[1] BROCKWAY P E, OWEN A, BRAND-CORREA L I, et al. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources[J]. Nature Energy, 2019, 4 (7): 612-621.
[2] SCHUBERT C. Renewable energy: making fuels for the future[J]. Nature, 2011, 474 (7352): 531-533.
[3] LI X, YANG Z, FU Y, et al. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery[J]. ACS Nano, 2015, 9 (2): 1858-1867.
[4] DENHOLM P, MARGOLIS R M. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies[J]. Energy Policy, 2007, 35 (9): 4424-4433.
[5] 何姣.我国电池储能电站发展的现状、问题及建议[J]. 新能源科技, 2021, No.12 (06): 30-33.
[6] LEE S H, KIM Y H, DESHPANDE R, et al. Reversible lithium‐ion insertion in molybdenum oxide nanoparticles[J]. Advanced Materials, 2008, 20 (19): 3627-3632.
[7] LI M, LU J, CHEN Z, et al. 30 Years of Lithium-Ion Batteries[J]. Advanced Materials, 2018: 1800561.
[8] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7 (1): 19-29.
[9] QIU F, REN S, ZHANG X, et al. A high efficiency electrolyte enables robust inorganic–organic solid electrolyte interfaces for fast Li metal anode[J]. Science Bulletin, 2021, 66 (9): 897-903.
[10] KWON B, LEE J, KIM H, et al. Janus behaviour of LiFSI-and LiPF6-based electrolytes for Li metal batteries: chemical corrosion versus galvanic corrosion[J]. Journal of Materials Chemistry A, 2021, 9 (44): 24993-25003.
[11] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
[12] MURMANN P, MÖNNIGHOFF X, ASPERN N V et al. Influence of the Fluorination Degree of Organophosphates on Flammability and Electrochemical Performance in Lithium Ion Batteries: Studies on Fluorinated Compounds Deriving from Triethyl Phosphate[J]. Journal of the Electrochemical Society, 2016, 163(5): A751-A757.
[13] WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104 (10): 4245-4270.
[14] SELVAKUMARAN D, PAN A, LIANG S, et al. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7 (31): 18209-18236.
[15]
[15] SHI Y, CHEN Y, SHI L, et al. An Overview and Future Perspectives of Rechargeable Zinc Batteries[J]. Small, 2020, 16 (23): 2000730.
[16] SONG M, TAN H, CHAO D, et al. Recent Advances in Zn-Ion Batteries[J].Advanced Functional Materials, 2018, 28 (41): 1802564.
[17] ELIA G A, KRAVCHYK K V, KOVALENKO M V, et al. An overview and prospective on Al and Al-ion battery technologies[J]. Journal of Power Sources, 2021, 481: 228870.
[18] SHTERENBERG I, SALAMA M, GOFER Y, et al. The challenge of developing rechargeable magnesium batteries[J]. Mrs Bulletin, 2014, 39 (5): 453-460.
[19] YOO H D, SHTERENBERG I, GOFER Y, et al. Mg rechargeable batteries: an on-going challenge[J]. Energy & Environmental Science, 2013, 6 (8): 2265-2279.
[20] WIPPERMANN K, SCHULTZE J, KESSEL R, et al. The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives[J]. Corrosion Science, 1991, 32 (2): 205-230.
[21] LI H F, MA L T, HAN C P, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587.
[22] YAMAMOTO T, SHOJI T. Rechargeable Zn|ZnSO4|MnO2-type cells[J]. Inorganica Chimica Acta, 1986, 117 (2): L27-L28.
[23] ZHAO Q, HUANG W, LUO Z, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes[J]. Science Advances, 2018, 4 (3): eaao1761.
[24] GRGUR B N, GVOZDENOVIĆ M M, STEVANOVIĆ J, et al. Polypyrrole as possible electrode materials for the aqueous-based rechargeable zinc batteries[J]. Electrochimica Acta, 2008, 53 (14): 4627-4632.
[25] TIE Z, LIU L, DENG S, et al. Proton Insertion Chemistry of a Zinc-Organic Battery[J]. Angewandte Chemie, 2020, 132 (12): 4950-4954.
[26] SUN W, WANG F, HOU S, et al. Zn|MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion[J]. Journal of the American Chemical Society, 2017, 139 (29): 9775-9778.
[27] MCKUBRE M, MACDONALD D. The dissolution and passivation of zinc in concentrated aqueous hydroxide[J]. Journal of the Electrochemical Society, 1981, 128 (3): 524.
[28] EIN-ELI Y, AUINAT M, STAROSVETSKY D. Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors[J]. Journal of Power Sources, 2003, 114 (2): 330-337.
[29] YANG Q, LIANG G, GUO Y, et al. Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in‐service batteries[J]. Advanced Materials, 2019, 31 (43): 1903778.
[30] SHIN J, LEE J, PARK Y, et al. Aqueous zinc ion batteries: focus on zinc metal anodes[J]. Chemical Science, 2020, 11 (8): 2028-2044.
[31] ZENG X, HAO J, WANG Z, et al. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes[J]. Energy Storage Materials, 2019, 20: 410-437.
[32] YANG H S, PARK J H, RA H W, et al. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc–bromine redox flow battery[J]. Journal of Power Sources, 2016, 325: 446-452.
[33] ZHOU M, GUO S, LI J, et al. Surface-preferred crystal plane for a stable and reversible zinc anode[J]. Advanced Materials, 2021, 33 (21): 2100187.
[34] CHOPARD B, HERRMANN H, VICSEK T. Structure and growth mechanism of mineral dendrites[J]. Nature, 1991, 353 (6343): 409-412.
[35] ZHAO K, WANG C, YU Y, et al. Ultrathin surface coating enables stabilized zinc metal anode[J]. Advanced Materials Interfaces, 2018, 5 (16): 1800848.
[36] PARKER J F, KO J S, ROLISON D R, et al. Translating materials-level performance into device-relevant metrics for zinc-based batteries[J]. Joule, 2018, 2 (12): 2519-2527.
[37] LIANG P, YI J, LIU X, et al. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries[J]. Advanced Functional Materials, 2020, 30 (13): 1908528.
[38] JIA H, WANG Z, TAWIAH B, et al. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries[J]. Nano Energy, 2020, 70: 104523.
[39] KANG L, CUI M, JIANG F, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries[J]. Advanced Energy Materials, 2018, 8 (25): 1801090.
[40] HAO J, LI B, LI X, et al. An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries[J]. Advanced Materials, 2020, 32 (34): e2003021.
[41] GUO W, CONG Z, GUO Z, et al. Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries[J]. Energy Storage Materials, 2020, 30: 104-112.HUANG Y, CHANG Z, LIU W, et al. Layer-by-layer zinc metal anodes to achieve long-life zinc-ion batteries[J]. Chemical Engineering Journal, 2022, 431: 133902.
[43] HUANG H, YUN J, FENG H, et al. Towards high-performance zinc anode for zinc ion hybrid capacitor: Concurrently tailoring hydrodynamic stability, zinc deposition and solvation structure via electrolyte additive[J]. Energy Storage Materials, 2023, 55: 857-866.
[44] LIU Z, REN J, WANG F, et al. Tuning Surface Energy of Zn Anodes via Sn Heteroatom Doping Enabled by a Codeposition for Ultralong Life Span Dendrite-Free Aqueous Zn-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27085-27095.
[45] ZHANG C, HOLOUBEK J, WU X, et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode[J]. Chemical Communications, 2018, 54(100): 14097-14099.
[46] HE H, TONG H, SONG X, et al. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8 (16): 7836-7846.
[47] SO S, AHN Y N, KO J, et al. Uniform and oriented zinc deposition induced by artificial Nb2O5 Layer for highly reversible Zn anode in aqueous zinc ion batteries[J]. Energy Storage Materials, 2022, 52: 40-51.
[48] YANG X, LI C, SUN Z, et al. Interfacial Manipulation via In Situ Grown ZnSe Cultivator toward Highly Reversible Zn Metal Anodes[J]. Advanced Materials, 2021, 33 (52): 2105951.
[49] HUANG C, ZHAO X, HAO Y, et al. Self-Healing SeO2 Additives Enable Zinc Metal Reversibility in Aqueous ZnSO4 Electrolytes[J]. Advanced Functional Materials, 2022, 32 (18): 2112091.
[50] BIE Z, YANG Q, CAI X, et al. One‐Step Construction of a Polyporous and Zincophilic Interface for Stable Zinc Metal Anodes[J]. Advanced Energy Materials, 2022, 12 (44): 2202683.
[51] HAN W, XIONG L, WANG M, et al. Interface engineering via in-situ electrochemical induced ZnSe for a stabilized zinc metal anode[J]. Chemical Engineering Journal, 2022, 442: 136247.
[52] WANG R, XIN S, CHAO D, et al. Fast and Regulated Zinc Deposition in a Semiconductor Substrate toward High-Performance Aqueous Rechargeable Batteries[J]. Advanced Functional Materials, 2022, 32 (51): 2207751.
[53] HIEU L T, SO S, KIM I T, et al. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life[J]. Chemical Engineering Journal, 2021, 411: 128584.
[54] ZHAO Z, ZHAO J, HU Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy & Environmental Science, 2019, 12 (6): 1938-1949.
[55] CAI Z, OU Y, WANG J, et al. Chemically resistant Cu-Zn|Zn composite anode for long cycling aqueous batteries[J]. Energy Storage Materials, 2020, 27: 205-211.
[56] WANG S-B, RAN Q, YAO R-Q, et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries[J]. Nature Communications, 2020, 11 (1): 1634.
[57] ZHAO Q, LIU W, CHEN Y, et al. Ultra-stable Zn metal batteries with dendrite-free Cu-Sn alloy induced high-quality composite Zn mesh[J]. Chemical Engineering Journal, 2022, 450: 137979.
[58] OUYANG K, MA D, ZHAO N, et al. A New Insight into Ultrastable Zn Metal Batteries Enabled by In Situ Built Multifunctional Metallic Interphase[J]. Advanced Functional Materials, 2021, 32 (7): 2109749.
[59] WAN F, ZHANG L, DAI X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nature Communications, 2018, 9 (1): 1656.
[60] LUAN J, YUAN H, WANG H, et al. Nanofluid Electrolyte with Fumed Al2O3 Additive Strengthening Zincophilic and Stable Surface of Zinc Anode toward Flexible Zinc–Nickel Batteries[J]. Advanced Functional Materials, 2022, 33 (7): 2210807.
[61] ZHANG W, DAI Y, CHEN R, et al. Highly Reversible Zinc Metal Anode in a Dilute Aqueous Electrolyte Enabled by a pH Buffer Additive[J]. Angewandte Chemie International Edition, 2023, 62 (5): e202212695.
[62] FENG X, LI P, YIN J, et al. Enabling Highly Reversible Zn Anode by Multifunctional Synergistic Effects of Hybrid Solute Additives[J]. ACS Energy Letters, 2023, 8 (2): 1192-1200.
[63] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135 (11): 4450-4456.
[64] XU W, ZHAO K, HUO W, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries[J]. Nano Energy, 2019, 62: 275-281.
[65] BAYAGUUD A, LUO X, FU Y, et al. Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries[J]. ACS Energy Letters, 2020, 5 (9): 3012-3020.
[66] SHEN Z, MAO J, YU G, et al. Electrocrystallization Regulation Enabled Stacked Hexagonal Platelet Growth toward Highly Reversible Zinc Anodes[J]. Angewandte Chemie, 2023, 62: e2022184.
[67] HOU Z, TAN H, GAO Y, et al. Tailoring desolvation kinetics enables stable zinc metal anodes[J]. Journal of Materials Chemistry A, 2020, 8 (37): 19367-19374.
[68] LIU M, YAO L, JI Y, et al. Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries[J]. Nano Letters, 2023, 23 (2): 541-549.
[69] WANG F, BORODIN O, GAO T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials, 2018, 17 (6): 543-549.
[70] CHEN S, LAN R, HUMPHREYS J, et al. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn|MnO2 battery[J]. Energy Storage Materials, 2020, 28: 205-215.
[71] CHANG G, LIU S, FU Y, et al. Inhibition Role of Trace Metal Ion Additives on Zinc Dendrites during Plating and Striping Processes[J]. Advanced Materials Interfaces, 2019, 6(23): 1901358.
[72] SUN K E K, HOANG T K A, DOAN T N L, et al. Highly Sustainable Zinc Anodes for a Rechargeable Hybrid Aqueous Battery[J]. Chemistry-A European Journal, 2018, 24(7): 1667-1673.
[73] LIU Q, DENG W, SUN C-F. A potassium-tellurium battery[J]. Energy Storage Materials, 2020, 28: 10-16.
[74] ZHANG J, YIN Y X, YOU Y, et al. A High-Capacity Tellurium@Carbon Anode Material for Lithium-Ion Batteries[J]. Energy Technology, 2014, 2(9‐10): 757-762.
[75] ZHANG Y, MANAIG D, FRESCHI D J, et al. Materials design and fundamental understanding of tellurium-based electrochemistry for rechargeable batteries[J]. Energy Storage Materials, 2021, 40: 166-188.
[76] ZHANG J, YIN Y-X, GUO Y-G. High-capacity Te anode confined in microporous carbon for long-life Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (50): 27838-27844.
[77] CHEN Z, LI C, YANG Q, et al. Conversion-Type Nonmetal Elemental Tellurium Anode with High Utilization for Mild/Alkaline Zinc Batteries[J]. Advanced Materials, 2021, 33 (51): 2105426.
[78] CHEN Z, YANG Q, MO F, et al. Aqueous zinc–tellurium batteries with ultraflat discharge plateau and high volumetric capacity[J]. Advanced Materials, 2020, 32 (42): 2001469.
[79] WANG J, DU J, ZHAO J, et al. Unraveling H+/Zn2+ sequential conversion reactions in tellurium cathodes for rechargeable aqueous zinc batteries[J]. The Journal of Physical Chemistry Letters, 2021, 12 (41): 10163-10168.
[80] DUFFY N, PETER L, WANG R, et al. Electrodeposition and characterisation of CdTe films for solar cell applications[J]. Electrochimica Acta, 2000, 45 (20): 3355-3365.
[81] RUDNIK E, BISKUP P. Electrochemical studies of lead telluride behavior in acidic nitrate solutions[J]. Archives of Metallurgy and Materials, 2015, 60 (1): 95-100.
[82] MURASE K, SUZUKI T, UMENAKA Y, et al. Thermodynamics of Cathodic ZnTe Electrodeposition Using Basic Ammoniacal Electrolytes: Why CdTe Can Deposit While ZnTe Cannot[J]. High Temperature Materials and Processes, 2011, 30 (4-5): 451-458.
[83] MAHALINGAM T, JOHN V, RAJENDRAN S, et al. Electrochemical deposition of ZnTe thin films[J]. Semiconductor Science and Technology, 2002, 17 (5): 465.
[84] BOUROUSHIAN M, KOSANOVIC T, KAROUSSOS D, et al.Electrodeposition of polycrystalline ZnTe from simple and citrate-complexed acidic aqueous solutions[J]. Electrochimica Acta, 2009, 54 (9): 2522-2528.
[85] MAHALINGAM T, DHANASEKARAN V, SUNDARAM K, et al. Characterization of electroplated ZnTe coatings[J]. Ionics, 2011, 18 (3): 299-306.
[86] RUSSO V, BAILINI A, ZAMBONI M, et al. Raman spectroscopy of Bi-Te thin films[J]. Journal of Raman Spectroscopy, 2008, 39 (2): 205-210.
[87] JAVIER M F, SAMUEL G-P, PLACIDA R-H, et al. Anomalous Raman modes in tellurides[J]. Journal of Material Chemistry C, 2021, 9 (19): 6277-6289.
[88] WU H, YAN W, XING Y, et al. Tailoring the Interfacial Electric Field Using Silicon Nanoparticles for Stable Zinc-ion Batteries[J]. Advanced Functional Materials, 2023: 2213882.
[89] QIN R, WANG Y, ZHANG M, et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries[J]. Nano Energy, 2021, 80: 105478.
[90] AN Y, TIAN Y, ZHANG K, et al. Stable Aqueous Anode-Free Zinc Batteries Enabled by Interfacial Engineering[J]. Advanced Functional Materials, 2021, 31 (26): 2101886.
[91] DENG C, XIE X, HAN J, et al. A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode[J]. Advanced Functional Materials, 2020, 30 (21): 2000599.
[92] XIE X, LIANG S, GAO J, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes[J]. Energy & Environmental Science, 2020, 13 (2): 503-510.
[93] WANG X, MENG J, LIN X, et al. Stable Zinc Metal Anodes with Textured Crystal Faces and Functional Zinc Compound Coatings[J]. Advanced Functional Materials, 2021, 31 (48).
[94] XIE F, LI H, WANG X, et al. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries[J]. Advanced Energy Materials, 2021, 11 (9): 2003419.
[95] ZENG Y, SUN P X, PEI Z, et al. Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn metal anodes[J]. Advanced Materials, 2022, 34 (18): 2200342.
[96] SCHARIFKER B, HILLS G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica acta, 1983, 28 (7): 879-889.
[97] BEWICK A, FLEISCHMANN M, THIRSK H. Kinetics of the electrocrystallization of thin films of calomel[J]. Transactions of the Faraday Society, 1962, 58: 2200-2216.
[98] LI Z, ZHOU Y, WANG Y, et al. Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium–sulfur batteries[J]. Advanced Energy Materials, 2019, 9 (1): 1802207.
[99] ZHANG F, WANG C G, PAN J, et al. Polypyrrole-controlled plating/stripping for advanced zinc metal anodes[J].Materials Today Energy, 2020, 17.
[100] DI S L, NIE X Y, MA G Q, et al. Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase[J]. Energy Storage Materials, 2021, 43: 375-382.
[101] YUAN Y F, TU J P, WU H M, et al. Effects of stannous ions on the electrochemical performance of the alkaline zinc electrode[J]. Journal of Applied Electrochemistry, 2006, 37 (2): 249-253.
修改评论