Assisted Whole-Body Control of a Wheeled Bipedal Robot With Kinematic Loops[J]. IEEE Robotics and Automation Letters, 2020, 5(2):3745-3752.
[51] OLIVER PEIRÓ G. Diseño de un Prototipo del Robot Handle” de Boston Dynamics con Recurdyny Mathematica.”[M]. Universitat Politècnica de València, 2018.
[52] LIU T, ZHANG C, SONG S, et al. Dynamic Height Balance Control for Bipedal Wheeled Robot Based on ROS-Gazebo[C]//2019 IEEE International Conference on Robotics and Biomimetics(ROBIO). 2019: 1875-1880.
[53] ZHANG C, LIU T, SONG S, et al. Dynamic wheeled motion control of wheel-biped transformable robots[J]. Biomimetic Intelligence and Robotics, 2022, 2(2): 100027.
[54] CHEN H, WANG B, HONG Z, et al. Underactuated motion planning and control for jumping with wheeled-bipedal robots[J]. IEEE Robotics and Automation Letters, 2020, 6(2): 747-754.
[55] ZHANG J, WANG S, WANG H, et al. An Adaptive Approach to Whole-Body Balance Control of Wheel-Bipedal Robot Ollie[C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2022: 12835-12842.
[56] ZHANG J, LI Z, WANG S, et al. Adaptive optimal output regulation for wheel-legged robot Ollie: A data-driven approach[J]. Frontiers in Neurorobotics, 2023.
[57] HYON S H, IDA Y, ISHIKAWA J, et al. Whole-Body Locomotion and Posture Control on a Torque-Controlled Hydraulic Rover[J]. IEEE Robotics and Automation Letters, 2019, 4(4):4587-4594.
[58] BJELONIC M, SANKAR P K, BELLICOSO C D, et al. Rolling in the Deep–Hybrid Locomotion for Wheeled-Legged Robots Using Online Trajectory Optimization[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3626-3633.
[59] BJELONIC M, GRANDIA R, HARLEY O, et al. Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2021: 8388-8395.
[60] YUN S H, PARK J, SEO J, et al. Development of an Agile Omnidirectional Mobile Robot With GRF Compensated Wheel-Leg Mechanisms for Human Environments[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8301-8308.
[61] 张超凡. 轮腿式无人运载平台垂直越障性能研究[D]. 吉林大学, 2020.
[62] CAI X, HE J, GAO F. Kinematic Modeling and Simulation of a Leg-Wheel Robot for Unexplored Rough Terrain Environment[C]//Recent Advances in Mechanisms, Transmissions and Applications. Singapore: Springer Singapore, 2020: 464-473.
[63] 崔鹤瀚. 载人月球车主动悬架调节系统研究[D]. 哈尔滨工业大学, 2020.
[64] YU H, SPENKO M, DUBOWSKY S. Omni-Directional Mobility Using Active Split Offset Castors [J]. Journal of Mechanical Design, 2004, 126(5): 822-829.
[65] NAGENDRAN A, CROWTHER W, TURNER M, et al. Design, Control, and Performance of the ‘Weed’ 6 Wheel Robot in the UK MOD Grand Challenge[J]. Advanced Robotics, 2014, 28(4): 203-218.
[66] 马芳武, 倪利伟, 吴量, 等. 主动悬架轮腿式全地形移动机器人俯仰姿态闭环控制.[J].Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18).
[67] 邢彪, 徐广健, 倪利伟, 等. 全地形车轮腿结构研究综述[J]. 汽车文摘, 2020(7): 27-33.
[68] BATTS Z, KIM J, YAMANE K. Design of a hopping mechanism using a voice coil actuator: Linear elastic actuator in parallel (LEAP)[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). 2016: 655-660.
[69] KATZ B G. A low cost modular actuator for dynamic robots[D]. Massachusetts Institute of Technology, 2018.
[70] 余志生. 汽车理论[M]. 北京: 机械工业出版社, 2019.
[71] SAFAR M J A. Holonomic and omnidirectional locomotion systems for wheeled mobile robots: A review[J]. Jurnal Teknologi, 2015, 77: 91-97.
[72] TAGLIAVINI L, COLUCCI G, BOTTA A, et al. Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies[J]. Journal of Intelligent & Robotic Systems, 2022, 106(3): 57.

所在学位评定分委会
力学
国内图书分类号
TP242.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544441
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
蒋世兴. 带主动悬挂全向机器人的系统实现和典型全向底盘构型的对比研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032861-蒋世兴-机械与能源工程(45281KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[蒋世兴]的文章
百度学术
百度学术中相似的文章
[蒋世兴]的文章
必应学术
必应学术中相似的文章
[蒋世兴]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。