[1] HU M Y, GE X M, CHEN X, et al. Micro/Nanorobot: A Promising Targeted DrugDelivery System[J]. Pharmaceutics, 2020, 12(7): 665.
[2] ZHAO M, LIU M Y. New Avenues for Nanoparticle-Related Therapies[J]. NanoscaleResearch Letters, 2018, 13(1): 136.
[3] NAKAMURA Y, MOCHIDA A, CHOYKE P L, et al. Nanodrug Delivery: Is theEnhanced Permeability and Retention Effect Sufficient for Curing Cancer [J].Bioconjugate Chemistry, 2016, 27(10): 2225-2238.
[4] BLANCO E, SHEN H, FERRARI M. Principles of nanoparticle design for overcomingbiological barriers to drug delivery[J]. Nature Biotechnology, 2015, 33(9): 941-951.
[5] NAIR P R. Delivering Combination Chemotherapies and Targeting OncogenicPathways via Polymeric Drug Delivery Systems[J]. Polymers, 2019, 11(4): 630.
[6] NARMANI A, REZVANI M, FARHOOD B, et al. Folic acid functionalizednanoparticles as pharmaceutical carriers in drug delivery systems[J]. DrugDevelopment Research, 2019, 80(4): 404-424.
[7] LEAMON C P, COOPER S R, HARDEE G E. Folate-liposome-mediated antisenseoligodeoxynucleotide targeting to cancer cells: Evaluation in vitro and in vivo[J].Bioconjugate Chemistry, 2003, 14(4): 738-747.
[8] LI J X, DE AVILA B E F, GAO W, et al. Micro/nanorobots for biomedicine: Delivery,surgery, sensing, and detoxification[J]. Science Robotics, 2017, 2(4): eaam6431.
[9] FEYNMAN R P. There’s Plenty of Room at the Bottom[J]. Resonance, 2011, 16 (9):890-905.
[10] GRIFANTINI K. The State of Nanorobotics in Medicine[J]. IEEE Pulse, 2019, 10(5):13-17.
[11] CHEN X Z, JANG B M, AHMED D, et al. Small-Scale Machines Driven by ExternalPower Sources[J]. Advanced Materials, 2018, 30(15): e1705061.
[12] MA X, SANCHEZ S. Self-propelling micro-nanorobots: challenges and futureperspectives in nanomedicine[J]. Nanomedicine, 2017, 12(12): 1363-1367.
[13] IBELE M, MALLOUK T E, SEN A. Schooling Behavior of Light-PoweredAutonomous Micromotors in Water[J]. Angewandte Chemie-International Edition,2009, 48(18): 3308-3312.
[14] DUAN W, IBELE M, LIU R, et al. Motion analysis of light-powered autonomoussilver chloride nanomotors[J]. European Physical Journal E, 2012, 35(8): 7.
[15] SOURI M, SOLTANI M, MORADI KASHKOOLI F, et al. Towards principled designof cancer nanomedicine to accelerate clinical translation[J]. Materials Today Bio,2022, 13: 100208.
[16] KANG J H, TOITA R, KATAYAMA Y. Bio and nanotechnological strategies fortumor-targeted gene therapy[J]. Biotechnology Advances, 2010, 28(6): 757-763.
[17] NAVYA P N, KAPHLE A, SRINIVAS S P, et al. Current trends and challenges incancer management and therapy using designer nanomaterials[J]. Nano Convergence,2019, 6(1): 23.
[18] MATSUMURA Y, MAEDA H. A new concept for macromolecular therapeutics incancer chemotherapy: mechanism of tumoritropic accumulation of proteins and theantitumor agent smancs[J]. Cancer Research, 1986, 46: 6387-6392.
[19] SHI J, KANTOFF P W, WOOSTER R, et al. Cancer nanomedicine: progress,challenges and opportunities[J]. Nature Reviews Cancer, 2017, 17(1): 20-37.
[20] NICHOLS J W, BAE Y H. EPR: Evidence and fallacy[J]. Journal of ControlledRelease, 2014, 190: 451-464.
[21] EGEBLAD M, NAKASONE E S, WERB Z. Tumors as Organs: Complex Tissues thatInterface with the Entire Organism[J]. Developmental Cell, 2010, 18(6): 884-901.
[22] REN M D, ZHENG X Q, GAO H, et al. Nanomedicines Targeting Metabolism in the Tumor Microenvironment[J]. Frontiers in Bioengineering and Biotechnology, 2022,10: 943906.
[23] EDIRIWICKREMA A, SALTZMAN W M. Nanotherapy for Cancer: Targeting andMultifunctionality in the Future of Cancer Therapies[J]. ACS Biomaterials Science &Engineering, 2015, 1(2): 64-78.
[24] VILLAVERDE G, BAEZA A, MELEN G J, et al. A new targeting agent for theselective drug delivery of nanocarriers for treating neuroblastoma[J]. Journal ofMaterials Chemistry B, 2015, 3(24): 4831-4842.
[25] SMITH R A J, PORTEOUS C M, GANE A M, et al. Delivery of bioactive moleculesto mitochondria in vivo[J]. Proceedings of the National Academy of Sciences of theUnited States of America, 2003, 100(9): 5407-5412.
[26] YOO J, PARK C, YI G, et al. Active Targeting Strategies Using Biological Ligandsfor Nanoparticle Drug Delivery Systems[J]. Cancers (Basel), 2019, 11(5): 640.
[27] VILLAVERDE G, BAEZA A. Targeting strategies for improving the efficacy ofnanomedicine in oncology[J]. Beilstein Journal of Nanotechnology, 2019, 10: 168-181.
[28] SANDVIG K, VAN DEURS B. Membrane traffic exploited by protein toxins[J].Annual Review of Cell and Developmental Biology, 2002, 18: 1-24.
[29] ACHARYA S, HILL R A. High efficacy gold-KDEL peptide-siRNA nanoconstructmediated transfection in C2C12 myoblasts and myotubes[J]. NanomedicineNanotechnology Biology and Medicine, 2014, 10(2): 329-337.
[30] DOOLITTLE E, PEIRIS P M, DORON G, et al. Spatiotemporal Targeting of a DualLigand Nanoparticle to Cancer Metastasis[J]. ACS Nano, 2015, 9(8): 8012-8021.
[31] WANG S, HUANG P, CHEN X Y. Hierarchical Targeting Strategy for EnhancedTumor Tissue Accumulation/Retention and Cellular Internalization[J]. AdvancedMaterials, 2016, 28(34): 7340-7364.
[32] WANG Y F, KOHANE D S. External triggering and triggered targeting strategies for drug delivery[J]. Nature Reviews Materials, 2017, 2(6): 17020.
[33] WANG J N, WANG F H, LI F Z, et al. A multifunctional poly(curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells[J]. Journal of Materials Chemistry B, 2016, 4(17): 2954-2962.
[34] HE Y M, LEI L, CAO J, et al. A combinational chemo-immune therapy using anenzyme-sensitive nanoplatform for dual-drug delivery to specific sites by cascadetargeting[J]. Science Advances, 2021, 7(6): eaba0776.
[35] LI S Y, CHENG H, XIE B R, et al. Cancer Cell Membrane Camouflaged CascadeBioreactor for Cancer Targeted Starvation and Photodynamic Therapy[J]. ACS Nano,2017, 11(7): 7006-7018.
[36] CHEN Y Y, CHEN D X, LIANG S Z, et al. Recent Advances in Field-ControlledMicro-Nano Manipulations and Micro-Nano Robots[J]. Advanced Intelligent Systems,2022, 4(3): 2100116.
[37] LIN R, YU W, CHEN X, et al. Self-Propelled Micro/Nanomotors for Tumor Targeting Delivery and Therapy[J]. Advanced Healthcare Materials, 2021, 10(1): e2001212.
[38] FISCHER P, GHOSH A. Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control[J]. Nanoscale, 2011, 3(2): 557-563.
[39] WANG W, WU Z G, HE Q. Swimming nanorobots for opening a cell membranemechanically[J]. View, 2020, 1(3): 20200005.
[40] WANG J, DONG Y, MA P, et al. Intelligent Micro-/Nanorobots for CancerTheragnostic[J]. Advanced Materials, 2022, 34(52):e2201051.
[41] ZHANG L, ABBOTT J J, DONG L X, et al. Artificial bacterial flagella: Fabricationand magnetic control[J]. Applied Physics Letters, 2009, 94(6): 064107.
[42] TOTTORI S, ZHANG L, QIU F, et al. Magnetic helical micromachines: fabrication,controlled swimming, and cargo transport[J]. Advanced Materials, 2012, 24(6): 811-816.
[43] LI T, LI J, ZHANG H, et al. Magnetically Propelled Fish-Like Nanoswimmers[J].Small, 2016, 12(44): 6098-6105.
[44] GARCIA-GRADILLA V, SATTAYASAMITSATHIT S, SOTO F, et al. Ultrasoundpropelled nanoporous gold wire for efficient drug loading and release[J]. Small, 2014, 10(20): 4154-4159.
[45] KWAN J J, MYERS R, COVIELLO C M, et al. Ultrasound-Propelled Nanocups forDrug Delivery[J]. Small, 2015, 11(39): 5305-5314.
[46] CAO S, SHAO J, WU H, et al. Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy[J]. Nature Communications, 2021, 12(1): 2077.
[47] LIN G, RICHARDSON J J, AHMED H, et al. Programmable Phototaxis of MetalPhenolic Particle Microswimmers[J]. Advanced Materials, 2021, 33(13): e2006177.
[48] CHEN H, ZHAO Q, WANG Y, et al. Near-Infrared Light-Driven Controllable Motions of Gold-Hollow-Microcone Array[J]. ACS Applied Materials & Interfaces, 2019,11(17): 15927-15935.
[49] XING Y, ZHOU M Y, DU X, et al. Hollow mesoporous carbon@Pt Janus nanomotors with dual response of H2O2 and near-infrared light for active cargo delivery[J].Applied Materials Today, 2019, 17: 85-91.
[50] FAN D L, ZHU F Q, CAMMARATA R C, et al. Electric tweezers[J]. Nano Today, 2011, 6(4): 339-354.
[51] GONG S, SCHWALB W, WANG Y, et al. A wearable and highly sensitive pressuresensor with ultrathin gold nanowires[J]. Nature Communications, 2014, 5: 3132.
[52] ZHANG L, XIAO Z, CHEN X, et al. Confined 1D Propulsion of MetallodielectricJanus Micromotors on Microelectrodes under Alternating Current Electric Fields[J].ACS Nano, 2019, 13(8): 8842-8853
[53] TU Y F, PENG F, ANDRE A A M, et al. Biodegradable Hybrid StomatocyteNanomotors for Drug Delivery[J]. ACS Nano, 2017, 11(2): 1957-1963.
[54] CHEN X, ZHOU C, WANG W. Colloidal Motors 101: A Beginner's Guide to Colloidal Motor Research[J]. Chemistry-an Asian Journal, 2019, 14(14): 2388-2405.
[55] LIU K, OU J F, WANG S H, et al. Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy[J]. Applied Materials Today, 2020, 20:100694.
[56] PANTAROTTO D, BROWNE W R, FERINGA B L. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble[J]. Chemical Communications,2008(13): 1533-1535.
[57] GOLESTANIAN R, LIVERPOOL T B, AJDARI A. Propulsion of a molecular machineby asymmetric distribution of reaction products[J]. Physical Review Letters, 2005,94(22): 220801.
[58] WU J, MA S, LI M, et al. Enzymatic/Magnetic Hybrid Micromotors for SynergisticAnticancer Therapy[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 31514 -31526.
[59] ARQUE X, ROMERO-RIVERA A, FEIXAS F, et al. Intrinsic enzymatic propertiesmodulate the self-propulsion of micromotors[J]. Nature Communications, 2019, 10(1): 2826.
[60] GUIX M, WEIZ S M, SCHMIDT O G, et al. Self-Propelled Micro/NanoparticleMotors[J]. Particle & Particle Systems Characterization, 2018, 35(2): 1700382.
[61] XU Y, BIAN Q, WANG R, et al. Micro/nanorobots for precise drug delivery viatargeted transport and triggered release: A review[J]. International Journal ofPharmaceutics, 2022, 616: 121551.
[62] COLEY W B. II. Contribution to the Knowledge of Sarcoma[J]. Annals of Surgery,1891, 14(3): 199-220.
[63] SCHMIDT C K, MEDINA-SANCHEZ M, EDMONDSON R J, et al. Engineeringmicrorobots for targeted cancer therapies from a medical perspective[J]. NatureCommunications, 2020, 11(1): 5618.
[64] YASA O, ERKOC P, ALAPAN Y, et al. Microalga-Powered Microswimmers towardActive Cargo Delivery[J]. Advanced Materials, 2018, 30(45): e1804130.
[65] HONG C Y, LEE M F, OU M C, et al. Tail beat frequency of human sperm: evaluated with sperm head fixation method and computer-assisted semen analysis[J]. Archives of Andrology, 1993, 30(3): 171-176.
[66] HAN J, ZHEN J, DU NGUYEN V, et al. Hybrid-Actuating Macrophage-BasedMicrorobots for Active Cancer Therapy[J]. Scientific Reports, 2016, 6: 28717.
[67] CEYLAN H, YASA I C, YASA O, et al. 3D-Printed Biodegradable Microswimmer forTheranostic Cargo Delivery and Release[J]. ACS Nano, 2019, 13(3): 3353-3362.
[68] XU H, MEDINA-SANCHEZ M, MAGDANZ V, et al. Sperm-Hybrid Micromotor forTargeted Drug Delivery[J]. ACS Nano, 2018, 12(1): 327-337.
[69] GO G, HAN J, ZHEN J, et al. A Magnetically Actuated Microscaffold ContainingMesenchymal Stem Cells for Articular Cartilage Repair[J]. Advanced HealthcareMaterials, 2017, 6(13): 1601378.
[70] LEE S, KIM S, KIM S, et al. A Capsule-Type Microrobot with Pick-and-Drop Motion for Targeted Drug and Cell Delivery[J]. Advanced Healthcare Materials, 2018, 7(9):e1700985.
[71] LI J Y, LI X J, LUO T, et al. Development of a magnetic microrobot for carrying and delivering targeted cells[J]. Science Robotics, 2018, 3(19): eaat8829.
[72] ZHONG D N, LI W L, QI Y C, et al. Photosynthetic Biohybrid Nanoswimmers System to Alleviate Tumor Hypoxia for FL/PA/MR Imaging-Guided Enhanced RadioPhotodynamic Synergetic Therapy[J]. Advanced Functional Materials, 2020, 30(17):1910395.
[73] ZHANG H, LI Z, GAO C, et al. Dual-responsive biohybrid neutrobots for active target delivery[J]. Science Robotics, 2021, 6(52): eaaz9519.
[74] NIEDERT E E, BI C, ADAM G, et al. A Tumbling Magnetic Microrobot System forBiomedical Applications[J]. Micromachines (Basel), 2020, 11(9): 861.
[75] XING J H, YIN T, LI S M, et al. Sequential Magneto-Actuated and Optics-Triggered Biomicrorobots for Targeted Cancer Therapy[J]. Advanced Functional Materials, 2021, 31(11): 2008262.
[76] CHINEN A B, GUAN C M, FERRER J R, et al. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence[J]. Chemical Reviews, 2015, 115(19): 10530-10574.
[77] WU Z G, LI T L, GAO W, et al. Cell-Membrane-Coated Synthetic Nanomotors forEffective Biodetoxification[J]. Advanced Functional Materials, 2015, 25(25): 3881-3887.
[78] WU Z G, LI J X, DE AVILA B E F, et al. Water-Powered Cell-Mimicking JanusMicromotor[J]. Advanced Functional Materials, 2015, 25(48): 7497-7501.
[79] FANG R H, KROLL A V, GAO W W, et al. Cell Membrane Coating Nanotechnology[J].Advanced Materials, 2018, 30(23): 1706759.
[80] LIU W L, ZOU M Z, QIN S Y, et al. Recent Advances of Cell Membrane-CoatedNanomaterials for Biomedical Applications[J]. Advanced Functional Materials, 2020,30(39): 2003559.
[81] ZHEN X, CHENG P H, PU K Y. Recent Advances in Cell Membrane-CamouflagedNanoparticles for Cancer Phototherapy[J]. Small, 2019, 15(1): 1804105.
[82] VIJAYAN V, UTHAMAN S, PARK I K. Cell Membrane-Camouflaged Nanoparticles:A Promising Biomimetic Strategy for Cancer Theragnostics[J]. Polymers (Basel),2018, 10(9): 983.
[83] HU C M J, ZHANG L, ARYAL S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. Proceedings of the NationalAcademy of Sciences of the United States of America, 2011, 108(27): 10980-10985.
[84] SHAO J, XUAN M, ZHANG H, et al. Chemotaxis-Guided Hybrid NeutrophilMicromotors for Targeted Drug Transport[J]. Angewandte Chemie InternationalEdition, 2017, 56(42): 12935-12939.
[85] SHAO J X, ABDELGHANI M, SHEN G Z, et al. Erythrocyte Membrane ModifiedJanus Polymeric Motors for Thrombus Therapy[J]. Acs Nano, 2018, 12(5): 4877-4885.
[86] XUAN M, SHAO J, GAO C, et al. Self-Propelled Nanomotors forThermomechanically Percolating Cell Membranes[J]. Angewandte ChemieInternational Edition, 2018, 57(38): 12463-12467.
[87] YANG H Y, LI Y, LEE D S. Multifunctional and Stimuli-Responsive MagneticNanoparticle-Based Delivery Systems for Biomedical Applications[J]. AdvancedTherapeutics, 2018, 1(2): 1800011.
[88] LI J, ZHANG W, JI W, et al. Near infrared photothermal conversion materials:mechanism, preparation, and photothermal cancer therapy applications[J]. Journal ofMaterials Chemistry B, 2021, 9(38): 7909-7926.
[89] ROPER D K, AHN W, HOEPFNER M. Microscale Heat Transfer Transduced bySurface Plasmon Resonant Gold Nanoparticles[J]. The journal of physical chemistry.C, Nanomaterials and interfaces, 2007, 111(9): 3636-3641.
[90] WANG Y, MENG H M, LI Z. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy[J]. Nanoscale, 2021, 13(19): 8751-8772.
[91] HU M, CHEN J Y, LI Z Y, et al. Gold nanostructures: engineering their plasmonicproperties for biomedical applications[J]. Chemical Society Reviews, 2006, 35(11):1084-1094.
[92] XU C, PU K Y. Second near-infrared photothermal materials for combinationalnanotheranostics[J]. Chemical Society Reviews, 2021, 50(2): 1111-1137.
[93] KIM N Y, BLAKE S, DE D B, et al. Two-Dimensional Nanosheet-Based PhotonicNanomedicine for Combined Gene and Photothermal Therapy[J]. Frontiers inPharmacology, 2020, 10: 1573.
[94] KOU Z Y, WANG X, YUAN R S, et al. A promising gene delivery system developedfrom PEGylated MoS2 nanosheets for gene therapy[J]. Nanoscale Research Letters,2014, 9(1): 587.
[95] HUANG S, XU S, HU Y, et al. Preparation of NIR-responsive, ROS-generating andantibacterial black phosphorus quantum dots for promoting the MRSA-infected wound healing in diabetic rats[J]. Acta Biomaterialia, 2022, 137: 199-217.
[96] LYU Y, PU K Y. Recent Advances of Activatable Molecular Probes Based onSemiconducting Polymer Nanoparticles in Sensing and Imaging[J]. Advanced Science, 2017, 4(6): 1600481.
[97] WANG X J, LI H C, LIU X P, et al. Enhanced photothermal therapy of biomimeticpolypyrrole nanoparticles through improving blood flow perfusion[J]. Biomaterials,2017, 143: 130-141.
[98] XU L G, CHENG L, WANG C, et al. Conjugated polymers for photothermal therapy of cancer[J]. Polymer Chemistry, 2014, 5(5): 1573-1580.
[99] AGRAHARI V, AGRAHARI V, CHOU M L, et al. Intelligent micro-/nanorobots asdrug and cell carrier devices for biomedical therapeutic advancement: Promisingdevelopment opportunities and translational challenges[J]. Biomaterials, 2020, 260:120163.
[100]YAN X, WANG F, ZHENG B, et al. Stimuli-responsive supramolecular polymericmaterials[J]. Chemical Society Reviews, 2012, 41(18): 6042-6065.
[101]CHEANG U K, MESHKATI F, KIM H, et al. Versatile microrobotics using simplemodular subunits[J]. Scientific Reports, 2016, 6(1): 1-10.
[102]WANG X, CAI J, SUN L, et al. Facile Fabrication of Magnetic Microrobots Based on Spirulina Templates for Targeted Delivery and Synergistic Chemo-PhotothermalTherapy[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 4745-4756.
[103]CHEANG U K, MESHKATI F, KIM D, et al. Minimal geometric requirements formicropropulsion via magnetic rotation[J]. Physical review E, 2014, 90(3): 033007.
[104]NGUYEN V H, HALDORAI Y, PHAM Q L, et al. Supercritical fluid mediatedsynthesis of poly(2-hydroxyethyl methacrylate)/Fe3O4 hybrid nanocomposite[J].Materials Science and Engineering B-Advanced Functional Solid-State Materials,2011, 176(10): 773-778.
[105]LIU J, LECUYER T, SEGUIN J, et al. Imaging and therapeutic applications ofpersistent luminescence nanomaterials[J]. Advanced Drug Delivery Reviews, 2019,138: 193-210.
[106]LUO M, FENG Y, WANG T, et al. Micro-/Nanorobots at Work in Active DrugDelivery[J]. Advanced Functional Materials, 2018, 28(25): 1706100.
[107]ESTEBAN-FERNANDEZ DE AVILA B, GAO W, KARSHALEV E, et al. Cell-LikeMicromotors[J]. Accounts of Chemical Research, 2018, 51(9): 1901-1910.
[108]WOO S R, CORRALES L, GAJEWSKI T F. Innate immune recognition of cancer[J].Annual Review of Immunology, 2015, 33: 445-474.
[109]YONG S B, CHUNG J Y, SONG Y, et al. Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells[J]. Biomaterials, 2019, 219: 119401.
[110]XIA Y, RAO L, YAO H, et al. Engineering Macrophages for Cancer Immunotherapy and Drug Delivery[J]. Advanced Materials, 2020, 32(40): e2002054.
[111]HU W, LIU C, BI Z Y, et al. Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology[J].Molecular Cancer, 2020, 19(1): 102.
[112]ZHANG J, SHEN L M, LI X, et al. Nanoformulated Codelivery of Quercetin andAlantolactone Promotes an Antitumor Response through Synergistic ImmunogenicCell Death for Microsatellite-Stable Colorectal Cancer[J]. ACS Nano, 2019, 13(11):12511-12524.
[113]DENG C F, ZHANG Q, JIA M D, et al. Tumors and Their Microenvironment Dual -Targeting Chemotherapy with Local Immune Adjuvant Therapy for EffectiveAntitumor Immunity against Breast Cancer[J]. Advanced Science, 2019, 6(6):1801868.
[114]JIN S S, HE D Q, LUO D, et al. A Biomimetic Hierarchical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment to PromoteEndogenous Bone Regeneration[J]. ACS Nano, 2019, 13(6): 6581-6595.
[115]MCWHORTER F Y, WANG T T, NGUYEN P, et al. Modulation of macrophagephenotype by cell shape[J]. Proceedings of the National Academy of Sciences of theUnited States of America, 2013, 110(43): 17253-17258.
[116]SONG X X, LIU F W, QIU C J, et al. Nanosurfacing Ti alloy by weak alkalinityactivated solid-state dewetting (AAD) and its biointerfacial enhancement effect[J].Materials Horizons, 2021, 8(3): 912-924.
[117]DUAN Z J, LUO Y P. Targeting macrophages in cancer immunotherapy[J]. SignalTransduction and Targeted Therapy, 2021, 6(1): 127.
[118]WATERFIELD J D, ALI T A, NAHID F, et al. The effect of surface topography onearly NFkappaB signaling in macrophages[J]. Journal of Biomedical MaterialsResearch Part A, 2010, 95(3): 837-847.
[119]ZHANG L, ZHAO Z J, WANG T, et al. Nano-designed semiconductors for electroand photoelectro-catalytic conversion of carbon dioxide[J]. Chemical Society Reviews, 2018, 47(14): 5423-5443.
[120]CHEANG U K, MESHKATI F, KIM D, et al. Minimal geometric requirements formicropropulsion via magnetic rotation[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2014, 90(3): 033007.
[121]TAN L, ALI J, CHEANG U K, et al. micro-PIV Measurements of Flows Generated by Photolithography-Fabricated Achiral Microswimmers[J]. Micromachines (Basel),2019, 10(12): 865.
[122]EREIFEJ E S, KHAN S, NEWAZ G, et al. Characterization of astrocyte reactivity and gene expression on biomaterials for neural electrodes[J]. Journal of BiomedicalMaterials Research Part A, 2011, 99(1): 141-150.
[123]RAZA G, AMJAD M, KAUR I, et al. Stability and Aggregation Kinetics of TitaniaNanomaterials under Environmentally Realistic Conditions[J]. Environmental Science& Technology, 2016, 50(22): 12525-12525.
[124]MURPHY C J, JANA N R. Controlling the aspect ratio of inorganic nanorods andnanowires[J]. Advanced Materials, 2002, 14(1): 80-82.
[125]KANG H, JUNG H J, KIM S K, et al. Magnetic Manipulation of ReversibleNanocaging Controls In Vivo Adhesion and Polarization of Macrophages[J]. ACSNano, 2018, 12(6): 5978-5994.
[126]MIYAUCHI M, IKEZAWA A, TOBIMATSU H, et al. Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films[J]. Physical Chemistry Chemical Physics,2004, 6(4): 865-870.
[127]VAUPEL P, KALLINOWSKI F, OKUNIEFF P. Blood-Flow, Oxygen and NutrientSupply, and Metabolic Microenvironment of Human-Tumors - a Review[J]. CancerResearch, 1989, 49(23): 6449-6465.
[128]CURRY D, CAMERON A, MACDONALD B, et al. Adsorption of doxorubicin oncitrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems[J]. Nanoscale, 2015, 7(46): 19611-19619.
[129]ZHEN X, CHENG P, PU K. Recent Advances in Cell Membrane-CamouflagedNanoparticles for Cancer Phototherapy[J]. Small, 2019, 15(1): e1804105.
[130]PAN W, DAI C, LI Y, et al. PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy andphototherapy treatment of rheumatoid arthritis[J]. Biomaterials, 2020, 239: 119851.
[131]LI R, HE Y, ZHU Y, et al. Route to Rheumatoid Arthritis by Macrophage-DerivedMicrovesicle-Coated Nanoparticles[J]. Nano Letters, 2019, 19(1): 124-134.
[132]MA Y F, YANG Z G, HUNTOON K, et al. Advanced Immunotherapy Approaches for Glioblastoma[J]. Advanced Therapeutics, 2021, 4(8): 2100046.
[133]GUO N, CANG F, WANG Z, et al. Magnetism and NIR dual-response polypyrrolecoated Fe3O4 nanoparticles for bacteria removal and inactivation[J]. Materials Science & Engineering C-Materials for Biological Applications, 2021, 126: 112143.
[134]RAO L, BU L L, MENG Q F, et al. Antitumor Platelet-Mimicking MagneticNanoparticles[J]. Advanced Functional Materials, 2017, 27(9): 1604774.
[135]ZHAO C Y, CHEN Q, LI W P, et al. Multi-functional platelet membrane-camouflaged nanoparticles reduce neuronal apoptosis and regulate microglial phenotype during ischemic injury[J]. Applied Materials Today, 2022, 27.
[136]XIAO T T, HE M J, XU F, et al. Macrophage Membrane-Camouflaged ResponsivePolymer Nanogels Enable Magnetic Resonance Imaging-Guided Chemotherapy/Chemodynamic Therapy of Orthotopic Glioma[J]. ACS Nano, 2021,15(12): 20377-20390.
[137]HU C M, FANG R H, WANG K C, et al. Nanoparticle biointerfacing by plateletmembrane cloaking[J]. Nature, 2015, 526(7571): 118-121.
[138]TIAN Q, WANG Q, YAO K X, et al. Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy[J]. Small, 2014,10(6): 1063-1068.
[139]LYU Y, XIE C, CHECHETKA S A, et al. Semiconducting Polymer Nanobioconjugates for Targeted Photothermal Activation of Neurons[J]. Journal of the AmericanChemical Society, 2016, 138(29): 9049-9052.
[140]HAN K, SHIELDS C W T, DIWAKAR N M, et al. Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes[J]. Science Advances, 2017, 3(8): e1701108.
[141]WANG J, CHEN H J, HANG T, et al. Physical activation of innate immunity by spiky particles[J]. Nature Nanotechnology, 2018, 13(11): 1078-1086
修改评论