[1] NOBLE B D, SATYANARAYANAN M, NARAYANAN D, et al. Agile application-awareadaptation for mobility[J]. ACM SIGOPS Operating Systems Review, 1997, 31(5): 276-287.
[2] PLAYTER R, BUEHLER M, RAIBERT M. BigDog[C]//GERHART G R, SHOEMAKER C M, GAGE D W. Unmanned Systems Technology VIII: volume 6230. SPIE, 2006: 62302O.
[3] BOUMAN A, GINTING M F, ALATUR N, et al. Autonomous Spot: Long-Range Autonomous Exploration of Extreme Environments with Legged Locomotion[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2020: 2518-2525.
[4] ZIMMERMANN S, PORANNE R, COROS S. Go Fetch! - Dynamic Grasps using Boston Dynamics Spot with External Robotic Arm[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). 2021: 4488-4494.
[5] KATZ B, CARLO J D, KIM S. Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control[C]//2019 International Conference on Robotics and Automation (ICRA). 2019: 6295-6301.
[6] KURTZ V, LI H, WENSING P M, et al. Mini Cheetah, the Falling Cat: A Case Study in Machine Learning and Trajectory Optimization for Robot Acrobatics[C]//2022 International Conference on Robotics and Automation (ICRA). 2022: 4635-4641.
[7] JEON S H, KIM S, KIM D. Online Optimal Landing Control of the MIT Mini Cheetah[C]//2022 International Conference on Robotics and Automation (ICRA). 2022: 178-184.
[8] HUTTER M, GEHRING C, JUD D, et al. ANYmal - a highly mobile and dynamic quadrupedal robot[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016: 38-44.
[9] GEHRING C, FANKHAUSER P, ISLER L, et al. ANYmal in the field: Solving industrialinspection of an offshore HVDC platform with a quadrupedal robot[C]//Field and Service Robotics: Results of the 12th International Conference. Springer, 2021: 247-260.
[10] BRUZZONE L, NODEHI S E, FANGHELLA P. Tracked Locomotion Systems for Ground Mobile Robots: A Review[J]. Machines, 2022, 10(8).
[11] 徐浩, 郭为忠. 轮式机器人:创新设计与实验研究[J]. 集成技术, 2022(3-18).
[12] TAHERI H, ZHAO C X. Omnidirectional mobile robots, mechanisms and navigation approaches[J]. Mechanism and Machine Theory, 2020, 153: 103958.
[13] ELHOFY M, ABDELAZIZ M, OMRAN I, et al. Effects of independent wheels steering system on vehicle cornering performance and road safety of the smart cities[J]. Ain Shams Engineering Journal, 2023, 14(6): 102097.
[14] THAI N H, LY T T K, DZUNG L. Trajectory tracking control for differential-drive mobile robot by a variable parameter PID controller[J]. Int. J. Mech. Eng. Robot. Res, 2022, 11(8): 614-621.
[15] CAMPION G, BASTIN G, DANDREA-NOVEL B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 47-62.
[16] TAGLIAVINI L, COLUCCI G, BOTTA A, et al. Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies [J]. Journal of Intelligent & Robotic Systems, 2022, 106(3): 57.
[17] ROJAS R. A short history of omnidirectional wheels[J]. white paper, 2006.
[18] SHABALINA K, SAGITOV A, MAGID E. Comparative analysis of mobile robot wheels design[C]//2018 11th International Conference on Developments in esystems Engineering (dese).IEEE, 2018: 175-179.
[19] BAYAR G, OZTURK S. Investigation of the effects of contact forces acting on rollers of a mecanum wheeled robot[J]. Mechatronics, 2020, 72: 102467.
[20] WILLIAMS R, CARTER B, GALLINA P, et al. Dynamic model with slip for wheeled omnidirectional robots[J]. IEEE Transactions on Robotics and Automation, 2002, 18(3): 285-293.
[21] DO QUANG H, MANH T N, MANH C N, et al. Mapping and navigation with four-wheeled omnidirectional mobile robot based on robot operating system[C]//2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE). IEEE, 2019: 54-59.
[22] ILON B E. Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base[M]. Google Patents, 1975.
[23] TADAKUMA K, TADAKUMA R, BERENGERES J. Development of holonomic omnidirectional Vehicle with“Omni-Ball”: spherical wheels[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2007: 33-39.
[24] ALYOUSIFY M A, ABBAS H S, HASSAN M M M, et al. Parameter Identification and Control of a Ball Balancing Robot[C]//2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE). 2022: 91-97.
[25] REN C, MA S, SUN Y, et al. A continuous dynamic modeling approach for an omnidirectional mobile robot[J]. Advanced Robotics, 2015, 29(4): 253-271.
[26] YU S, YE C, LIU H, et al. Development of an omnidirectional automated guided vehicle with MY3 wheels[J]. Perspectives in Science, 2016, 7: 364-368.
[27] YU S, YE C, JIANG C, et al. A Study on Slippage and Tip-over Stability for an Omnidirectional Mobile Robot with Longitudinal MY-wheels[C]//2019 IEEE International Conference on Mechatronics and Automation (ICMA). 2019: 1484-1489.
[28] CONNETTE C P, POTT A, HAGELE M, et al. Control of an pseudo-omnidirectional, nonholonomic, mobile robot based on an ICM representation in spherical coordinates[C]//2008 47th IEEE Conference on Decision and Control. 2008: 4976-4983.
[29] 李阳, 刘子明, 陈庆盈. 考虑打滑干扰的解耦式主动脚轮全向移动机器人跟踪控制[J]. 中国机械工程, 2020, 31(2247-2253).
[30] 李阳. 基于解耦式主动脚轮的全向移动机器人跟踪控制及运动分配[D]. 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2020.
[31] 贾文骥. 模块化全向移动操作机器人运动学、动力学及协调运动规划[D]. 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2021.
[32] YU H, DUBROWSKY S. Omni-Directional Mobility Using Active Split Offset Castors[C]//SAME IDETC/CIE 26th Biennial Mechanics and Robotics Conference. 2004: 822-829.
[33] ISHIGAMI G, IAGNEMMA K, OVERHOLT J, et al. Design, Development, and Mobility Evaluation of an Omnidirectional Mobile Robot for Rough Terrain: Design, Development, and Mobility Evaluation of an Omnidirectional[J]. Journal of Field Robotics, 2015, 32(6): 880-896.
[34] YU H. Mobility Design and Control of Personal Mobility Aids for the Elderly[D]. Massachusetts Institute of Technology, 2002.
[35] PARK T B, LEE J H, YI B J, et al. Optimal design and actuator sizing of redundantly actuated omni-directional mobile robots[C]//Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292): volume 1. 2002: 732-737.
[36] UDENGAARD M, IAGNEMMA K. Kinematic Analysis and Control of an Omnidirectional Mobile Robot in Rough Terrain[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA: IEEE, 2007: 795-800.
[37] IAGNEMMA K, UDENGAARD M, ISHIGAMI G, et al. Design and Development of an Agile, Man Portable Unmanned Ground Vehicle[C]//2008.
[38] UDENGAARD M, IAGNEMMA K. Analysis, Design, and Control of an Omnidirectional Mobile Robot in Rough Terrain[J]. Journal of Mechanical Design, 2009, 131(12): 121002.
[39] ISHIGAMI G, PINEDA E, OVERHOLT J, et al. Performance Analysis and Odometry Improvement of an Omnidirectional Mobile Robot for Outdoor Terrain[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA: IEEE, 2011: 4091-4096.
[40] NIE C, ASSALIYSKI M, SPENKO M. Design and Experimental Characterization of an Omnidirectional Unmanned Ground Vehicle for Unstructured Terrain[J]. Robotica, 2015, 33(9):1984-2000.
[41] HUNTSBERGER T, AGHAZARIAN H, BAUMGARTNER E, et al. Behavior-based control systems for planetary autonomous robot outposts[C]//2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484): volume 7. 2000: 679-686 vol.7.
[42] IAGNEMMA K, RZEPNIEWSKI A, DUBOWSKY S, et al. Control of Robotic Vehicles with Actively Articulated Suspensions in Rough Terrain[J]. Autonomous Robots, 2003, 14(1): 5-16.
[43] GIORDANO P R, FUCHS M, Albu-Schaffer A, et al. On the Kinematic Modeling and Control of a Mobile Platform Equipped with Steering Wheels and Movable Legs[C]//2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 4080-4087.
[44] FUCHS M, BORST C, GIORDANO P, et al. Rollin’ Justin - Design Considerations and Realization of a Mobile Platform for a Humanoid Upper Body[C]//2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 4131-4137.
[45] DIETRICH A, WIMBOCK T, Albu-Schaffer A, et al. Singularity Avoidance for Nonholonomic, Omnidirectional Wheeled Mobile Platforms with Variable Footprint[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 6136-6142.
[46] REID W, PéREZ-GRAU F J, GöKTOğAN A H, et al. Actively articulated suspension for a wheel-on-leg rover operating on a Martian analog surface[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). 2016: 5596-5602.
[47] CORDES F, BABU A, KIRCHNER F. Static Force Distribution and Orientation Control for a Rover with an Actively Articulated Suspension System[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC: IEEE, 2017: 5219-5224.
[48] REID W, FITCH R, GÖKTOĞAN A H, et al. Sampling-based hierarchical motion planning for a reconfigurable wheel-on-leg planetary analogue exploration rover[J]. Journal of Field Robotics, 2020, 37(5): 786-811.
[49] KLEMM V, MORRA A, SALZMANN C, et al. A Two-Wheeled Jumping Robot[C]//2019 International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada: IEEE, 2019: 7515-7521.
[50] KLEMM V, MORRA A, GULICH L, et al. LQR-Assisted Whole-Body Control of a Wheeled Bipedal Robot With Kinematic Loops[J]. IEEE Robotics and Automation Letters, 2020, 5(2):3745-3752.
[51] OLIVER PEIRÓ G. Diseño de un Prototipo del Robot Handle” de Boston Dynamics con Recurdyny Mathematica.”[M]. Universitat Politècnica de València, 2018.
[52] LIU T, ZHANG C, SONG S, et al. Dynamic Height Balance Control for Bipedal Wheeled Robot Based on ROS-Gazebo[C]//2019 IEEE International Conference on Robotics and Biomimetics(ROBIO). 2019: 1875-1880.
[53] ZHANG C, LIU T, SONG S, et al. Dynamic wheeled motion control of wheel-biped transformable robots[J]. Biomimetic Intelligence and Robotics, 2022, 2(2): 100027.
[54] CHEN H, WANG B, HONG Z, et al. Underactuated motion planning and control for jumping with wheeled-bipedal robots[J]. IEEE Robotics and Automation Letters, 2020, 6(2): 747-754.
[55] ZHANG J, WANG S, WANG H, et al. An Adaptive Approach to Whole-Body Balance Control of Wheel-Bipedal Robot Ollie[C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2022: 12835-12842.
[56] ZHANG J, LI Z, WANG S, et al. Adaptive optimal output regulation for wheel-legged robot Ollie: A data-driven approach[J]. Frontiers in Neurorobotics, 2023.
[57] HYON S H, IDA Y, ISHIKAWA J, et al. Whole-Body Locomotion and Posture Control on a Torque-Controlled Hydraulic Rover[J]. IEEE Robotics and Automation Letters, 2019, 4(4):4587-4594.
[58] BJELONIC M, SANKAR P K, BELLICOSO C D, et al. Rolling in the Deep–Hybrid Locomotion for Wheeled-Legged Robots Using Online Trajectory Optimization[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3626-3633.
[59] BJELONIC M, GRANDIA R, HARLEY O, et al. Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2021: 8388-8395.
[60] YUN S H, PARK J, SEO J, et al. Development of an Agile Omnidirectional Mobile Robot With GRF Compensated Wheel-Leg Mechanisms for Human Environments[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8301-8308.
[61] 张超凡. 轮腿式无人运载平台垂直越障性能研究[D]. 吉林大学, 2020.
[62] CAI X, HE J, GAO F. Kinematic Modeling and Simulation of a Leg-Wheel Robot for Unexplored Rough Terrain Environment[C]//Recent Advances in Mechanisms, Transmissions and Applications. Singapore: Springer Singapore, 2020: 464-473.
[63] 崔鹤瀚. 载人月球车主动悬架调节系统研究[D]. 哈尔滨工业大学, 2020.
[64] YU H, SPENKO M, DUBOWSKY S. Omni-Directional Mobility Using Active Split Offset Castors [J]. Journal of Mechanical Design, 2004, 126(5): 822-829.
[65] NAGENDRAN A, CROWTHER W, TURNER M, et al. Design, Control, and Performance of the ‘Weed’ 6 Wheel Robot in the UK MOD Grand Challenge[J]. Advanced Robotics, 2014, 28(4): 203-218.
[66] 马芳武, 倪利伟, 吴量, 等. 主动悬架轮腿式全地形移动机器人俯仰姿态闭环控制.[J].Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18).
[67] 邢彪, 徐广健, 倪利伟, 等. 全地形车轮腿结构研究综述[J]. 汽车文摘, 2020(7): 27-33.
[68] BATTS Z, KIM J, YAMANE K. Design of a hopping mechanism using a voice coil actuator: Linear elastic actuator in parallel (LEAP)[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). 2016: 655-660.
[69] KATZ B G. A low cost modular actuator for dynamic robots[D]. Massachusetts Institute of Technology, 2018.
[70] 余志生. 汽车理论[M]. 北京: 机械工业出版社, 2019.
[71] SAFAR M J A. Holonomic and omnidirectional locomotion systems for wheeled mobile robots: A review[J]. Jurnal Teknologi, 2015, 77: 91-97.
[72] TAGLIAVINI L, COLUCCI G, BOTTA A, et al. Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies[J]. Journal of Intelligent & Robotic Systems, 2022, 106(3): 57.
修改评论